ArticlePDF Available

Efficacy of meditation with conventional physiotherapy management on sub-acute stroke patients

Authors:

Abstract and Figures

The use of meditation has long been recommended for medical treatment. Current study was to determine the effect of meditation additions to the conventional protocol that aim to enhance stroke patient’s responses to depression, balance, disability and fatigue. A total of 10 sub-acute stroke patients with mean age of 55.2 ± 4.3 years participated in this study. As per inclusion criteria, the patients were randomly divided into two groups, group A and B (n=05) in each group. Group-A participants were undergone meditation for 20 min, whereas, group-B considered as control group, both groups undergone a standard conventional physiotherapy regime; a total interventional regime which consisted of 4 sessions per week for 28 days. Study outcomes such as depression, balance, disability and fatigue were assessed at baseline on the 14th and 29th day. A follow up was done after one week, that is, on the 37th day. The result of the study reported that disability, depression, fatigue and balance improved in both groups. Although, the patients in group A, who underwent meditation showed highly significant improvement (p>0.001) than group-B, who underwent conventional physiotherapy only. A follow-up effect improvement was retained in group-A even after the meditation was not being given till the 37th day of post intervention. The study concluded that meditation along with conventional physiotherapy management is more effective than conventional physiotherapy alone in the management of stroke. Thus, in post stroke rehabilitation, meditation should be incorporated in the management regime of stroke patients.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Full-text available
Article
A convergent line of neuroscientific evidence suggests that meditation alters the functional and structural plasticity of distributed neural processes underlying attention and emotion. The purpose of this study was to examine the brain structural differences between a well-matched sample of long-term meditators and controls. We employed whole-brain cortical thickness analysis based on magnetic resonance imaging, and diffusion tensor imaging to quantify white matter integrity in the brains of 46 experienced meditators compared with 46 matched meditation-naïve volunteers. Meditators, compared with controls, showed significantly greater cortical thickness in the anterior regions of the brain, located in frontal and temporal areas, including the medial prefrontal cortex, superior frontal cortex, temporal pole and the middle and interior temporal cortices. Significantly thinner cortical thickness was found in the posterior regions of the brain, located in the parietal and occipital areas, including the postcentral cortex, inferior parietal cortex, middle occipital cortex and posterior cingulate cortex. Moreover, in the region adjacent to the medial prefrontal cortex, both higher fractional anisotropy values and greater cortical thickness were observed. Our findings suggest that long-term meditators have structural differences in both gray and white matter.
Full-text available
Article
Zen meditation has been associated with low sensitivity on both the affective and the sensory dimensions of pain. Given reports of gray matter differences in meditators as well as between chronic pain patients and controls, the present study investigated whether differences in brain morphometry are associated with the low pain sensitivity observed in Zen practitioners. Structural MRI scans were performed and the temperature required to produce moderate pain was assessed in 17 meditators and 18 controls. Meditators had significantly lower pain sensitivity than controls. Assessed across all subjects, lower pain sensitivity was associated with thicker cortex in affective, pain-related brain regions including the anterior cingulate cortex, bilateral parahippocampal gyrus and anterior insula. Comparing groups, meditators were found to have thicker cortex in the dorsal anterior cingulate and bilaterally in secondary somatosensory cortex. More years of meditation experience was associated with thicker gray matter in the anterior cingulate, and hours of experience predicted more gray matter bilaterally in the lower leg area of the primary somatosensory cortex as well as the hand area in the right hemisphere. Results generally suggest that pain sensitivity is related to cortical thickness in pain-related brain regions and that the lower sensitivity observed in meditators may be the product of alterations to brain morphometry from long-term practice.
Article
The relationship between lesion location and quality of life (QOL) in stroke patients has not yet been clearly revealed. The present study was undertaken to investigate the clinical and anatomical correlates which can predict future QOL in stroke patients. The study subjects consisted of 69 consecutive patients with ischemic stroke who were followed up 2 months after the stroke event at the stroke unit. Quality of life was evaluated during the 2-month follow up period after the stroke. Baseline information or data including clinical and anatomical correlates (Beck Depression Inventory, Beck Anxiety Inventory, Barthel's Index, MRI data) at the time of the stroke event were collected by performing a review of each patient's chart and research data files. Severe subcortical gray matter lesion and depressive symptoms in the acute phase of stroke were of importance in predicting low QOL 2 months after stroke.
Article
Background: Levels of physical fitness are low after stroke. It is unknown whether improving physical fitness after stroke reduces disability. Objectives: To determine whether fitness training after stroke reduces death, dependence, and disability and to assess the effects of training with regard to adverse events, risk factors, physical fitness, mobility, physical function, quality of life, mood, and cognitive function. Interventions to improve cognitive function have attracted increased attention after being identified as the highest rated research priority for life after stroke. Therefore we have added this class of outcomes to this updated review. Search methods: We searched the Cochrane Stroke Group Trials Register (last searched February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL 2015, Issue 1: searched February 2015), MEDLINE (1966 to February 2015), EMBASE (1980 to February 2015), CINAHL (1982 to February 2015), SPORTDiscus (1949 to February 2015), and five additional databases (February 2015). We also searched ongoing trials registers, handsearched relevant journals and conference proceedings, screened reference lists, and contacted experts in the field. Selection criteria: Randomised trials comparing either cardiorespiratory training or resistance training, or both (mixed training), with usual care, no intervention, or a non-exercise intervention in stroke survivors. Data collection and analysis: Two review authors independently selected trials, assessed quality and risk of bias, and extracted data. We analysed data using random-effects meta-analyses. Diverse outcome measures limited the intended analyses. Main results: We included 58 trials, involving 2797 participants, which comprised cardiorespiratory interventions (28 trials, 1408 participants), resistance interventions (13 trials, 432 participants), and mixed training interventions (17 trials, 957 participants). Thirteen deaths occurred before the end of the intervention and a further nine before the end of follow-up. No dependence data were reported. Diverse outcome measures restricted pooling of data. Global indices of disability show moderate improvement after cardiorespiratory training (standardised mean difference (SMD) 0.52, 95% confidence interval (CI) 0.19 to 0.84; P value = 0.002) and by a small amount after mixed training (SMD 0.26, 95% CI 0.04 to 0.49; P value = 0.02); benefits at follow-up (i.e. after training had stopped) were unclear. There were too few data to assess the effects of resistance training.Cardiorespiratory training involving walking improved maximum walking speed (mean difference (MD) 6.71 metres per minute, 95% CI 2.73 to 10.69), preferred gait speed (MD 4.28 metres per minute, 95% CI 1.71 to 6.84), and walking capacity (MD 30.29 metres in six minutes, 95% CI 16.19 to 44.39) at the end of the intervention. Mixed training, involving walking, increased preferred walking speed (MD 4.54 metres per minute, 95% CI 0.95 to 8.14), and walking capacity (MD 41.60 metres per six minutes, 95% CI 25.25 to 57.95). Balance scores improved slightly after mixed training (SMD 0.27, 95% CI 0.07 to 0.47). Some mobility benefits also persisted at the end of follow-up. The variability, quality of the included trials, and lack of data prevents conclusions about other outcomes and limits generalisability of the observed results. Authors' conclusions: Cardiorespiratory training and, to a lesser extent, mixed training reduce disability during or after usual stroke care; this could be mediated by improved mobility and balance. There is sufficient evidence to incorporate cardiorespiratory and mixed training, involving walking, within post-stroke rehabilitation programmes to improve the speed and tolerance of walking; some improvement in balance could also occur. There is insufficient evidence to support the use of resistance training. The effects of training on death and dependence after stroke are still unclear but these outcomes are rarely observed in physical fitness training trials. Cognitive function is under-investigated despite being a key outcome of interest for patients. Further well-designed randomised trials are needed to determine the optimal exercise prescription and identify long-term benefits.
Article
A new theory of mind-body interaction in healing is proposed based on considerations from the field of perception. It is suggested that the combined effect of visual imagery and mindful meditation on physical healing is simply another example of cross-modal adaptation in perception, much like adaptation to prism-displaced vision. It is argued that psychological interventions produce a conflict between the perceptual modalities of the immune system and vision (or touch), which leads to change in the immune system in order to realign the modalities. It is argued that mind-body interactions do not exist because of higher-order cognitive thoughts or beliefs influencing the body, but instead result from ordinary interactions between lower-level perceptual modalities that function to detect when sensory systems have made an error. The theory helps explain why certain illnesses may be more amenable to mind-body interaction, such as autoimmune conditions in which a sensory system (the immune system) has made an error. It also renders sensible erroneous changes, such as those brought about by "faith healers," as conflicts between modalities that are resolved in favor of the wrong modality. The present view provides one of very few psychological theories of how guided imagery and mindfulness meditation bring about positive physical change. Also discussed are issues of self versus non-self, pain, cancer, body schema, attention, consciousness, and, importantly, developing the concept that the immune system is a rightful perceptual modality. Recognizing mind-body healing as perceptual cross-modal adaptation implies that a century of cross-modal perception research is applicable to the immune system.
Article
The primary consideration in the prevention and treatment of migraine headaches is the identification and elimination of causative factors, including: Food allergy, sleep deficiency, stress, and nutritional deficiencies. The CIT strategies offer effective methods for both the prevention and treatment of migraine headaches, which include nutritional supplementation, botanical medicines, and mind-body stress-reduction techniques.
Article
This study was designed to assess the association between stress, positive affect and catecholamine levels in meditation and control groups. The meditation group consisted of 67 subjects who regularly engaged in mind-body training of "Brain-Wave Vibration" and the control group consisted of 57 healthy subjects. Plasma catecholamine (norepinephrine (NE), epinephrine (E), and dopamine (DA)) levels were measured, and a modified form of the Stress Response Inventory (SRI-MF) and the Positive Affect and Negative Affect Scale (PANAS) were administered. The meditation group showed higher scores on positive affect (p=.019) and lower scores on stress (p<.001) compared with the control group. Plasma DA levels were also higher in the meditation (p=.031) than in the control group. The control group demonstrated a negative correlation between stress and positive affects (r=-.408, p=.002), whereas this correlation was not observed in the meditation group. The control group showed positive correlations between somatization and NE/E (r=.267, p=.045) and DA/E (r=.271, p=.042) ratios, whereas these correlations did not emerge in the meditation group. In conclusion, these results suggest that meditation as mind-body training is associated with lower stress, higher positive affect and higher plasma DA levels when comparing the meditation group with the control group. Thus, mind-body training may influence stress, positive affect and the sympathetic nervous system including DA activity.
Article
Prefrontal cortex (PFC) mediates an assortment of cognitive functions including working memory, behavioral flexibility, attention, and future planning. Unlike the hippocampus, where induction of synaptic plasticity in the network is well-documented in relation to long-term memory, cognitive functions mediated by the PFC have been thought to be independent of long-lasting neuronal adaptation of the network. Nonetheless, accumulating evidence suggests that prefrontal cortical neurons possess the cellular machinery of synaptic plasticity and exhibit lasting changes of neural activity associated with various cognitive processes. Moreover, deficits in the mechanisms of synaptic plasticity induction in the PFC might be involved in the pathophysiology of psychiatric and neurological disorders such as schizophrenia, drug addiction, mood disorders, and Alzheimer's disease.