Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes

Arthritis Research & Therapy (Impact Factor: 3.75). 08/2014; 16(4):R163. DOI: 10.1186/ar4679
Source: PubMed


Osteoarthritis (OA) is a whole joint disease, and characterized by progressive degradation of articular cartilage, synovial hyperplasia, bone remodeling and angiogenesis in various joint tissues. Exosomes are a type of microvesicles (MVs) that may play a role in tissue-tissue and cell-cell communication in homeostasis and diseases. We hypothesized that exosomes function in a novel regulatory network that contributes to OA pathogenesis and examined the function of exosomes in communication among joint tissue cells.

Human synovial fibroblasts (SFB) and articular chondrocytes were obtained from normal knee joints. Exosomes isolated from conditioned medium of SFB were analyzed for size, numbers, markers and function. Normal articular chondrocytes were treated with exosomes from SFB, and Interleukin-1β (IL-1β) stimulated SFB. OA-related genes expression was quantified using real-time PCR. To analyze exosome effects on cartilage tissue, we performed glycosaminoglycan release assay. Angiogenic activity of these exosomes was tested in migration and tube formation assays. Cytokines and miRNAs in exosomes were analyzed by Bio-Plex multiplex assay and NanoString analysis.

Exosomes from IL-1β stimulated SFB significantly up-regulated MMP-13 and ADAMTS-5 expression in articular chondrocytes, and down-regulated COL2A1 and ACAN compared with SFB derived exosomes. Migration and tube formation activity were significantly higher in human umbilical vein endothelial cells (HUVECs) treated with the exosomes from IL-1β stimulated SFB, which also induced significantly more proteoglycan release from cartilage explants. Inflammatory cytokines, IL-6, MMP-3 and VEGF in exosomes were only detectable at low level. IL-1β, TNFα MMP-9 and MMP-13 were not detectable in exosomes. NanoString analysis showed that levels of 50 miRNAs were differentially expressed in exosomes from IL-1β stimulated SFB compared to non-stimulated SFB.

Exosomes from IL-1β stimulated SFB induce OA-like changes both in vitro and in ex vivo models. Exosomes represent a novel mechanism by which pathogenic signals are communicated among different cell types in OA-affected joints.

Download full-text


Available from: Martin Lotz, Nov 26, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple mechanisms are implicated in the development of primary osteoarthritis (OA), in which genetic and epigenetic factors appear to interact with environmental factors and age to initiate the disease and stimulate its progression. Changes in expression of microRNAs (miRs) contribute to development of osteoarthritis. Numerous miRs are involved in cartilage development, homeostasis and degradation through targeting genes expressed in this tissue. An important regulator of gene expression in human cartilage is miR-140, which directly targets a gene coding aggrecanase ADAMTS-5, that cleaves aggrecan in cartilage. This miR is considered a biological marker for cartilage and its level significantly decreases in OA cartilage. On the other hand, increased expression of miR-146a in early OA inhibits two other cartilage-degrading enzymes: MMP13 and ADAMTS4, and may provide a useful tool in developing treatments for OA. The COL2A1 gene, encoding collagen type II, which is the most abundant structural protein of the cartilage, is silenced by miR-34a and activated by miR-675. Every year, new targets of cartilage miRs are validated experimentally and this opens new possibilities for new therapies that control joint destruction and stimulate cartilage repair. At the same time development of next-generation sequencing technologies allows to identify new miRs involved in cartilage biology.
    Full-text · Article · Dec 2014 · Current Genomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astragalin, a bioactive component isolated from Rosa agrestis, has been described to exhibit anti-inflammatory activity. The aim of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of astragalin on IL-1β-stimulated human osteoarthritis chondrocyte. The production of NO and PGE2 was detected by Griess reaction and ELISA. The expression of iNOS and COX-2 was detected by western blotting. The expression of NF-κB and MAPKs was detected by western blot analysis. We found that astragalin dose-dependently inhibited IL-1β-induced NO and PGE2 production, as well as iNOS and COX-2 expression. Meanwhile, western blot analysis showed that astragalin inhibited IL-1β-induced NF-κB and MAPK activation in human osteoarthritis chondrocyte. In addition, astragalin was found to activate PPAR-γ. The inhibition of astragalin on IL-1β-induced NO and PGE2 production can be reversed by PPAR-γ antagonist GW9662. Astragalin suppressed IL-1β-induced inflammatory mediators via activating PPAR-γ, which subsequently inhibited IL-1β-induced NF-κB and MAPK activation. Astragalin may be a potential agent in the treatment of osteoarthritis. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Jan 2015 · International Immunopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: MSCs are an extensively used cell type in clinical trials today. The initial rationale for their clinical testing was based on their differentiation potential. However, the lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury has led to the proposal that MSCs exert their effects not through their differentiation potential but through their secreted product, more specifically, exosomes, a type of extracellular vesicle. We propose here that MSC exosomes function as an extension of MSC's biological role as tissue stromal support cells. Like their cell source, MSC exosomes help maintain tissue homeostasis for optimal tissue function. They target housekeeping biological processes that operate ubiquitously in all tissues and are critical in maintaining tissue homeostasis, enabling cells to recover critical cellular functions and begin repair and regeneration. This hypothesis provides a rationale for the therapeutic efficacy of MSCs and their secreted exosomes in a wide spectrum of diseases. Here, we give a brief introduction of the biogenesis of MSC exosomes, review their physiological functions and highlight some of their biochemical potential to illustrate how MSC exosomes could restore tissue homeostasis leading to tissue recovery and repair. Copyright © 2015. Published by Elsevier Ltd.
    No preview · Article · Mar 2015 · Seminars in Cell and Developmental Biology
Show more