Matrix Remodeling Maintains ESC Self-Renewal by Activating Stat3

Dept. of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139.
Stem Cells (Impact Factor: 6.52). 06/2013; 31(6). DOI: 10.1002/stem.1360


While a variety of natural and synthetic matrices have been used to influence embryonic stem cell (ESC) self-renewal or differentiation, and ESCs also deposit a rich matrix of their own, the mechanisms behind how extracellular matrix affects cell fate are largely unexplored. The ESC matrix is continuously remodeled by matrix metalloproteinases (MMPs), a process that we find is enhanced by the presence of mouse embryonic fibroblast feeders in a paracrine manner. Matrix remodeling by MMPs aids in the self-renewal of ESCs, as inhibition of MMPs inhibits the ability of ESCs to self-renew. We also find that addition of the interstitial collagenase MMP1 is sufficient to maintain long-term leukemia inhibitory factor (LIF)-independent mouse ESC (mESC) self-renewal in a dose-dependent manner. This remarkable ability is due to the presence of endogenously produced self-renewal-inducing signals, including the LIF-family ligand ciliary neurotrophic factor, that are normally trapped within the ECM and become exposed upon MMP-induced matrix remodeling to signal through JAK and Stat3. These results uncover a new role for feeder cells in maintaining self-renewal and show that mESCs normally produce sufficient levels of autocrine-acting pro-self-renewal ligands. STEM Cells 2013;31:1097–1106

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrigel and similar commercial products are extracts of the Engelbreth-Holm-Swarm sarcoma that provide a basement-membrane-like attachment substrate or gel that is used to grow cells on or in, respectively. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constituents, an analysis of the expressed liquid of gelled Matrigel was performed using proteome array technology. Among the growth factors/cytokines assayed, high positive detection was found for IGFBP1, IGFBP3, LIF, platelet factor 4, PlGF-2, and VEGF; moderate reactivity was found for cyr61, IGFBP2, IGFBP6, IL-1ra, and NOV; and low, but detectable, responses occurred for aFGF, IL-13, IL-23, M-CSF, and VEGF-B. Among the chemokines assayed, high positive detection was found for MIG and serpin E1; moderate reactivity was found for IP-10, MCP-1, and MCP-5, and low, but detectable, responses occurred for CXCL16, I-TAC, and MIP-1α. Among the other biologically active proteins assayed, high positive detection was found for adiponectin, C5a, endocan, lipocalin-2, sICAM-1, MMP-3, and TIMP-1; moderate reactivity was found for C-reactive protein, coagulation factor III, endoglin, endostatin/collagen XVIII, endothelin-1, ICAM-1, MMP-9, osteopontin, pentraxin-3, and RANTES; and low, but detectable, responses occurred for fetuin A, MMP-8, pentraxin-2, RBP4, resistin, and TIMP-4. The study found several growth factors, chemokines, and biologically active proteins not previously identified in Matrigel, and this may have significance to the interpretations of observed cellular responses when cells are grown on or in Matrigel.
    Full-text · Article · Apr 2014 · Cytotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that the surface chemistry of biomaterials is important for both initial cell attachment and the downstream cell response. Surface chemistry gradients are a new format that allows the screening of the subtleties of cell–surface interactions in high throughput. In this study, two surface chemical gradients were fabricated using diffusion control during plasma polymerization via a tilted mask. Acrylic acid (AA) plasma polymer gradients were coated on a uniform 1,7-octadiene (OD) plasma polymer layer to generate OD–AA plasma polymer gradients, whilst diethylene glycol dimethyl ether (DG) plasma polymer gradients were coated on a uniform AA plasma polymer layer to generate AA–DG plasma polymer gradients. Gradient surfaces were characterized by X-ray photoelectron spectroscopy, infrared microscopy mapping, profilometry, water contact angle (WCA) goniometry and atomic force microscopy. Cell attachment density and differentiation into osteo- and adipo-lineages of rat-bone-marrow mesenchymal stem cells (rBMSCs) was studied on gradients. Cell adhesion after 24 h culture was sensitive to the chemical gradients, resulting in a cell density gradient along the substrate. The slope of the cell density gradient changed between 24 and 6 days due to cell migration and growth. Induction of rBMSCs into osteoblast- and adipocyte-like cells on the two plasma polymer gradients suggested that osteogenic differentiation was sensitive to local cell density, but adipogenic differentiation was not. Using mixed induction medium (50% osteogenic and 50% adipogenic medium), thick AA plasma polymer coating (>40 nm thickness with ∼11% COOH component and 35° WCA) robustly supported osteogenic differentiation as determined by colony formation and calcium deposition. This study establishes a simple but powerful approach to the formation of plasma polymer based gradients, and demonstrates that MSC behavior can be influenced by small changes in surface chemistry.
    Full-text · Article · Sep 2014 · Acta Biomaterialia
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell microenvironment is dynamically regulated by the cellular component, including stem cells themselves. Thus, a mechanism exists whereby stem cells modify the ECM which in turn affects the fate of the stem cell. In this study, we investigated whether the type of ECM initially adsorbed to the culture substrate can influence the composition of the ECM deposited by human embryonic stem cells (hESCs) differentiating in embryoid bodies, and whether different ECM composition and deposition profiles elicit distinct differentiation fates. We have shown that the initial ECM environment hESCs are exposed to affects the fate decisions of those cells and that this initial ECM environment is constantly modified during the differentiation process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 2014
    No preview · Article · Oct 2014 · Biotechnology Progress
Show more