Article

Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS

Frontiers in Aging Neuroscience (Impact Factor: 4). 07/2014; 6:149. DOI: 10.3389/fnagi.2014.00149
Source: PubMed

ABSTRACT

The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

Download full-text

Full-text

Available from: Simon B Eickhoff, Aug 08, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used to analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible.
    Full-text · Article · Jan 2014 · Frontiers in Neuroinformatics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Older adults exhibit decreased performance and increased trial-to-trial variability on a range of cognitive tasks, including speech perception. We used blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) to search for neural correlates of these behavioral phenomena. We compared brain responses to simple speech stimuli (audiovisual syllables) in 24 healthy older adults (53 to 70 years old) and 14 younger adults (23 to 39 years old) using two independent analysis strategies: region-of-interest (ROI) and voxel-wise whole-brain analysis. While mean response amplitudes were moderately greater in younger adults, older adults had much greater within-subject variability. The greatly increased variability in older adults was observed for both individual voxels in the whole-brain analysis and for ROIs in the left superior temporal sulcus, the left auditory cortex, and the left visual cortex. Increased variability in older adults could not be attributed to differences in head movements between the groups. Increased neural variability may be related to the performance declines and increased behavioral variability that occur with aging.
    Full-text · Article · Oct 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcallosal fibers of the visual system have preferential target sites within the occipital cortex of monkeys. These target sites coincide with vertical meridian representations of the visual field at borders of retinotopically defined visual areas. The existence of preferential target sites of transcallosal fibers in the human brain at the borders of early visual areas was claimed, but controversially discussed. Hence, we studied the distribution of transcallosal fibers in human visual cortex, searching for an organizational principle across early and higher visual areas. In-vivo high angular resolution diffusion imaging data of 28 subjects were used for probabilistic fiber tracking using a constrained spherical deconvolution approach. The fiber architecture within the target sites was analyzed at microscopic resolution using 3D polarized light imaging in a post-mortem human hemisphere. Fibers through a seed in the splenium of the corpus callosum reached the occipital cortex via the forceps major and the tapetum. We found target sites of these transcallosal fibers at borders of cytoarchitectonically defined occipital areas not only between early visual areas V1 and V2, V3d and V3A, and V3v and V4, but also between higher extrastriate areas, namely V4 (ventral) and posterior fusiform area FG1 as well as posterior fusiform area FG2 and lateral occipital cortex. In early visual areas, the target sites coincided with the vertical meridian representations of retinotopic maps. The spatial arrangement of the fibers in the 'border tuft' region at the V1/V2 border was found to be more complex than previously observed in myeloarchitectonic studies. In higher visual areas, our results provided additional evidence for a hemi-field representation in human area V4. The fiber topography in posterior fusiform gyrus indicated that additional retinotopic areas might exist, located between the recently identified retinotopic representations phPITv/phPITd and PHC-1/PHC-2 in lateral occipital cortex and parahippocampal gyrus. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Jan 2015 · Cortex
Show more