ArticlePDF AvailableLiterature Review

Abstract and Figures

We live amid a global wave of anthropogenically driven biodiversity loss: species and population extirpations and, critically, declines in local species abundance. Particularly, human impacts on animal biodiversity are an under-recognized form of global environmental change. Among terrestrial vertebrates, 322 species have become extinct since 1500, and populations of the remaining species show 25% average decline in abundance. Invertebrate patterns are equally dire: 67% of monitored populations show 45% mean abundance decline. Such animal declines will cascade onto ecosystem functioning and human well-being. Much remains unknown about this “Anthropocene defaunation”; these knowledge gaps hinder our capacity to predict and limit defaunation impacts. Clearly, however, defaunation is both a pervasive component of the planet’s sixth mass extinction and also a major driver of global ecological change.
Results of experimental manipulation simulating differential defaunation. As a model of the pervasive ecosystem effects of defaunation, in just one site (the Kenya Long Term Exclosure Experiment), the effects of selective large-wildlife (species >15 kg) removal drive strong cascading consequences on other taxa, on interactions, and on ecosystem services (81). (A) In this experiment, large wildlife are effectively removed by fences, as evidenced by mean difference in dung abundance (T1 SE) between control and exclosure plots. (B) This removal leads to changes in the abundance or diversity of other consumer groups. Effects were positive for most of these small-bodied consumers-including birds (B-R, bird species richness; B-A, granivorous bird abundance), Coleoptera (C), fleas (F), geckos (G), insect biomass (I), rodents (R), and snakes (S)-but negative for ticks (T). (C) Experimental defaunation also affects plant-animal interactions, notably altering the mutualism between ants and the dominant tree, Acacia drepanolobium and driving changes in fruit production (FP), ant defense by some species (AD), herbivory of shoots (He), thorn production (TP), nectary production (NP), and spine length (SL). (D) Large-wildlife removal also causes major effects on ecosystem functions and services, including changes to fire intensity (Fi), cattle production in both dry (C-D) and wet (C-W) seasons, disease prevalence (D), infectivity of arbuscular mycorrhizae fungi (AMF), photosynthetic rates (Ph), and transpiration rates (TR). Data in (B) to (D) are effect size [ln(exclosure metric/control metric)] after large-wildlife removal. Although this experiment includes multiple treatments, these results represent effects of full exclosure treatments; details on treatments and metrics are provided in table S3. [Photo credits: T. Palmer, H. Young, R. Sensenig, and L. Basson]
… 
No caption available
… 
No caption available
… 
No caption available
… 
Content may be subject to copyright.
REVIEW
Defaunation in the Anthropocene
Rodolfo Dirzo,
1
*Hillary S. Young,
2
Mauro Galetti,
3
Gerardo Ceballos,
4
Nick J. B. Isaac,
5
Ben Collen
6
We live amid a global wave of anthropogenically driven biodiversity loss: species
and population extirpations and, critically, declines in local species abundance.
Particularly, human impacts on animal biodiversity are an under-recognized form of
global environmental change. Among terrestrial vertebrates, 322 species have
become extinct since 1500, and populations of the remaining species show 25%
average decline in abundance. Invertebrate patterns are equally dire: 67% of
monitored populations show 45% mean abundance decline. Such animal declines
will cascade onto ecosystem functioning and human well-being. Much remains unknown
about this Anthropocene defaunation; these knowledge gaps hinder our capacity
to predict and limit defaunation impacts. Clearly, however, defaunation is both a
pervasive component of the planets sixth mass extinction and also a major driver of
global ecological change.
In th e past 500 years, humans have triggered
a wave of extinction, threat, and local popu-
lation declines that may be comparable in
both rate and magnitude with the five previous
mass extinctions of Earthshistory(1). Similar
to other mass extinction events, the effects of this
sixth extinction waveextend across taxonomic
groups, but they are also selective, with some tax-
onomic groups and regions being particularly
affected (2). Here, we review the patterns and con-
sequences of contemporary anthropogenic impact
on terrestrial animals. We aim to portray the scope
and nature of declines of both species and abun-
dance of individuals and examine the consequences
of these declines. So profound is this problem that
we have applied the term defaunationto describe
it. This recent pulse of animal loss, hereafter re-
ferred to as the Anthropocene defaunation, is not
only a conspicuous consequence of human impacts
on the planet but also a primary driver of global
environmental change in its own right. In compar-
ison,wehighlighttheprofoundecologicalimpacts
of the much more limited extinctions, predomi-
nantly of larger vertebrates, that occurred during
the end of the last Ice Age. These extinctions al-
tered ecosystem processes and disturbance regimes
at continental scales, triggering cascades of ex-
tinction thought to still reverberate today (3,4).
The term defaunation, used to denote the
loss of both species and populations of wildlife
(5), as well as local declines in abundance of
individuals, needs to be considered in the same
sense as deforestation, a term that is now read-
ily recognized and influential in focusing scien-
tific and general public attention on biodiversity
issues (5). However, although remote sensing
technology provides rigorous quantitative in-
formation and compelling images of the mag-
nitude, rapidity, and extent of patterns of
deforestation, defaunation remains a largely
cryptic phenomenon. It can occur even in large
protected habitats (6), and yet, some animal
species are able to persist in highly modified
habitats, making it difficult to quantify without
intensive surveys.
Analyses of the impacts of global biodiversity
loss typically base their conclusions on data de-
rived from species extinctions (1,7,8), and typ-
ically, evaluations of the effects of biodiversity
loss draw heavily from small-scale manipulations
of plants and small sedentary consumers (9). Both
of these approaches likely underestimate the full
impacts of biodiversity loss. Although species ex-
tinctions are of great evolutionary importance,
declines in the number of individuals in local
populationsandchangesinthecompositionof
species in a community will generally cause greater
immediate impacts on ecosystem function (8,10).
Moreover, whereas the extinction of a species often
proceeds slowly (11), abundance declines within
populations to functionally extinct levels can oc-
cur rapidly (2,12). Actual extinction events are
also hard to discern, and International Union for
Conservation of Nature (IUCN) threat categories
amalgamate symptoms of high risk, conflating
declining population and small populations so that
counts of threatened species do not necessarily
translate into extinction risk, much less ecological
impact (13). Although the magnitude and frequen-
cy of extinction events remain a potent way of
communicating conservation issues, they are only
a small part of the actual loss of biodiversity (14).
The Anthropocene defaunation process
Defaunation: A pervasive phenomenon
Of a conservatively estimated 5 million to 9 mil-
lion animal species on the planet, we are likely
losing ~11,000 to 58,000 species annually (15,16).
However, this does not consider population ex-
tirpations and declines in animal abundance
within populations.
Across vertebrates, 16 to 33% of all species
are estimated to be globally threatened or en-
dangered (17,18), and at least 322 vertebrate
species have become extinct since 1500 (a date
representative of onset of the recent wave of ex-
tinction; formal definition of the start of the
Anthropocene is still being debated) (table S1)
(17,19,20). From an abundance perspective,
vertebrate data indicate a mean decline of 28%
in number of individuals across species in the
past four decades (fig. S1, A and B) (14,21,22),
with populations of many iconic species such
as elephant rapidly declining toward extinc-
tion (19).
Loss of invertebrate biodiversity has received
much less attention, and data are extremely
limited. However, data suggest that the rates of
decline in numbers, species extinction, and range
contraction among terrestrial invertebrates are
at least as severe as among vertebrates (23,24).
Although less than 1% of the 1.4 million de-
scribed invertebrate species have been assessed
for threat by the IUCN, of those assessed, ~40%
are considered threatened (17,23,24). Similarly,
IUCN data on the status of 203 insect species in
five orders reveal vastly more species in decline
than increasing (Fig. 1A). Likewise, for the in-
vertebrates for which trends have been evaluated
in Europe, there is a much higher proportion of
species with numbers decreasing rather than
increasing (23). Long-term distribution data on
moths and four other insect orders in the UK
show that a substantial proportion of species
have experienced severe range declines in the
past several decades (Fig. 1B) (19,25). Globally,
long-term monitoring data on a sample of 452
invertebrate species indicate that there has been
an overall decline in abundance of individuals
since 1970 (Fig. 1C) (19). Focusing on just the
Lepidoptera (butterflies and moths), for which
the best data are available, there is strong evi-
dence of declines in abundance globally (35%
over 40 years) (Fig. 1C). Non-Lepidopteran inver-
tebrates declined considerably more, indicat-
ing that estimates of decline of invertebrates
based on Lepidoptera data alone are conserv-
ative (Fig. 1C) (19). Likewise, among pairs of
disturbed and undisturbed sites globally, Lep-
idopteran species richness is on average 7.6
times higher in undisturbed than disturbed
sites, and total abundance is 1.6 times greater
(Fig. 1D) (19).
Patterns of defaunation
Although we are beginning to understand the
patterns of species loss, we still have a limited
understanding of how compositional changes in
communities after defaunation and associated
disturbance will affect phylogenetic community
structure and phylogenetic diversity (26). Certain
lineages appear to be particularly susceptible to
human impact. For instance, among vertebrates,
more amphibians (41%) are currently considered
SCIENCE sciencemag.org 25 JULY 2014 VOL 345 ISSUE 6195 401
1
Department of Biology, Stanford University, Stanford, CA
94305, USA.
2
Department of Ecology, Evolution, and Marine
Biology, University of California Santa Barbara, Santa
Barbara, CA 93106, USA.
3
Departamento de Ecologia,
Universidade Estadual Paulista, Rio Claro, SP, 13506-900,
Brazil.
4
Instituto de Ecología, Universidad Nacional Autónoma
de México, AP 70-275, México D.F. 04510, Mexico.
5
Natural
Environment Research Council (NERC) Centre for Ecology
and Hydrology, Benson Lane, Crowmarsh Gifford,
Oxfordshire, OX10 8BB, UK.
6
Centre for Biodiversity and
Environment Research, Department of Genetics, Evolution
and Environment, University College London, Gower Street,
London WC1E 6BT, UK.
*Corresponding author. E-mail: rdirzo@stanford.edu
threatened than birds (17%), with mammals and
reptiles experiencing intermediate threat levels (27).
Although defaunation is a global pattern,
geographic distribution patterns are also de-
cidedly nonrandom (28). In our evaluation of
mammals (1437 species) and birds (4263 spe-
cies), the number of species per 10,000 km
2
in
decline (IUCN population status decreasing)
varied across regions from a few to 75 in mam-
mals and 125 in birds (Fig. 2), with highest
numbers in tropical regions. These trends per-
sist even after factoring in the greater species
diversity of the tropics (29,30). Similarly, most
of 177 mammal species have lost more than 50%
of their range (9).
The use of statistical models based on life his-
tory characteristics (traits) has gained traction as
a way to understand patterns of biodiversity loss
(31). For many vertebrates, and a few inverte-
brates, there has been excellent research exam-
ining the extent to which such characteristics
correlate with threat status and extinction risk
(3234). For example, small geographic range
size, low reproductive rates, large home range
size,andlargebodysizerecuracrossmanystudies
and diverse taxa as key predictors of extinction
risk, at least among vertebrates. However, these
extinction modelshave made little impact on
conservation management, in part because trait
correlations are often idiosyncratic and context-
dependent (31).
We are increasingly aware that trait correla-
tions are generally weaker at the population level
than at the global scale (31,35). Similarly, we now
recognize that extinction risk is often a synergistic
function of both intrinsic species traits and the
nature of threat (32,3437). For example, large
body size is more important for predicting risk in
island birds than mainland birds (34)andfor
402 25 JULY 2014 VOL 345 ISSUE 6195 sciencemag.org SCIENCE
Fig. 1. Evidence of declines in invertebrate abun-
dance. (A) Of all insects with IUCN-documented
population trends, 33% are declining, with strong
variation among orders (19). (B) Trends among UK
insects (with colors indicating percent decrease
over 40 years) show 30 to 60% of s pecies per order
have declining ranges (19). (C) Globally, a com-
piled index of all invertebrate population declines
over the past 40 years shows an overall 45% de-
cline, although decline for Lepidoptera is less severe
than for other taxa (19). (D) A meta-analysis of
effects of anthropogenic disturbance on Lepidoptera,
the best-studied invertebrate taxon, shows consid-
erable overall declines in diversity (19).
A
Percent of insect species
100
80
B
Percent decrease over 40 years
C
Global index of invertebrate abundance
D
Eects of disturbance on Lepidoptera
50
25
0
60
Col Hym Lep
Order Order
Odo Orth Col Hym Lep Odo
40
20
0
1970
04-4
0.0
1.0
1.5
0.5
1980 1990
Diversity lower in
disturbed areas
Diversity higher in
disturbed areas
2000 2010
y
Stable
Increasing
Decreasing
All other invertebrates
E
ec
t
s o
f
Overall eect
> 0%
> 10%
> 20%
> 30%
> 40%
Lepidoptera
0
Fig. 2. Global population declines in mammals
and birds.The number of species defined by IUCN
as currently experiencing decline, represented in
numbers of individuals per 10,000 km
2
for mam-
mals and birds, shows profound impacts of defau-
nation across the globe.
tropical mammals than for temperate ones (36 ).
However, increasingly sophisticated approaches
help to predict which species are likely to be at
risk and to map latent extinction risk (38), hold-
ing great promise both for managing defauna-
tion and identifying likely patterns of ecological
impact (39). For instance, large-bodied animals
withlargehomerangesoftenplayspecificroles
in connecting ecosystems and transferring en-
ergy between them (40). Similarly, species with
life history characteristics that make them
robust to disturbance may be particularly com-
petent at carrying zoonotic disease and therefore
especially important at driving disease emergence
(41,42).
The relatively well-established pattern of cor-
relation between body size and risk in mammals
creates a predictable size-selective defaunation
gradient (Fig. 3) (19,36,43). For instance, there
are strong differences in body mass distribu-
tions among mammals that (i) became extinct
in the Pleistocene [<50,000 years before the
present (B.P.)], (ii) went recently extinct (<5000
years B.P., Late Holocene and Anthropocene),
(iii) are currently threatened with extinction (IUCN
category threatenedand above), and (iv) ex-
tant species not currently threatened (Fig. 3),
all showing greater vulnerability of larger-
bodied species. The myriad consequences of
such differential defaunation have been quanti-
fied via the experimental manipulation of the
largewildlifeinanAfricansavanna(Fig.4
and table S3), revealing substantial effects on
biodiversity, ecological processes, and ecosystem
functioning.
Multiple unaddressed drivers of defaunation
The long-established major proximate drivers
of wildlife population decline and extinction in
terrestrial ecosystemsnamely, overexploitation,
habitat destruction, and impacts from invasive
speciesremain pervasive (18). None of these ma-
jor drivers have been effectively mitigated at the
global scale (14,18). Rather, all show increasing
trajectories in recent decades (14). Moreover, sev-
eral newer threats have recently emerged, most
notably anthropogenic climate disruption, which
will likely soon compete with habitat loss as the
most important driver of defaunation (44). For
example, ~20% of the landbirds in the western
hemisphere are predicted to go extinct because
ofclimatechangeby2100(45). Disease, primarily
involving human introduced pathogens, is also a
major and growing threat (46).
Although most declining species are affected
by multiple stressors, we still have a poor under-
standing of the complex ways in which these
drivers interact and of feedback loops that may
exist (7,11). Several examples of interactions are
already well documented. For example, fragmenta-
tion increases accessibility to humans, compound-
ing threats of reduced habitat and exploitation
(47). Similarly, land-use change is making it diffi-
cult for animals to expand their distributions into
areasmadesuitablebyclimatechange(25,48).
Feedbacks among these and other drivers seem
more likely to amplify the effects of defaunation
than to dampen them (11).
Consequences of defaunation
Becauseanimallossrepresentsamajorchange
in biodiversity, it is likely to have important ef-
fects on ecosystem functioning. A recent meta-
analyses of biodiversity-ecosystem function studies
suggests that the impact of biodiversity losses
on ecosystem functions is comparable in scale
with that of other global changes (such as pollu-
tion and nutrient deposition) (9). However, most
effortstoquantifythisrelationshiphavefocused
largely on effects of reduced producer diversity,
which may typically have much lower func-
tionalimpactsthandoesconsumerloss(49,50).
Efforts to quantify effects of changes in animal
diversi ty on ecosystem function, particularly ter-
restrial vertebrate diversity, remain more lim-
ited (19,51).
Impacts on ecosystem functions
and services
We examined several ecosystem functions and
services for which the impacts of defaunation
have been documented that are either a direct
result of anthropogenic extirpation of service-
providing animals or occur indirectly through
cascading effects (Fig. 5).
Pollination
Insect pollination, needed for 75% of all the
worlds food crops, is estimated to be worth
~10% of the economic value of the worlds en-
tire food supply (52). Pollinators appear to be
strongly declining globally in both abundance
and diversity (53). Declines in insect pollinator
diversity in Northern Europe in the past 30
years have, for example, been linked to strong
declines in relative abundance of plant species
reliant on those pollinators (54). Similarly, de-
clines in bird pollinators in New Zealand led to
strong pollen limitation, ultimately reducing
seed production and population regeneration
(Fig. 5H) (55).
Pest control
Observational and experimental studies show
that declines in small vertebrates frequently
lead to multitrophic cascades, affecting herbivore
abundance, plant damage, and plant biomass (56).
SCIENCE sciencemag.org 25 JULY 2014 VOL 345 ISSUE 6195 403
Size-dierential defaunation
Frequency of extinction (median value highlighted)
percent
0.0001 0.01
25
0
25
0
25
0
25
0
1
Body mass (kg)
Pleistocene
extinct
Anthropocene
extinct
Anthropocene
threatened
Anthropocene
nonthreatened
100 10,000
A
nthro
p
ocene
h
ropocene
reatened
182
0.06
0.44
0.70
Fig. 3. Extinction and endangerment vary with body size. Comparing data on body size of all animals
that are known to have gone extinct in Pleistocene or are recently extinct (<5000 years B.P.) shows
selective impact on animals with larger body sizes (median values denoted with black arrow). Differences
in body masses between distributions of currently threatened and nonthreatened species suggest
ongoing patterns of size-differential defaunation (Kolmogorv-Smirnov test, K= 1.3, P< 0.0001) (19).
[Animal image credits: giant sloth, C. Buell; others, D. Orr]
Cumulatively, these ubiquitous small-predator
trophic cascades can have enormous impacts on a
wide variety of ecological functions, including food
production. For example, arthropod pests are re-
sponsible for 8 to 15% of the losses in most major
food crops. Without natural biological control,
this value could increase up to 37% (57). In the
United States alone, the value of pest control by
native predators is estimated at $4.5 billion an-
nually (58).
Nutrient cycling and decomposition
The diversity of invertebrate communities, par-
ticularly their functional diversity, can have
dramatic impacts on decomposition rates and
nutrient cycling (5961). Declines in mobile spe-
cies that move nutrients long distances have
been shown to greatly affect patterns of nutrient
distribution and cycling (62). Among large ani-
mals, Pleistocene extinctions are thought to have
changed influx of the major limiting nutrient,
phosphorus, in the Amazon by ~98%, with im-
plications persisting today (3).
Water quality
Defaunation can also affect water quality and
dynamics of freshwater systems. For instance,
global declines in amphibian populations in-
crease algae and fine detritus biomass, reduce
nitrogen uptake, and greatly reduce whole-
stream respiration (Fig. 5E) (63). Large animals,
including ungulates, hippos, and crocodiles,
prevent formation of anoxic zones through
agitation and affect water movement through
trampling (64).
Human health
Defaunation will affect human health in many
other ways via reductions in ecosystem goods
and services (65), including pharmaceutical com-
pounds, livestock species, biocontrol agents, food
resources, and disease regulation. Between 23
and 36% of all birds, mammals, and amphibians
used for food or medicine are now threatened
with extinction (14). In many parts of the world,
wild-animal food sources are a critical part of the
diet, particularly for the poor. One recent study
in Madagascar suggested that loss of wildlife as a
food source will increase anemia by 30%, leading
to increased mortality, morbidity, and learning
difficulties (66). However, although some level of
bushmeat extraction may be a sustainable ser-
vice, current levels are clearly untenable (67); ver-
tebrate populations used for food are estimated
to have declined by at least 15% since 1970 (14). As
previously detailed, food production may decline
because of reduced pollination, seed dispersal,
and insect predation. For example, loss of pest
control from ongoing bat declines in North Amer-
ica are predicted to cause more than $22 billion
in lost agricultural productivity (68). Defaunation
can also affect disease transmission in myriad
ways, including by changing the abundance, be-
havior, and competence of hosts (69). Several
studies demonstrate increases in disease preva-
lence after defaunation (41,42,70). However, the
impacts of defaunation on disease are far from
straightforward (71), and few major human patho-
gens seem to fit the criteria that would make
such a relationship pervasive (71). More work is
404 25 JULY 2014 VOL 345 ISSUE 6195 sciencemag.org SCIENCE
Cont
B-R B-A C F
FP
Fi Di C-D
C-W AMF Ph Tr
AD TP NP SL
He
GI RS T
Exc
AB
C
FP
AD He
NP
SL
Di
Fi
C-W
AMF
D
Large wildlife
removal
Cascades to other consumers
Functions and services
Plant-animal interactions
30
0
0.5
1.0
0
-0.5
0.5
0
-5
0
1
-4
Eect size (In(E/C)
Eect size (In(E/C) Eect size (In(E/C)
Number dung piles
Fig. 4. Results of experimental manipulation simulating differential
defaunation. As a model of the pervasive ecosystem effects of defaunation,
in just one site (the Kenya Long Term Exclosure Experiment), the effects of
selective large-wildlife (species >15 kg) removal drive strong cascading con-
sequences on other taxa, on interactions, and on ecosystem services (81).
(A) In this experiment, large wildlife are effectively removed by fences, as
evidenced by mean difference in dung abundance (T1 SE) between control
and exclosure plots. (B) This removal leads to changes in the abundance or
diversity of other consumer groups. Effects were positive for most of these
small-bodied consumersincluding birds (B-R, bird species richness; B-A,
granivorous bird abundance), Coleoptera (C), fleas (F), geckos (G), insect
biomass (I), rodents (R), and snakes (S)but negative for ticks (T). (C)
Experimental defaunation also affects plant-animal interactions, notably
altering the mutualism between ants and the dominant tree, Acacia
drepanolobium and driving changes in fruit production (FP), ant defense by
some species (AD), herbivory of shoots (He), thorn production (TP), nectary
production (NP), and spine length (SL). (D) Large-wildlife removal also
causes major effectson ecosystem functions and services, includingchanges
to fire intensity (Fi), cattle production in both dry (C-D) and wet (C-W)
seasons, disease prevalence (D), infectivity of arbuscular mycorrhizae fungi
(AMF), photosynthetic rates (Ph), and transpiration rates (TR).Data in (B) to
(D) are effect size [ln(exclosure metric/control metric)] after large-wildlife
removal. Although this experiment includes multiple treatments, these
results represent effects of full exclosure treatments; details on treatments
and metrics are provided in table S3. [P hoto credits: T. Palmer, H. Young,
R. Sensenig, and L. Basson]
urgently needed to understand the mechanisms
and context-dependence of defaunation-disease
relationships in order to identify how defauna-
tion will affect human disease.
Impacts on evolutionary patterns
The effects of defaunation appear not to be
merely proximally important to the ecology of
affected species and systems but also to have
evolutionary consequences. Several studies have
detected rapid evolutionary changes in morphol-
ogy or life history of short-lived organisms (72)or
human-exploited species (73). Because defauna-
tion of vertebrates often selects on body size, and
smaller individuals are often unable to replace
fully the ecological services their larger counter-
parts provide, there is strong potential for cascading
effects that result from changing body-size dis-
tributions (74).Stillpoorlystudiedaretheindirect
evolutionary effects of defaunation on other spe-
cies, not directly affected by human defaunation.
For example, changes in abundance or compo-
sition of pollinators or seed dispersers can cause
rapid evolution in plant mating systems and seed
morphology (75,76). There is a pressing need to
understand the ubiquity and importance of such
evolutionary cascades(77).
Synthesis and ways forward
This Review indicates that a widespread and per-
vasive defaunation crisis, with far-reaching con-
sequences, is upon us. These consequences have
been better recognized in the case of large mam-
mals (78,79). Yet, defaunation is affecting smaller
and less charismatic fauna in similar ways. On-
going declines in populations of animals such as
nematodes, beetles, or bats are considerably less
evident to humans yet arguably are more func-
tionally important. Improved monitoring and
study of such taxa, particularly invertebrates,
will be critical to advance our understanding of
defaunation. Ironically, the cryptic nature of
defaunation has strong potential to soon become
verynoncryptic,rivalingtheimpactofmanyother
forms of global change in terms of loss of eco-
system services essential for human well-being.
Although extinction remains an important evo-
lutionary impact on our planet and is a powerful
social conservation motivator, we emphasize that
defaunation is about much more than species
loss. Indeed, the effects of defaunation will be
much less about the loss of absolute diversity
than about local shifts in species compositions
and functional groups within a community (80).
Focusing on changes in diversity metrics is thus
unlikely to be effective for maintaining adequate
ecological function, and we need to focus on pre-
dicting the systematic patterns of winners and
losers in the Anthropocene and identify the traits
that characterize them because this will provide
information on the patterns and the links to
function that we can then act on.
Cumulatively, systematic defaunation clearly
threatens to fundamentally alter basic ecological
functions and is contributing to push us toward
global-scale tipping pointsfrom which we may
notbeabletoreturn(7). Yet despite the dramatic
rates of defaunation currently being observed,
thereisstillmuchopportunityforaction.Wemust
more meaningfully address immediate drivers of
defaunation: Mitigation of animal overexploita-
tion and land-use change are two feasible, imme-
diate actions that can be taken (44). These actions
can also buy necessary time to address the other
critical driver, anthropogenic climate disruption.
SCIENCE sciencemag.org 25 JULY 2014 VOL 345 ISSUE 6195 405
LH
Herbivory
20
40
0
Seeds dispersed
LH
Seed dispersal
30
60
0
% seeds dispersed
LH
Litter respiration and decomposition
50
100
0
Rate decomp
(% dry weight loss)
LH
Carrion removal
20
40
0
% carion removed
LH
Trampling
50
100
0
% seedlings trampled
LH
0.5
1.0
0
Rate litter resp
(ug C-1h-1)
LH
Pollination and regeneration
05
1
0
Pollen
limitation index
LH
40
80
0
% Fruit set
LH
20
40
0
No juvenile plants
LH
Dung removal
1.0
0
Proportion dungremoval
LH
Water quality and stream respiration
5
0
Suspended particulate
organic matter
(gDML-1)
LH
Carbon cycling
60
30
0
Carbon ux
(ug C kg soil-1day-1)
LH
0.5
1.0
0
Stream respiration
(g O2m-2d-1)
LH
Soil erosion and cattle forage
100
50
0
Soil erosion indicator
LH
500
1000
0
Forage biomass
A
D
I
F
G
E
JH
BC
Fig. 5. Consequences of defaunation on ecosystem functioning and services. Changes in animal abundance from low (blue, L) to high (red, H) within a
region have been shown to affect a wide range of ecological processes and services (19), including (A) seed dispersal (flying foxes), (B) litter respiration and
decomposition (seabirds), (C) carrion removal (vultures), (D) herbivory (large mammals), (E) water quality and stream restoration (amphibians), (F) trampling of
seedlings (mammals), (G) dung removal (dung beetles), (H) pollination and plant recruitment (birds), (I) carbon cycling (nematodes), and (J) soil erosion and
cattle fodder (prairie dogs).
However, we must also address the often nonlin-
ear impacts of continued human population
growth and increasingly uneven per capita con-
sumption, which ultimately drive all these threats
(while still fostering poverty alleviation efforts).
Ultimately, both reduced and more evenly distri-
buted global resource consumption will be neces-
sary to sustainably change ongoing trends in
defaunation and, hopefully, eventually open the
door to refaunation. If unchecked, Anthropocene
defaunation will become not only a character-
istic of the planets sixth mass extinction, but also
a driver of fundamental global transformations
in ecosystem functioning.
REFERENCES AND NOTES
1. A. D. Barnosky et al., Nature 471,5157 (2011).
2. M. Cardillo et al., Philos.R.Soc.LondonB.Biol.275,14411448
(2008).
3. C. E. Doughty, A. Wolf, Y. Malhi, Nat. Geosci. 6, 761764
(2013).
4. J. L. Gill, J. W. Williams, S. T. Jackson, K. B. Lininger,
G. S. Robinson, Science 326, 11001103 (2009).
5. R. Dirzo, in Global Biodiversity in a Changing Environment:
Scenarios for the 21st Century, F. S. Chapin, O. E. Sala,
E. Huber-Sannwald, Ed. (Springer, New York, 2001),
pp. 251276.
6. C. A. Peres, E. Palacios, Biotropica 39, 304315 (2007).
7. A. D. Barnosky et al., Nature 486,5258 (2012).
8. G. Ceballos, P. R. Ehrlich, Science 296, 904907 (2002).
9. D. U. Hooper et al., Nature 486, 105108 (2012).
10. K. J. Gaston, R. A. Fuller, Trends Ecol. Evol. 23,1419 (2008).
11. B. W. Brook, N. S. Sodhi, C. J. Bradshaw, Trends Ecol. Evol.
23, 453460 (2008).
12. T. Säterberg, S. Sellman, B. Ebenman, Nature 499, 468470
(2013).
13. A. Ø. Mooers, D. P. Faith, W. P. Maddison, PLOS One 3,
e3700 (2008).
14. S. H. M. Butchart et al., Science 328, 11641168 (2010).
15. C. Mora, A. Rollo, D. P. Tittensor, Science 443, 295
(2013).
16. B. R. Scheffers, L. N. Joppa, S. L. Pimm, W. F. Laurance,
Trends Ecol. Evol. 27, 501510 (2012).
17. IUCN, The IUCN Red List of Threatened Species (2013);
available at www.iucnredlist.org.
18. M. Hoffmann et al., Science 330, 15031509 (2010).
19. Materials and methods are available as supplementary
materials on Science Online.
20. G. Ceballos, A. García, P. R. Ehrlich, J. Cosmol. 8, 1821
(2010).
21. B. Collen et al., Conserv. Biol. 23, 317327 (2009).
22. Living Planet Rport, Living Planet Report 2012: Biodiversity,
biocapacity and better choices(WWF, Zoological Society of
London, Global Footprint Network, European Space Agency,
London, 2012).
23. B. Collen, M. Böhm, R. Kemp, J. Baillie, Spineless: Status and
Trends of the Worlds Invertebrates (Zoological Society of
London, London, 2012).
24. B. Collen, J. E. M. Baillie, Science 329, 140 (2010).
25. R. Fox et al., J. Appl. Ecol. 10.1111/1365-2664.12256
(2014).
26. J. Cavender-Bares, K. H. Kozak, P. V. Fine, S. W. Kembel,
Ecol. Lett. 12, 693715 (2009).
27. J. Schipper et al., Science 322, 225230 (2008).
28. S. L. Pimm et al., Science 344, 1246752 (2014).
29. R. Dirzo, P. H. Raven, Annu. Rev. Environ. Resour. 28, 137167
(2003).
30. C. N. Jenkins, S. L. Pimm, L. N. Joppa, Proc. Natl. Acad.
Sci. U.S.A. 110, E2602E2610 (2013).
31. M. Cardillo, E. Meijaard, Trends Ecol. Evol. 27,167171
(2012).
32. A. D. Davidson, M. J. Hamilton, A. G. Boyer, J. H. Brown,
G. Ceballos, Proc. Natl. Acad. Sci. U.S.A. 106, 1070210705
(2009).
33. E. Öckinger et al., Ecol. Lett. 13, 969979 (2010).
34. T. M. Lee, W. Jetz, Philos. R. Soc. London B. Biol. 278,
13291338 (2011).
35. M. J. Pocock, P. Roy, Philos. R. Soc. London B. Biol. 278,
15321538 (2011).
36. S. A. Fritz, O. R. P. Bininda-Emonds, A. Purvis, Ecol. Lett. 12,
538549 (2009).
37. G. Cowlishaw, R. A. Pettifor, N. J. Isaac, Philos. R. Soc. London
B. Biol. 276,6369 (2009).
38. M. Cardillo, G. M. Mace, J. L. Gittleman, A. Purvis, Proc. Natl.
Acad. Sci. U.S.A. 103, 41574161 (2006).
39. H. Hillebrand, B. Matthiessen, Ecol. Lett. 12, 14051419
(2009).
40. D. J. McCauley et al., Ecol. Appl. 22, 17111717 (2012).
41. F. Keesing et al ., Nature 468, 647652 (2010).
42. P. T. Johnson, D. L. Preston, J. T. Hoverman, K. L. Richgels,
Nature 494, 230233 (2013).
43. M. Di Marco et al., Conserv. Biol. 10.1111/cobi.12249
(2014).
44. O. E. Sala et al., Science 287, 17701774 (2000).
45. C. H. Sekercioglu, S. H. Schneider, J. P. Fay, S. R. Loarie,
Conserv. Biol. 22,140150 (2008).
46. K. F. Smith, D. F. Sax, K. D. Lafferty, Conserv. Biol. 20,
13491357 (2006).
47. C. A. Peres, Conserv. Biol. 14, 240253 (2000).
48. S. T. Jackson, D. F. Sax, Trends Ecol. Evol. 25, 153160
(2010).
49. J. Reiss, J. R. Bridle, J. M. Montoya, G. Woodward,
Trends Ecol. Evol. 24, 505514 (2009).
50. B. J. Cardinale et al., Nature 486,5967 (2012).
51. B. J. Cardinale et al., Nature 443, 989992 (2006).
52. N. Gallai, J.-M. Salles, J. Settele, B. E. Vaissière, Ecol. Econ.
68, 810821 (2009).
53. S. G. Pott s et al., Trends Ecol. Evol. 25,345353
(2010).
54. J. C. Biesmeijer et al., Science 313, 351354 (2006).
55. S. H. Anderson, D. Kelly, J. J. Ladley, S. Molloy, J. Terry,
Science 331, 10681071 (2011).
56. D. S. Karp et al., Ecol. Lett. 16, 13391347 (2013).
57. E.-C. Oerke, J. Agric. Sci. 144,3143 (2006).
58. J. E. Losey, M. Vaughan, Bioscience 56, 311323 (2006).
59. M. O. Gessner et al., Trends Ecol. Evol. 25, 372380
(2010).
60. T. B. Atwood et al., Nat. Geosci. 6, 191194 (2013).
61. D. Hawlena, M. S. Strickland, M. A. Bradford, O. J. Schmitz,
Science 336, 14341438 (2012).
62. H. S. Young, D. J. McCauley, R. B. Dunbar, R. Dirzo, Proc. Natl.
Acad. Sci. U.S.A. 107, 20722077 (2010).
63. M. Whiles et al., Ecosystems (N.Y.) 16, 146157
(2013).
64. J. P. Wright, C. G. Jones, A. S. Flecker, Oecologia 132,96101
(2002).
65. S. S. Myers et al., Proc. Natl. Acad. Sci. U.S.A. 110,1875318760
(2013).
66. C.D.Golden,L.C.Fernald,J.S.Brashares,B.J.Rasolofoniaina,
C. Kremen, Proc. Natl. Acad. Sci. U.S.A. 108, 1965319656
(2011).
67. J. E. Fa, C. A. Peres, J. Meeuwig, Conserv. Biol. 16, 232237
(2002).
68. J. G. Boyles, P. M. Cryan, G. F. McCracken, T. H. Kunz,
Science 332,4142 (2011).
69. R. S. Ostfeld, F. Keesing, Annu. Rev. Ecol. Evol. Syst. 43,
157182 (2012).
70. H. S. Young et al., Proc. Natl. Acad. Sci. U.S.A. 10.1073/
pnas.1404958111 (2014).
71. C. L. Wood et al., Ecology 95, 817832 (2014).
72. S. R. Palumbi, Science 293, 17861790 (2001).
73. C. T. Darimont et al., Proc. Natl. Acad. Sci. U.S.A. 106,
952954 (2009).
74. M. Galetti, C. I. Donatti, M. A. Pizo, H. C. Giacomini, Biotropica
40, 386389 (2008).
75. S. A. Bodbyl Roels, J. K. Kelly, Evolution 65, 25412552
(2011).
76. M. Galetti et al., Science 340, 10861090 (2013).
77. J. A. Estes, J. S. Brashares, M. E. Power, Am. Nat. 181
(suppl. 1), S76S99 (2013).
78. J. A. Estes et al., Science 333, 301306 (2011).
79. W. J. Ripple et al., Science 343, 1241484 (2014).
ACKNO WLED GME NTS
D. Orr, L. Gillespie, B. Rossman, R. Pringle, C. Bello, T. August,
G. Powney, F. Pedrosa, and M. Pires helped in providing or
analyzing data and producing figures. P. Ehrlich, T. Young,
S. Vignieri, and two anonymous reviewers read a previous draft
and offered constructive comments. Butterfly Conservation, the
British Dragonfly Society, Bees Wasps and Ants Recording Society,
the Ground Beetle Recording Scheme, and Bird Life International
provided access to unpublished data. We thank Conselho Nacional
de Desenvolvimento Científico e Tecnológico, Fundação para o
Desenvolvimento do Unesp, Fundação de Amparo à Pesquisa do
Estado de São Paulo, NERC, Joint Nature Conservation Committee,
NSF, and Universidad Nacional Autonoma de Mexico for financial
support. Vector images are courtesy of University of Maryland
Center for Environmental Science.
SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/345/6195/401/suppl/DC1
Materials and Methods
Figs. S1 to S6
Tables S1 to S3
References (80167)
10.1126/science.1251817
REVIEW
Reversing defaunation: Restoring
species in a changing world
Philip J. Seddon,
1
* Christine J. Griffiths,
2
Pritpal S. Soorae,
3
Doug P. Armstrong
4
The rate of biodiversity loss is not slowing despite global commitments, and the depletion
of animal species can reduce the stability of ecological communities. Despite this
continued loss, some substantial progress in reversing defaunation is being achieved
through the intentional movement of animals to restore populations. We review the full
spectrum of conservation translocations, from reinforcement and reintroduction to
controversial conservation introductions that seek to restore populations outside their
indigenous range or to introduce ecological replacements for extinct forms. We place the
popular, but misunderstood, concept of rewilding within this framework and consider
the future role of new technical developments such as de-extinction.
Recent analyses have shown that the rate
of biodiversity loss has not slowed despite
global commitments made through the
2002 Convention on Biological Diversity
(1). Projected future extinction rates for
terrestrial species might exceed current rates
of extinction (2). A key component of biodiver-
sity loss is defaunation, the loss or depletion of
animal species from ecological communities
(3,4). Such losses can reduce the stability of
406 25 JULY 2014 VOL 345 ISSUE 6195 sciencemag.org SCIENCE
www.sciencemag.org/content/345/6195/401/suppl/DC1
Supplementary Material for
Defaunation in the Anthropocene
Rodolfo Dirzo,* Hillary S. Young, Mauro Galetti, Gerardo Ceballos, Nick J. B. Isaac,
Ben Collen
*Corresponding author. E-mail: rdirzo@stanford.edu
Published 25 July 2014, Science 345, 401 (2014)
DOI: 10.1126/science.1251817
This PDF file includes:
Materials and Methods
Figs. S1 to S6
Tables S1 to S3
Full Reference List
Materials and Methods
Mammal and Bird Richness Map
We compiled the mammal and bird map by developing a geographic information system
including Arc-GIS shapefiles for all land mammal and bird species catalogued as with
declining populations by the International Union for Conservation of Nature (17). The
files contain the known geographic range depicted by a boundary map (i.e. extent of
occurrence). Maps for mammals were obtained from our database (see (82) for more
details). Maps for birds were obtained from Birdlife International. Earth’s surface was
divided into a 10,000-km2 grid cell network using the Behrmann equal area projection.
Species richness was defined as the total number of mammal and bird species in a single
cell.
Population declines of selected mammal species
Forsixspecieswewereabletolocaterelativelyhighqualitydataonglobal
populationsizeovermultipledecades(FigS1B).Populationsofmanyofthese
speciesofmammalshadalreadygreatlyreducedwhenthesedatabegan.Aggressive
conservationeffortshavehadsomesuccessesinslowingdeclinesofsomeofthese
species;howeverinthelasttwodecadestherehavebeenmajorconservation
setbacksformostofthesespecies.Thereasonsforthesesetbacksvarybyspecies,
butincludeincreasingdemandforproductsfromtheseendangeredanimals,habitat
lossandfragmentation,andintroduceddiseases,resultinginrecentcollapsesof
manyofthesepopulations.WheneveravailablewedeferredtoIUCNdata(17);
additionalsourceswereusedtosupplementIUCNdatawhenavailable(8391).
Trends in UK insects based on presence-only biological records
Biologicalrecordsareobservationsofspeciesinaknownpointinspaceandtime.
TheUKhasanunrivalledhistoryofbiologicalrecording,withover90million
speciesrecordsnowavailablethroughtheGlobalBiodiversityInformationFacility
(GBIF;around12%oftheglobaltotal).Volunteerrecordersmakemostrecordsin
theUK,andthevastmajorityofrecordsarecollectedwithoutaspecificprotocol.
Theintensityofrecordingvariesinbothspaceandtime(92),whichisachallenge
forestimatingrobustquantitativetrends.Fortunately,arangeofmethodsnowexist
forproducingsuchtrendsusingunstructuredbiologicalrecordsdatae.g.(9395).In
effect,thesemethodsidentifylong‐termchangesinspeciesdistributions;theterm
‘frequencyofoccurrence’ishowevertechnicallymoreaccurate.
Mostmethodsfortrendestimationusetherecordsthemselvestogetatthedata
collectionprocess,generallyassumingthatarecordofspeciesAindicatesthat
speciesBwasnotobserved.Specifically,thenumberofspeciesrecordedatasiteon
aparticulardate(thelistlength)isacommonlyusedmetricofsamplingintensity
e.g.(96).Weemployonesuchmethod,whichseekstoremovethebiasinherentin
biologicalrecordsandidentifyingthe‘well‐sampled’setthatretainsasignalof
genuinebiologicalchange(97).
Theinputdataforeachspeciesisatableofallthesitevisits(uniquecombinationsof
datein1km2)between1970and2009forthetaxonomicgroupinquestion,with
dataonthelistlength(thenumberofspeciesrecorded)andwhetherthefocal
specieswasrecorded(1)ornot(0).Thesedatawerethenfilteredfordataquality,
firstremovingallvisitswithlistlengthsshorterthanthemedianforthetaxonomic
groupinquestion.Atthesecondfilteringstep,gridcellsthathadvisitsinlessthan
threeyearswereexcluded.Thetimeseriesforeachspecieswasthenestimated
fromageneralizedlinearmixedeffectsmodel,withyearasthecovariateandgrid
cellasarandomeffect(following(97)).
Wefittedthismodeltodataon1026speciesinfourtaxonomicorders(TableS2).
Thefollowingorganizationscontributeddataforthisanalysis:Bees,WaspsandAnts
RecordingSociety,BritishDragonflySociety,ButterflyConservation(25),the
GroundBeetleRecordingSchemeandtheUKLadybirdSurvey.
Foreachspeciesweextractedthefittedvaluesfromthemodelforthefirstandlast
yearsinthedatasetandexpressedthechangeoverthisperiodasapercentageof
theinitialvalue.Technically,thesefittedvaluesaretheprobabilitythatthefocal
specieswasrecordedonanaveragevisitintheyearinquestion.Akeyassumption
ofthewell‐sampledsitesmodelisthatspecies’detectabilityhasnotchangedover
time.Therelevantrecordingschemeswerethereforeconsulted,andweexcluded
speciesforwhichthisassumptionisunsupportable.
Calculating an index of change in invertebrate abundance:
Togathertime‐seriesdataoninvertebratepopulations,wereviewedthepublished
literatureforstudiesoflong‐terminvertebratepopulationchange.Whilewewould
haveideallyusedrandomlysubsampledpopulationsacrosstaxa,thesedatadonot
exist.InsteadwesearchedforanypublishedstudiesusingtheISIWebofKnowledge
databasewiththefollowingsearchterms:(arthropod*ORinvertebrate*ORinsect*
ORhymenopteraORbee*ORant*ORcoleopteraORbeetle*ORLepidopteraOR
butterfl*ORpollinator*ORodonataORdragonfl*)AND(population*ORspeciesOR
communit*).Weusedreferencesofallpapersidentifiedthroughthissearchtofind
additionalpapers.
Followingthetechniquesandselectioncriteriadevelopedby(21,98),studieswere
includediftheyincludedterrestrialorsemi‐terrestrialinvertebratepopulations,if
thestudyexaminedchangeinabsoluteorrelativeabundanceusingthesame
methodsovertimeforaminimumofthreeyears,andiftheyincludedinformation
onthemethodsofcollection,thelocationsofcollection,andtheunitsof
measurement.Weexcludedspeciesandstudiesfocusingonnon‐nativepopulations.
Whenstudiesincludedonlydataonrangechangeorspeciesrichness,orwhenraw
datawerenotavailable,theauthorswerecontactedforunpublishedinformationon
populationabundanceduringthestudyperiod.Ifnofurtherinformationwas
obtained,thestudywasexcludedfromouranalysis.Thedatawereexaminedatthe
lowesttaxonomiclevelpossible,usuallytospecies,andsometimestopopulation
level(i.e.aspeciesforwhichmultipledistinctpopulationswerereportedfromone
studywouldbeaggregatedtothespecieslevel).Ourfinaldatabaseconsistedof29
studies(21,98125).
Ourdatasetincluded3,249estimatesofpopulationsizefor466populationsof452
uniquespeciesacrosseightorders(Aphididae,Coleoptera,Diptera,Hemiptera,
Hymenoptera,Lepidoptera,Odonata,andRhabditida)andallcontinentsexcept
SouthAmerica(FigS2).Thetimeseriesdataspannedtheperiod1820–2013,with
themajorityofthedataspanning1960‐2012.Themeandatasetlengthwas36.53
years.
Wecreatedanindexofabundanceforallspeciesusingthechainmethoddetailedby
(98),andcalculatedconfidencelimitsasdetailedin(21).Whilealternativemethods
formodelingtrendsinpopulationdataareavailable,suchasGeneralizedAdditive
Models(see(21)),thedatadidnotsupporttheiruse.Tocalculateanindex,we
calculatedthelogarithmoftheratioofpopulationmeasuresforsuccessiveyearsof
eachtimeseries,imputingmissingvalueswithlog‐linearinterpolation.Forspecies
withmorethanonepopulationtimeseries,ameanvalueforeachyearwas
calculatedacrossalltimeseriesforthatspecies.Species‐specificvalueswerethen
combined,withallspeciesweightedequally.Anindexwasthencalculatedbysetting
thefirstindexvalueto1(in1970),andchainingsubsequentyears.Forfulldetails,
see(21).
DuetothedominanceofLepidopterainourdataset,weevaluateddifferencesin
trendsbetweenLepidopteraandnon‐Lepidoptera.
Meta‐analysisofeffectsofdisturbanceonLepidopteraspeciesrichnessand
abundance
MetaanalysisMethods:Wereviewedthepublishedliteratureforstudiesof
Lepidopteraspeciesrichnessindisturbedandundisturbedhabitats,usingtheISI
WebofKnowledgewiththefollowingsearchterms:(LepidopteraORbutterfl*OR
pollinator)AND(populationsORcommunit*)AND(disturbanceORloggingOR
grazingORurbanizationORfragmentationOR“edgeeffect”OR(agricultureOR
cultivationORfarmingORranchingORplantation*).Wealsosearchedreference
listsofallstudiesidentifiedasusablefromtheinitialsearch.
Studieswereincludediftheymetthefollowingcriteria:1)presenteddataon
Lepidopterarichnessinatleasttwohabitattypes:lowdisturbance(control)and
anthropogenicallydisturbed(treatment);2)includedreplicationwithinboth
habitats;3)includedPvalue,standarderror,standarddeviation,orotherstatistics
(Z,F,t,r,r2,χ2);4)reportedthesamplesize;5)includedstudylocation,sampling
protocol,andnumberofsamplingperiods.Fordatathatwerereportedonlyas
statisticallysignificant,withoutanactualPvalueweassumedP=0.05.Disturbance
typesincludedforestry,agriculture,fragmentation,grazing,andprevalenceof
invasivespecies.Studieswereexcludedifwewereunabletodeterminetheextent
ortypeofdisturbancefromtheauthor’sdescription.Ifdatafrommultiplesampling
methodsormultipletime‐pointswerereportedseparatelyfromthesites,datawere
pooledtogenerateasingleeffectsize.
 Wealsoconductedananalysisoftheeffectofanthropogenicdisturbanceon
Lepidopteraabundanceusingthesamesearchresultsandselectioncriteria,except
substitutingabundanceforrichnessincriteria.Inbothdisturbanceandrichness
analyses,wecalculatedeffectsizes(Hedge’sg)usingComprehensiveMeta‐analysis
software,ver2.0.Ameta‐regressionoftheeffectoflatitudewasperformedfor
speciesrichness,butnotabundance,duetothelownumberofstudiesavailable.To
testforpublicationbias,weexaminedfunnelplotsandconductedDuvaland
Tweedie'strimandfillanalysis.
Intotalwecalculated52diversityeffectsizesfrom15studies(126140)that
metourcriteriaforinclusioninthemeta‐analysis(FigS3).Themeta‐analysis
revealedanoverallnegativeeffect(Z=5.91,P<0.0001)withalargemeaneffect
estimateof1.02(95%CI0.68to0.1.36).Visualexaminationoffunnelplots
suggestedmissingstudiesandDsuggestedtherewereninemissingstudiesdueto
possiblepublicationbias.UsingDuvalandTweedie'strimandfillanalysistoimpute
missingstudies(9identified),westillfindsignificantoveralleffectsalthoughthey
aresmaller(pointeffectestimate=0.55,95%CI0.15to0.96,Q‐value=1305.1).
Meta‐regressionexaminingeffectsoflatitudeonspeciesrichnesseffectfounda
positivebutverysmalleffectofdecreasingeffectsizeatlowerlatitudes(slope=‐
0.014,SE=0.003,P<0.0001,Z=‐5.032,Tau‐squared=1.25;FigS4).
Intotalwecalculated23abundanceeffectsizesfrom8studiesthatmetour
criteriaforinclusioninthemeta‐analysis.Onestudyshowedsignificantpositive
effectsofdisturbanceonLepidopteraabundance,threeshowedapositivebut
insignificanteffect,oneshowednoeffect,andthreeshowedanegativeeffect(Fig
S5).Themeta‐analysisrevealedamoderateoverallnegativeeffect(pointeffect
estimate=0.42,Z=2.880,P=0.004,95%CI0.135to0.7).
DifferentialdefaunationbybodymassfromPleistocenetoAnthropocene
Weexamineddifferenceinbodymassofmammalsthatwentextinctinthe
PleistocenewiththosethatwentextinctintheHoloceneandAnthropocene;and
withintheAnthropocenewealsoexamineddifferencesinbodymassbetween
threatenedandnotthreatenedspecies.Tothiseffectweusedspecieslistsandbody
massdataforallmammalspresentinPleistoceneandAnthropocene.Theselists
werecompiledfrom(141);totheselistswethenaddednewspeciesrecently
describedandincorporatedallIUCNcategoriesforallmammalianspecies
(www.redlist.org).Ingeneralweusedboundarydefinitionsprovidedin(141)to
definetheboundariesofthePleistocene.Althoughsomemegafaunaextinctspecies
inthePleistocenesurviveduptoearlyHoloceneinSouthAmerica(142),we
consideredallofthemas“Pleistoceneextinct”.Differencesindistributionsof
threatenedandnotthreatenedinAnthropoceneweretestedusingaKolmogorov‐
Smirnovtwo‐sampletest,whichresultedinastatisticallysignificantdifference
(P<0.001).Whiledirectcomparisonsofextinctionsbetweenmoderntofossil
datasetsareextremelychallenging,astherearemanybiasesinthelikelihoodofan
animalfossilizing,theyarestillthebestwaytoassesslong‐termchangesinfaunal
communities.Thisparticularcomparisonislimitedbythequalityofthefossil
recordfromthePleistoceneaswellasqualityofmodernspeciesrecords.Forthis
reason,ourstatisticalanalysisisconductedonlywithinthreatenedandnon‐
threatenedspecies(data‐deficientspeciesexcluded).However,whileboth
comparisonsofmodernandfossilrecordsaredifficultandbothrecordsclearlyhave
biasestowardsabetterunderstandingofextinctionandthreatinlargerspecies(e.g
(143)),mammalsareconsideredoneofthebesttaxaforfossilcomparisonsdueto
relativelycompleterecordsandextensivecavedepositshaveprovideda
particularlyrichsamplingofsmallmammalsfromPleistoceneperiodsmakingthisa
particularlyrobustdataset(144).Similarly,onthelargeendofthespectrumwe
notethattheverylargestanimalsonallcontinentswerelost(145),includingalarge
numberofanimalslargerthananyspeciespresenttoday,apatternwhichisclearly
robusttosamplingbiases.Examiningthedistributionsofanimalsusingonlythose
about2kgyieldsqualitativelyverysimilarpatterns.
Animal biodiversity-ecosystem function relationships
Most quantitative meta-analyses of biodiversity ecosystem function relationships have
focused exclusively on plant biodiversity ecosystem function relationships. Those few
that have addressed biodiversity-ecosystem function relationships across both producers
and consumers (e.g. (50, 51)) have included relatively few terrestrial animals, and almost
no terrestrial vertebrates, despite the fact that individual species are well known to have
large effects on their ecosystems. However, given the continuing growth of interest in
these relationships, we replicated searches used from one of the largest meta-analyses to
date (51) to see if this gap has now been addressed.
Specifically, we conducted a search of the ISI Web of Knowledge database using the
keyword sequence species AND (diversity OR richness) AND (community OR ecosystem)
AND (function OR functioning OR production OR productivity OR biomass OR predation
OR decomposition OR herbivory). To be included, a study had to focus on terrestrial
animals (invertebrate or vertebrate), and meet all 8 criteria used by (51).
In 2014 we found 19, 015 results from initial search criteria. We refined these results by
eliminating marine and aquatic ecosystems, and constraining the time period between
2006 and 2014. This reduced results to 863 papers, of which only 12 included terrestrial
animals and also met the 8 criteria detailed by (51). Of these 12 studies, 6 were exclosure
experiments, which did not quantifiably describe the diversity of the vertebrate
communities that were experimentally removed, but which presumably excluded more
than three species ((51) criteria three); they must be considered only marginally
appropriate for these analyses.
While it seems clear that there is rising interest in studying biodiversity ecosystem
function relationships in animals (Fig S6), there are still relatively few studies on
terrestrial animal biodiversity ecosystem function relationships (in comparison to the
>600 studies on other taxa, predominantly plants, identified in the original 2006 search
by (51)).
DefaunationandEcosystemFunction
DatasourcesusedinproducingFig7areasfollows:seeddispersal(146),litter
respirationanddecomposition(147),carrionremoval(148),herbivory(149),water
qualityandstreamrespiration(150),trampling(151),dungremoval(152),
pollinationandplantrecruitment(55),carboncycling(103),andsoilerosionand
cattlefodder(153).

Fig.S1.
Terrestrialvertebratepopulationdeclines.(A)Weusedanintegrated
abundanceindexbasedonaggregatingpopulationtrendsofallspecieswhere
populationdataisavailableglobally.Vertebratepopulationshavedeclinednearly
25%since1970,withmostofthedeclinesconcentratedinthetropics,whichdrive
theglobalpattern(21).Formanyofthebeststudiedspeciesthedeclineshavebeen
evenmoreprecipitous(21,22).(B)Hereweshowpopulationdeclinesofsixwell‐
studiediconicspecies(populationsizeforallspeciesonlogscale).Purple:saiga
(Saigatatarica);green:forestelephant(Loxodontacyclotis);yellow:lion(Panthera
leo);black:blackrhino(Dicerosbicornis);orange:tiger(Pantheratigris);red:
Tasmaniandevil(Sarcophilusharrisii);andblue:Sumatranorangutan(Pongoabelii).
Populationsofmanyofthesespecieswerealreadygreatlyreducedbythetime
monitoringbegan;howeverpopulationtrendssincethattimehavedeclined
towardsneartotalcollapse(8391).
Fig. S2.
Map of locations of all sources of invertebrate abundance time series data. The size of the
circle is relative to the number of species studied in a given location.
Fig. S3
The majority of studies on disturbance effects on Lepidoptera that met study criteria for
meta-analysis are located in tropical regions. The size of the circle is representative of the
number of samples in the study while the color of the circle represents the effect size
observed.
Fig. S4
A fixed-effect regression shows a small but significant decrease in magnitude of effect of
disturbance on Lepidoptera abundance at lower latitudes.
FigS5.
DisturbancedrivessystematicdeclinesinLepidopteraabundance(Hedge’sg).Error
linesare95%confidenceintervals.

FigS6

Number of biodiversity ecosystem function relationships found on terrestrial animals
over time (see supplementary methods). This histogram includes studies from exclosure
experiments that did not quantify diversity of species removed.
0
1
2
3
4
5
6
7
1990…
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
#studies
Invertebrates
Vertebrates
Table S1.
Dataonspeciesextinctionbytaxonomicgroupingisprovidedhere;dataweretaken
from(8,17).
 Since1500
Since
1900
Mammalia 77 35
Aves 130 50
Reptilia 21 10
Amphibia 34 34
Fishes 60 60
TotalVertebrates322 189
TableS2.
Summary of the UK Insect Data used in establishing range contractions across
invertebrates.
Order
Numberof
species
Numberof
visits
Coleoptera 258 14,081
Hymenoptera 383 27,488
Lepidoptera 648 513,976
Odonata 38 78,992
_________________________________________________
Table S3
The Kenya long term exclosure experiment (KLEE) is a multifactorial replicated
exclosure experiment that excludes various combinations of all large wildlife, livestock,
and mega-wildlife only (154). For the purpose of clarity, the figure in main text focuses
only on those treatments that remove all large wildlife and the treatments that allow
access to all large wildlife. Whenever possible, given data available, we used data from 0
plots (no fences, both wildlife and cattle species allowed free access) and MW plots
(electrified fences exclude all large wildlife, but low densities of cattle are allowed) to
isolate the effect of wildlife removal from livestock effects. However, in some cases
MWC plots (which exclude both large wildlife and cattle) were used instead of MW
plots, or MW and MWC plots were pooled; thus these include the effects of all large
animal (including both wildlife and livestock). A table of treatments used for each data
source and study (70, 154-167) is provided below. The figure highlights aspects of the
community that are affected by wildlife loss, and thus only those responses reported as
significant across wildlife treatments in the original study are depicted in the figure. The
units, and details of response metric used are also provided below.
Panel Code Ref Treatments
used Response units Notes on metric
C He (162)
0/C and
MW/MWC Percent of shoots eaten
C SL (162)
0/C and
MW/MWC Mean thorn length (cm)
B B-A (155)
0/C and
MW/MWC
Granivorous bird
abundance
Data for 0/C and MW/MWC
plots was pooled prior to original
analysis
B B-R (155)
0/C and
MW/MWC Bird species richness
Data for 0/C and MW/MWC
plots was pooled prior to original
analysis
B I (155)
0/C and
MW/MWC
Insect abundance
(pitfall trapping)
Data for 0/C and MW/MWC
plots was pooled prior to original
analysis
B C (156) 0 and MWC
Coleoptera density
(individuals-1)
B G (156) 0 and MWC
Lizard density
(individuals ha-1)
B F (158) 0 and MWC Number of fleas/ha
Average across all seasons and
years
B S (157) 0 and MWC
Sightings of P.
mossambicus/ha MW plots were not surveyed
B T (159) 0 and MW
Number of ticks 400
m-1
Sum of all age classes and species
of ticks
C AD (161) 0 and MWC
Number of workers
recruiting following
experimental
disturbance
Other ant species showed no
differences in levels of defense
C FP (160) 0 and MW Seeds per tree Averaged across all years
D A\F (166) 0 and MWC
AMF infectivity (%
colonization) off
termite mounts
Raw soil; effects were not
significant overall but herbivory
by mound interaction was
significant
D C-D (164) C and MWC
Cattle weight gain (kg-1
animal-1 day-1) in dry
season
As cattle weight gain was the
response metric, MWC and C
plots were used instead of MW
and 0 plots
D C-W (164) C and MWC
Cattle weight gain
(kg-1 animal-1 day-1) in
wet season
As cattle weight gain was the
response metric, MWC and C
plots were used instead of MW
and 0 plots
D Di (70) 0 and MWC
Number of Bartonella
infected fleas ha-1
Average across all seasons and
years
D Fi (164) 0 and MW
Minimum fire
temperature
C NP (163) 0 and MWC
Number of nectaries/ 5
leaves
C TP (163) 0 and MWC
Number of swollen
thorns / 60 cm
D Ph (167) 0 and MW
Photosynthetic rates
(μmol CO2 m-2s-1)
values presented are averages for
the A. drepanolobium for the four
different ant species in the dry
season
D Tr (167) 0 and MW
Transpiration rates
(mmol H2O m-2s-1)
values presented are averages for
the A. drepanolobium for the four
different ant species in the dry
season
A -- (162) 0 and MW
Dung piles of large
wildlife 600 m-2 Large wildlife are species > 15 kg
References and Notes
1. A. D. Barnosky, N. Matzke, S. Tomiya, G. O. Wogan, B. Swartz, T. B. Quental, C.
Marshall, J. L. McGuire, E. L. Lindsey, K. C. Maguire, B. Mersey, E. A. Ferrer,
Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
Medline doi:10.1038/nature09678
2. M. Cardillo, G. M. Mace, J. L. Gittleman, K. E. Jones, J. Bielby, A. Purvis, The
predictability of extinction: Biological and external correlates of decline in
mammals. Philos. R. Soc. London B. Biol. 275, 1441–1448 (2008).
doi:10.1098/rspb.2008.0179
3. C. E. Doughty, A. Wolf, Y. Malhi, The legacy of the Pleistocene megafauna
extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).
doi:10.1038/ngeo1895
4. J. L. Gill, J. W. Williams, S. T. Jackson, K. B. Lininger, G. S. Robinson, Pleistocene
megafaunal collapse, novel plant communities, and enhanced fire regimes in
North America. Science 326, 1100–1103 (2009). Medline
doi:10.1126/science.1179504
5. R. Dirzo, F. S. Chapin, O. E. Sala, E. Huber-Sannwald, Ed. (Springer, New York,
2001), pp. 251–276.
6. C. A. Peres, E. Palacios, Basin-wide effects of game harvest on vertebrate population
densities in Amazonian forests: Implications for animal-mediated seed dispersal.
Biotropica 39, 304–315 (2007). doi:10.1111/j.1744-7429.2007.00272.x
7. A. D. Barnosky, E. A. Hadly, J. Bascompte, E. L. Berlow, J. H. Brown, M. Fortelius,
W. M. Getz, J. Harte, A. Hastings, P. A. Marquet, N. D. Martinez, A. Mooers, P.
Roopnarine, G. Vermeij, J. W. Williams, R. Gillespie, J. Kitzes, C. Marshall, N.
Matzke, D. P. Mindell, E. Revilla, A. B. Smith, Approaching a state shift in
Earth’s biosphere. Nature 486, 52–58 (2012). Medline doi:10.1038/nature11018
8. G. Ceballos, P. R. Ehrlich, Mammal population losses and the extinction crisis. Science
296, 904–907 (2002). Medline doi:10.1126/science.1069349
9. D. U. Hooper, E. C. Adair, B. J. Cardinale, J. E. Byrnes, B. A. Hungate, K. L.
Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt, M. I. O’Connor, A global
synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature
486, 105–108 (2012). Medline
10. K. J. Gaston, R. A. Fuller, Commonness, population depletion and conservation
biology. Trends Ecol. Evol. 23, 14–19 (2008). Medline
doi:10.1016/j.tree.2007.11.001
11. B. W. Brook, N. S. Sodhi, C. J. Bradshaw, Synergies among extinction drivers under
global change. Trends Ecol. Evol. 23, 453–460 (2008). Medline
doi:10.1016/j.tree.2008.03.011
12. T. Säterberg, S. Sellman, B. Ebenman, High frequency of functional extinctions in
ecological networks. Nature 499, 468–470 (2013). Medline
doi:10.1038/nature12277
1
13. A. Ø. Mooers, D. P. Faith, W. P. Maddison, Converting endangered species
categories to probabilities of extinction for phylogenetic conservation
prioritization. PLOS One 3, e3700 (2008). Medline
doi:10.1371/journal.pone.0003700
14. S. H. M. Butchart, M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E.
A. Almond, J. E. M. Baillie, B. Bomhard, C. Brown, J. Bruno, K. E. Carpenter, G.
M. Carr, J. Chanson, A. M. Chenery, J. Csirke, N. C. Davidson, F. Dentener, M.
Foster, A. Galli, J. N. Galloway, P. Genovesi, R. D. Gregory, M. Hockings, V.
Kapos, J.-F. Lamarque, F. Leverington, J. Loh, M. A. McGeoch, L. McRae, A.
Minasyan, M. H. Morcillo, T. E. E. Oldfield, D. Pauly, S. Quader, C. Revenga, J.
R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S. N. Stuart, A. Symes, M.
Tierney, T. D. Tyrrell, J. C. Vié, R. Watson, Global biodiversity: Indicators of
recent declines. Science 328, 1164–1168 (2010). Medline
doi:10.1126/science.1187512
15. C. Mora, A. Rollo, D. P. Tittensor, Science 443, 295 (2013).
16. B. R. Scheffers, L. N. Joppa, S. L. Pimm, W. F. Laurance, What we know and don’t
know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).
Medline doi:10.1016/j.tree.2012.05.008
17. IUCN, The IUCN Red List of Threatened Species (2013); available at
www.iucnredlist.org.
18. M. Hoffmann, C. Hilton-Taylor, A. Angulo, M. Böhm, T. M. Brooks, S. H. Butchart,
K. E. Carpenter, J. Chanson, B. Collen, N. A. Cox, W. R. Darwall, N. K. Dulvy,
L. R. Harrison, V. Katariya, C. M. Pollock, S. Quader, N. I. Richman, A. S.
Rodrigues, M. F. Tognelli, J. C. Vié, J. M. Aguiar, D. J. Allen, G. R. Allen, G.
Amori, N. B. Ananjeva, F. Andreone, P. Andrew, A. L. Aquino Ortiz, J. E.
Baillie, R. Baldi, B. D. Bell, S. D. Biju, J. P. Bird, P. Black-Decima, J. J. Blanc,
F. Bolaños, W. Bolivar-G, I. J. Burfield, J. A. Burton, D. R. Capper, F. Castro, G.
Catullo, R. D. Cavanagh, A. Channing, N. L. Chao, A. M. Chenery, F. Chiozza,
V. Clausnitzer, N. J. Collar, L. C. Collett, B. B. Collette, C. F. Cortez Fernandez,
M. T. Craig, M. J. Crosby, N. Cumberlidge, A. Cuttelod, A. E. Derocher, A. C.
Diesmos, J. S. Donaldson, J. W. Duckworth, G. Dutson, S. K. Dutta, R. H.
Emslie, A. Farjon, S. Fowler, J. Freyhof, D. L. Garshelis, J. Gerlach, D. J. Gower,
T. D. Grant, G. A. Hammerson, R. B. Harris, L. R. Heaney, S. B. Hedges, J. M.
Hero, B. Hughes, S. A. Hussain, J. Icochea M, R. F. Inger, N. Ishii, D. T.
Iskandar, R. K. Jenkins, Y. Kaneko, M. Kottelat, K. M. Kovacs, S. L. Kuzmin, E.
La Marca, J. F. Lamoreux, M. W. Lau, E. O. Lavilla, K. Leus, R. L. Lewison, G.
Lichtenstein, S. R. Livingstone, V. Lukoschek, D. P. Mallon, P. J. McGowan, A.
McIvor, P. D. Moehlman, S. Molur, A. Muñoz Alonso, J. A. Musick, K. Nowell,
R. A. Nussbaum, W. Olech, N. L. Orlov, T. J. Papenfuss, G. Parra-Olea, W. F.
Perrin, B. A. Polidoro, M. Pourkazemi, P. A. Racey, J. S. Ragle, M. Ram, G.
Rathbun, R. P. Reynolds, A. G. Rhodin, S. J. Richards, L. O. Rodríguez, S. R.
Ron, C. Rondinini, A. B. Rylands, Y. Sadovy de Mitcheson, J. C. Sanciangco, K.
L. Sanders, G. Santos-Barrera, J. Schipper, C. Self-Sullivan, Y. Shi, A.
Shoemaker, F. T. Short, C. Sillero-Zubiri, D. L. Silvano, K. G. Smith, A. T.
2
Smith, J. Snoeks, A. J. Stattersfield, A. J. Symes, A. B. Taber, B. K. Talukdar, H.
J. Temple, R. Timmins, J. A. Tobias, K. Tsytsulina, D. Tweddle, C. Ubeda, S. V.
Valenti, P. P. van Dijk, L. M. Veiga, A. Veloso, D. C. Wege, M. Wilkinson, E. A.
Williamson, F. Xie, B. E. Young, H. R. Akçakaya, L. Bennun, T. M. Blackburn,
L. Boitani, H. T. Dublin, G. A. da Fonseca, C. Gascon, T. E. Lacher Jr., G. M.
Mace, S. A. Mainka, J. A. McNeely, R. A. Mittermeier, G. M. Reid, J. P.
Rodriguez, A. A. Rosenberg, M. J. Samways, J. Smart, B. A. Stein, S. N. Stuart,
The impact of conservation on the status of the world’s vertebrates. Science 330,
1503–1509 (2010). Medline doi:10.1126/science.1194442
19. Materials and methods are available as supplementary materials on Science Online.
20. G. Ceballos, A. García, P. R. Ehrlich, J. Cosmol. 8, 1821 (2010).
21. B. Collen, J. Loh, S. Whitmee, L. McRae, R. Amin, J. E. Baillie, Monitoring change
in vertebrate abundance: The living planet index. Conserv. Biol. 23, 317–327
(2009). Medline doi:10.1111/j.1523-1739.2008.01117.x
22. Living Planet Rport, “Living Planet Report 2012: Biodiversity, biocapacity and better
choices” (WWF, Zoological Society of London, Global Footprint Network,
European Space Agency, London, 2012).
23. B. Collen, M. Böhm, R. Kemp, J. Baillie, Spineless: Status and Trends of the World’s
Invertebrates (Zoological Society of London, London, 2012).
24. B. Collen, J. E. M. Baillie, Barometer of life: Sampling. Science 329, 140 (2010).
Medline doi:10.1126/science.329.5988.140-a
25. R. Fox et al., J. Appl. Ecol. 10.1111/1365-2664.12256 (2014).
26. J. Cavender-Bares, K. H. Kozak, P. V. Fine, S. W. Kembel, The merging of
community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).
Medline doi:10.1111/j.1461-0248.2009.01314.x
27. J. Schipper, J. S. Chanson, F. Chiozza, N. A. Cox, M. Hoffmann, V. Katariya, J.
Lamoreux, A. S. Rodrigues, S. N. Stuart, H. J. Temple, J. Baillie, L. Boitani, T. E.
Lacher Jr., R. A. Mittermeier, A. T. Smith, D. Absolon, J. M. Aguiar, G. Amori,
N. Bakkour, R. Baldi, R. J. Berridge, J. Bielby, P. A. Black, J. J. Blanc, T. M.
Brooks, J. A. Burton, T. M. Butynski, G. Catullo, R. Chapman, Z. Cokeliss, B.
Collen, J. Conroy, J. G. Cooke, G. A. da Fonseca, A. E. Derocher, H. T. Dublin, J.
W. Duckworth, L. Emmons, R. H. Emslie, M. Festa-Bianchet, M. Foster, S.
Foster, D. L. Garshelis, C. Gates, M. Gimenez-Dixon, S. Gonzalez, J. F.
Gonzalez-Maya, T. C. Good, G. Hammerson, P. S. Hammond, D. Happold, M.
Happold, J. Hare, R. B. Harris, C. E. Hawkins, M. Haywood, L. R. Heaney, S.
Hedges, K. M. Helgen, C. Hilton-Taylor, S. A. Hussain, N. Ishii, T. A. Jefferson,
R. K. Jenkins, C. H. Johnston, M. Keith, J. Kingdon, D. H. Knox, K. M. Kovacs,
P. Langhammer, K. Leus, R. Lewison, G. Lichtenstein, L. F. Lowry, Z. Macavoy,
G. M. Mace, D. P. Mallon, M. Masi, M. W. McKnight, R. A. Medellín, P. Medici,
G. Mills, P. D. Moehlman, S. Molur, A. Mora, K. Nowell, J. F. Oates, W. Olech,
W. R. Oliver, M. Oprea, B. D. Patterson, W. F. Perrin, B. A. Polidoro, C. Pollock,
A. Powel, Y. Protas, P. Racey, J. Ragle, P. Ramani, G. Rathbun, R. R. Reeves, S.
B. Reilly, J. E. Reynolds 3rd, C. Rondinini, R. G. Rosell-Ambal, M. Rulli, A. B.
3
Rylands, S. Savini, C. J. Schank, W. Sechrest, C. Self-Sullivan, A. Shoemaker, C.
Sillero-Zubiri, N. De Silva, D. E. Smith, C. Srinivasulu, P. J. Stephenson, N. van
Strien, B. K. Talukdar, B. L. Taylor, R. Timmins, D. G. Tirira, M. F. Tognelli, K.
Tsytsulina, L. M. Veiga, J. C. Vié, E. A. Williamson, S. A. Wyatt, Y. Xie, B. E.
Young, The status of the world’s land and marine mammals: Diversity, threat, and
knowledge. Science 322, 225–230 (2008). Medline doi:10.1126/science.1165115
28. S. L. Pimm, C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. N. Joppa, P. H.
Raven, C. M. Roberts, J. O. Sexton, The biodiversity of species and their rates of
extinction, distribution, and protection. Science 344, 1246752 (2014). Medline
doi:10.1126/science.1246752
29. R. Dirzo, P. H. Raven, Global state of biodiversity and loss. Annu. Rev. Environ.
Resour. 28, 137–167 (2003). doi:10.1146/annurev.energy.28.050302.105532
30. C. N. Jenkins, S. L. Pimm, L. N. Joppa, Global patterns of terrestrial vertebrate
diversity and conservation. Proc. Natl. Acad. Sci. U.S.A. 110, E2602–E2610
(2013). Medline doi:10.1073/pnas.1302251110
31. M. Cardillo, E. Meijaard, Are comparative studies of extinction risk useful for
conservation? Trends Ecol. Evol. 27, 167–171 (2012). Medline
doi:10.1016/j.tree.2011.09.013
32. A. D. Davidson, M. J. Hamilton, A. G. Boyer, J. H. Brown, G. Ceballos, Multiple
ecological pathways to extinction in mammals. Proc. Natl. Acad. Sci. U.S.A. 106,
10702–10705 (2009). Medline doi:10.1073/pnas.0901956106
33. E. Öckinger, O. Schweiger, T. O. Crist, D. M. Debinski, J. Krauss, M. Kuussaari, J.
D. Petersen, J. yry, J. Settele, K. S. Summerville, R. Bommarco, Life-history
traits predict species responses to habitat area and isolation: A cross-continental
synthesis. Ecol. Lett. 13, 969–979 (2010). Medline
34. T. M. Lee, W. Jetz, Unravelling the structure of species extinction risk for predictive
conservation science. Philos. R. Soc. London B. Biol. 278, 1329–1338 (2011).
doi:10.1098/rspb.2010.1877
35. M. J. Pocock, P. Roy, Can traits predict species’ vulnerability? A test with farmland
passerines in two continents. Philos. R. Soc. London B. Biol. 278, 1532–1538
(2011). doi:10.1098/rspb.2010.1971
36. S. A. Fritz, O. R. P. Bininda-Emonds, A. Purvis, Geographical variation in predictors
of mammalian extinction risk: Big is bad, but only in the tropics. Ecol. Lett. 12,
538–549 (2009). Medline doi:10.1111/j.1461-0248.2009.01307.x
37. G. Cowlishaw, R. A. Pettifor, N. J. Isaac, High variability in patterns of population
decline: The importance of local processes in species extinctions. Philos. R. Soc.
London B. Biol. 276, 63–69 (2009). doi:10.1098/rspb.2008.0767
38. M. Cardillo, G. M. Mace, J. L. Gittleman, A. Purvis, Latent extinction risk and the
future battlegrounds of mammal conservation. Proc. Natl. Acad. Sci. U.S.A. 103,
4157–4161 (2006). Medline doi:10.1073/pnas.0510541103
4
39. H. Hillebrand, B. Matthiessen, Biodiversity in a complex world: Consolidation and
progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).
Medline doi:10.1111/j.1461-0248.2009.01388.x
40. D. J. McCauley, H. S. Young, R. B. Dunbar, J. A. Estes, B. X. Semmens, F. Micheli,
Assessing the effects of large mobile predators on ecosystem connectivity. Ecol.
Appl. 22, 1711–1717 (2012). Medline doi:10.1890/11-1653.1
41. F. Keesing, L. K. Belden, P. Daszak, A. Dobson, C. D. Harvell, R. D. Holt, P.
Hudson, A. Jolles, K. E. Jones, C. E. Mitchell, S. S. Myers, T. Bogich, R. S.
Ostfeld, Impacts of biodiversity on the emergence and transmission of infectious
diseases. Nature 468, 647–652 (2010). Medline doi:10.1038/nature09575
42. P. T. Johnson, D. L. Preston, J. T. Hoverman, K. L. Richgels, Biodiversity decreases
disease through predictable changes in host community competence. Nature 494,
230–233 (2013). Medline doi:10.1038/nature11883
43. M. Di Marco et al., Conserv. Biol. 10.1111/cobi.12249 (2014).
44. O. E. Sala, F. S. Chapin 3rd, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E.
Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M.
Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M.
Walker, D. H. Wall, Global biodiversity scenarios for the year 2100. Science 287,
1770–1774 (2000). Medline doi:10.1126/science.287.5459.1770
45. C. H. Sekercioglu, S. H. Schneider, J. P. Fay, S. R. Loarie, Climate change,
elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150 (2008).
Medline doi:10.1111/j.1523-1739.2007.00852.x
46. K. F. Smith, D. F. Sax, K. D. Lafferty, Evidence for the role of infectious disease in
species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).
Medline doi:10.1111/j.1523-1739.2006.00524.x
47. C. A. Peres, Effects of subsistence hunting on vertebrate community structure in
Amazonian forests. Conserv. Biol. 14, 240–253 (2000). doi:10.1046/j.1523-
1739.2000.98485.x
48. S. T. Jackson, D. F. Sax, Balancing biodiversity in a changing environment:
Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25,
153–160 (2010). Medline doi:10.1016/j.tree.2009.10.001
49. J. Reiss, J. R. Bridle, J. M. Montoya, G. Woodward, Emerging horizons in
biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514
(2009). Medline doi:10.1016/j.tree.2009.03.018
50. B. J. Cardinale, J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A.
Narwani, G. M. Mace, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M.
Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava, S. Naeem, Biodiversity
loss and its impact on humanity. Nature 486, 59–67 (2012). Medline
doi:10.1038/nature11148
5
51. B. J. Cardinale, D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M.
Sankaran, C. Jouseau, Effects of biodiversity on the functioning of trophic groups
and ecosystems. Nature 443, 989–992 (2006). Medline doi:10.1038/nature05202
52. N. Gallai, J.-M. Salles, J. Settele, B. E. Vaissière, Economic valuation of the
vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ.
68, 810–821 (2009). doi:10.1016/j.ecolecon.2008.06.014
53. S. G. Potts, J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, W. E. Kunin,
Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25,
345–353 (2010). Medline doi:10.1016/j.tree.2010.01.007
54. J. C. Biesmeijer, S. P. Roberts, M. Reemer, R. Ohlemüller, M. Edwards, T. Peeters,
A. P. Schaffers, S. G. Potts, R. Kleukers, C. D. Thomas, J. Settele, W. E. Kunin,
Parallel declines in pollinators and insect-pollinated plants in Britain and the
Netherlands. Science 313, 351–354 (2006). Medline doi:10.1126/science.1127863
55. S. H. Anderson, D. Kelly, J. J. Ladley, S. Molloy, J. Terry, Cascading effects of bird
functional extinction reduce pollination and plant density. Science 331, 1068–
1071 (2011). Medline doi:10.1126/science.1199092
56. D. S. Karp, C. D. Mendenhall, R. F. Sandí, N. Chaumont, P. R. Ehrlich, E. A. Hadly,
G. C. Daily, Forest bolsters bird abundance, pest control and coffee yield. Ecol.
Lett. 16, 1339–1347 (2013). Medline doi:10.1111/ele.12173
57. E.-C. Oerke, Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).
doi:10.1017/S0021859605005708
58. J. E. Losey, M. Vaughan, The economic value of ecological services provided by
insects. Bioscience 56, 311–323 (2006). doi:10.1641/0006-
3568(2006)56[311:TEVOES]2.0.CO;2
59. M. O. Gessner, C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall, S.
Hättenschwiler, Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380
(2010). Medline doi:10.1016/j.tree.2010.01.010
60. T. B. Atwood, E. Hammill, H. S. Greig, P. Kratina, J. B. Shurin, D. S. Srivastava, J.
S. Richardson, Predator-induced reduction of freshwater carbon dioxide
emissions. Nat. Geosci. 6, 191–194 (2013). doi:10.1038/ngeo1734
61. D. Hawlena, M. S. Strickland, M. A. Bradford, O. J. Schmitz, Fear of predation slows
plant-litter decomposition. Science 336, 1434–1438 (2012). Medline
doi:10.1126/science.1220097
62. H. S. Young, D. J. McCauley, R. B. Dunbar, R. Dirzo, Plants cause ecosystem
nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl.
Acad. Sci. U.S.A. 107, 2072–2077 (2010). Medline doi:10.1073/pnas.0914169107
63. M. Whiles, R. O. Hall, W. K. Dodds, P. Verburg, A. D. Huryn, C. M. Pringle, K. R.
Lips, S. S. Kilham, C. Colón-Gaud, A. T. Rugenski, S. Peterson, S. Connelly,
Disease-driven amphibian declines alter ecosystem processes in a tropical stream.
Ecosystems (N.Y.) 16, 146–157 (2013). doi:10.1007/s10021-012-9602-7
6
64. J. P. Wright, C. G. Jones, A. S. Flecker, An ecosystem engineer, the beaver, increases
species richness at the landscape scale. Oecologia 132, 96–101 (2002).
doi:10.1007/s00442-002-0929-1
65. S. S. Myers, L. Gaffikin, C. D. Golden, R. S. Ostfeld, K. H. Redford, T. H. Ricketts,
W. R. Turner, S. A. Osofsky, Human health impacts of ecosystem alteration.
Proc. Natl. Acad. Sci. U.S.A. 110, 18753–18760 (2013). Medline
doi:10.1073/pnas.1218656110
66. C. D. Golden, L. C. Fernald, J. S. Brashares, B. J. Rasolofoniaina, C. Kremen,
Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc.
Natl. Acad. Sci. U.S.A. 108, 19653–19656 (2011). Medline
doi:10.1073/pnas.1112586108
67. J. E. Fa, C. A. Peres, J. Meeuwig, Bushmeat exploitation in tropical forests: An
intercontinental comparison. Conserv. Biol. 16, 232–237 (2002).
doi:10.1046/j.1523-1739.2002.00275.x
68. J. G. Boyles, P. M. Cryan, G. F. McCracken, T. H. Kunz, Conservation. Economic
importance of bats in agriculture. Science 332, 41–42 (2011). Medline
doi:10.1126/science.1201366
69. R. S. Ostfeld, F. Keesing, Effects of host diversity on infectious disease. Annu. Rev.
Ecol. Evol. Syst. 43, 157–182 (2012). doi:10.1146/annurev-ecolsys-102710-
145022
70. H. S. Young et al., Proc. Natl. Acad. Sci. U.S.A. 10.1073/pnas.1404958111 (2014).
71. C. L. Wood, K. D. Lafferty, G. DeLeo, H. S. Young, P. J. Hudson, A. M. Kuris, Does
biodiversity protect humans against infectious disease? Ecology 95, 817–832
(2014). Medline doi:10.1890/13-1041.1
72. S. R. Palumbi, Humans as the world’s greatest evolutionary force. Science 293,
1786–1790 (2001). Medline doi:10.1126/science.293.5536.1786
73. C. T. Darimont, S. M. Carlson, M. T. Kinnison, P. C. Paquet, T. E. Reimchen, C. C.
Wilmers, Human predators outpace other agents of trait change in the wild. Proc.
Natl. Acad. Sci. U.S.A. 106, 952–954 (2009). Medline
doi:10.1073/pnas.0809235106
74. M. Galetti, C. I. Donatti, M. A. Pizo, H. C. Giacomini, Big fish are the Best: Seed
dispersal of Bactris glaucescens by the Pacu Fish ( Piaractus mesopotamicus ) in
the Pantanal, Brazil. Biotropica 40, 386–389 (2008). doi:10.1111/j.1744-
7429.2007.00378.x
75. S. A. Bodbyl Roels, J. K. Kelly, Rapid evolution caused by pollinator loss in
Mimulus guttatus. Evolution 65, 2541–2552 (2011). Medline doi:10.1111/j.1558-
5646.2011.01326.x
76. M. Galetti, R. Guevara, M. C. Côrtes, R. Fadini, S. Von Matter, A. B. Leite, F.
Labecca, T. Ribeiro, C. S. Carvalho, R. G. Collevatti, M. M. Pires, P. R.
Guimarães Jr., P. H. Brancalion, M. C. Ribeiro, P. Jordano, Functional extinction
7
of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090
(2013). Medline doi:10.1126/science.1233774
77. J. A. Estes, J. S. Brashares, M. E. Power, Predicting and detecting reciprocity
between indirect ecological interactions and evolution. Am. Nat. 181 (suppl. 1),
S76–S99 (2013). Medline doi:10.1086/668120
78. J. A. Estes, J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R.
Carpenter, T. E. Essington, R. D. Holt, J. B. Jackson, R. J. Marquis, L. Oksanen,
T. Oksanen, R. T. Paine, E. K. Pikitch, W. J. Ripple, S. A. Sandin, M. Scheffer, T.
W. Schoener, J. B. Shurin, A. R. Sinclair, M. E. Soulé, R. Virtanen, D. A. Wardle,
Trophic downgrading of planet Earth. Science 333, 301–306 (2011). Medline
doi:10.1126/science.1205106
79. W. J. Ripple, J. A. Estes, R. L. Beschta, C. C. Wilmers, E. G. Ritchie, M.
Hebblewhite, J. Berger, B. Elmhagen, M. Letnic, M. P. Nelson, O. J. Schmitz, D.
W. Smith, A. D. Wallach, A. J. Wirsing, Status and ecological effects of the
world’s largest carnivores. Science 343, 1241484 (2014). Medline
doi:10.1126/science.1241484
80. M. Dornelas, N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes, C. Sievers, A. E.
Magurran, Assemblage time series reveal biodiversity change but not systematic
loss. Science 344, 296–299 (2014). Medline doi:10.1126/science.1248484
81. F. Keesing, T. P. Young, Cascading Consequences of the Loss of Large Mammals in
an African Savanna. Bioscience 64, 487–495 (2014). doi:10.1093/biosci/biu059
82. G. Ceballos, P. R. Ehrlich, J. Soberón, I. Salazar, J. P. Fay, Global mammal
conservation: What must we manage? Science 309, 603–607 (2005). Medline
doi:10.1126/science.1114015
83. R. Barnes, A. Blom, M. Alers, A review of the status of forest elephants Loxodonta
africana in Central Africa. Biol. Conserv. 71, 125–132 (1995). doi:10.1016/0006-
3207(94)00014-H
84. H. Bauer, S. Van Der Merwe, Inventory of free-ranging lions Panthera leo in Africa.
Oryx 38, 26 (2004). doi:10.1017/S0030605304000055
85. S. Blake, S. Strindberg, P. Boudjan, C. Makombo, I. Bila-Isia, O. Ilambu, F.
Grossmann, L. Bene-Bene, B. de Semboli, V. Mbenzo, D. S’hwa, R. Bayogo, L.
Williamson, M. Fay, J. Hart, F. Maisels, Forest elephant crisis in the Congo
Basin. PLOS Biol. 5, e111 (2007). Medline doi:10.1371/journal.pbio.0050111
86. C. J. Bradshaw, B. W. Brook, Disease and the devil: Density-dependent
epidemiological processes explain historical population fluctuations in the
Tasmanian devil. Ecography 28, 181–190 (2005). doi:10.1111/j.0906-
7590.2005.04088.x
87. F. Maisels, S. Strindberg, S. Blake, G. Wittemyer, J. Hart, E. A. Williamson, R.
Aba’a, G. Abitsi, R. D. Ambahe, F. Amsini, P. C. Bakabana, T. C. Hicks, R. E.
Bayogo, M. Bechem, R. L. Beyers, A. N. Bezangoye, P. Boundja, N. Bout, M. E.
Akou, L. B. Bene, B. Fosso, E. Greengrass, F. Grossmann, C. Ikamba-Nkulu, O.
Ilambu, B. I. Inogwabini, F. Iyenguet, F. Kiminou, M. Kokangoye, D.
8
Kujirakwinja, S. Latour, I. Liengola, Q. Mackaya, J. Madidi, B. Madzoke, C.
Makoumbou, G. A. Malanda, R. Malonga, O. Mbani, V. A. Mbendzo, E.
Ambassa, A. Ekinde, Y. Mihindou, B. J. Morgan, P. Motsaba, G. Moukala, A.
Mounguengui, B. S. Mowawa, C. Ndzai, S. Nixon, P. Nkumu, F. Nzolani, L.
Pintea, A. Plumptre, H. Rainey, B. B. de Semboli, A. Serckx, E. Stokes, A.
Turkalo, H. Vanleeuwe, A. Vosper, Y. Warren, Devastating decline of forest
elephants in central Africa. PLOS One 8, e59469 (2013). Medline
doi:10.1371/journal.pone.0059469
88. H. McCallum, D. M. Tompkins, M. Jones, S. Lachish, S. Marvanek, B. Lazenby, G.
Hocking, J. Wiersma, C. E. Hawkins, Distribution and impacts of Tasmanian
devil facial tumor disease. EcoHealth 4, 318–325 (2007). doi:10.1007/s10393-
007-0118-0
89. N. Myers, Int. Wildl. 5, 5 (1975).
90. E. Milner-Gulland, M. V. Kholodova, A. Bekenov, O. M. Bukreeva, I. A. Grachev, L.
Amgalan, A. A. Lushchekina, Dramatic declines in saiga antelope populations.
Oryx 35, 340 (2001). doi:10.1017/S0030605300032105
91. J. Riggio, A. Jacobson, L. Dollar, H. Bauer, M. Becker, A. Dickman, P. Funston, R.
Groom, P. Henschel, H. Iongh, L. Lichtenfeld, S. Pimm, The size of savannah
Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2013).
doi:10.1007/s10531-012-0381-4
92. N. J. Isaac, Extracting trends from biological recording data in National Biodiversity
Network Conference. (London, 2013); available at
http://dx.doi.org/10.6084/m9.figshare.428369.
93. M. O. Hill, Local frequency as a key to interpreting species occurrence data when
recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).
doi:10.1111/j.2041-210X.2011.00146.x
94. N. J. B. Isaac, J. Arco van Strien, A. Tom August, P. Marnix de Zeeuw, David B.
Roy, Extracting robust trends in species’ distributions from unstructured
opportunistic data: A comparison of methods. Methods Ecol. Evol.
http://dx.doi.org/10.1101/006999 (2014).
95. A. J. van Strien, C. A. M. van Swaay, T. Termaat, Opportunistic citizen science data
of animal species produce reliable estimates of distribution trends if analysed with
occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013). doi:10.1111/1365-
2664.12158
96. J. K. Szabo, P. A. Vesk, P. W. Baxter, H. P. Possingham, Regional avian species
declines estimated from volunteer-collected long-term data using List Length
Analysis. Ecol. Appl. 20, 2157–2169 (2010). Medline doi:10.1890/09-0877.1
97. H. E. Roy, T. Adriaens, N. J. B. Isaac, M. Kenis, T. Onkelinx, G. S. Martin, P. M. J.
Brown, L. Hautier, R. Poland, D. B. Roy, R. Comont, R. Eschen, R. Frost, R.
Zindel, J. Van Vlaenderen, O. Nedvěd, H. P. Ravn, J.-C. Grégoire, J.-C. de
Biseau, D. Maes, Invasive alien predator causes rapid declines of native European
9
ladybirds. Divers. Distrib. 18, 717–725 (2012). doi:10.1111/j.1472-
4642.2012.00883.x
98. J. Loh, R. E. Green, T. Ricketts, J. Lamoreux, M. Jenkins, V. Kapos, J. Randers, The
Living Planet Index: Using species population time series to track trends in
biodiversity. Philos. R. Soc. London B. Biol. 360, 289–295 (2005).
doi:10.1098/rstb.2004.1584
99. N. Aebischer, G. Potts, Methods 38, 4 (1990).
100. A. Alyokhin, G. Sewell, Changes in a lady beetle community following the
establishment of three alien species. Biol. Invasions 6, 463–471 (2004).
doi:10.1023/B:BINV.0000041554.14539.74
101. M. E. Archer, Changes in abundance of Vespula germanica and V. vulgaris in
England. Ecol. Entomol. 26, 1–7 (2001). doi:10.1046/j.1365-2311.2001.00296.x
102. H. Barnes, Periodic fluctuations in the prevalence of the wheat blossom midges. J.
Anim. Ecol. 1, 191 (1932). doi:10.2307/981
103. J. Barrett, R. A. Virginia, D. H. Wall, B. J. Adams, Decline in a dominant
invertebrate species contributes to altered carbon cycling in a low-diversity soil
ecosystem. Glob. Change Biol. 14, 1734–1744 (2008). doi:10.1111/j.1365-
2486.2008.01611.x
104. M. Botham, D. Roy, T. Brereton, I. Middlebrook, Z. Randle, United Kingdom
Butterfly Monitoring Scheme: Collated indices 2012 , N.-E. I. D. Centre, Ed.
(2013).
105. S. A. Cameron, J. D. Lozier, J. P. Strange, J. B. Koch, N. Cordes, L. F. Solter, T. L.
Griswold, Patterns of widespread decline in North American bumble bees. Proc.
Natl. Acad. Sci. U.S.A. 108, 662–667 (2011). Medline
doi:10.1073/pnas.1014743108
106. S. R. Colla, L. Packer, Evidence for decline in eastern North American bumblebees
(Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers.
Conserv. 17, 1379–1391 (2008). doi:10.1007/s10531-008-9340-5
107. M. Colunga-Garcia, S. H. Gage, Environ. Entomol. 27, 1574 (1998).
108. R. Drew, G. Hooper, Population studies of fruit flies (Diptera: Tephritidae) in south-
east Queensland. Oecologia 56, 153–159 (1983). doi:10.1007/BF00379685
109. N. Elliott, R. Kieckhefer, W. Kauffman, Effects of an invading coccinellid on native
coccinellids in an agricultural landscape. Oecologia 105, 537–544 (1996).
doi:10.1007/BF00330017
110. E. Evans, R. Thorp, S. Jepsen, S. H. Black, The Xerces Society, (2008).
111. R. Fox et al., (Butterfly Conservation and Rothamsted Research, Wareham, Dorset,
UK, 2013).
112. J. P. Harmon, E. Stephens, J. Losey, (Springer, New York, 2007), pp. 85–94.
10
113. W. Hinds, W. Rickard, Correlations between Climatological Fluctuations and a
Population of Philolithus densicollis (Horn) (Coleoptera: Tenebrionidae). J. Anim.
Ecol. 42, 341 (1973). doi:10.2307/3289
114. M. Kato, Alternation of bottom-up and top-down regulation in a natural population
of an agromyzid leafminer, Chromatomyia suikazurae. Oecologia 97, 9–16
(1994). doi:10.1007/BF00317903
115. W. J. Mattson, Ann. Entomol. Soc. Am. 73, 390 (1980).
116. A. Milne, Proc. R. Soc. Edinburgh. B Biol. Sci. 82, 145 (1984).
117. A. Milne, R. Laughlin, R. Coggins, The 1955 and 1959 Population Crashes in the
Leatherjacket, Tipula paludosa Meigen, in Northumberland. J. Anim. Ecol. 34,
529 (1965). doi:10.2307/2447
118. N. Moore, Odonatologica 20, 203 (1991).
119. N. Osawa, Population field studies on the aphidophagous ladybird beetle Harmonia
axyridis (Coleoptera: Coccinellidae): resource tracking and population
characteristics. Popul. Ecol. 42, 115–127 (2000). doi:10.1007/PL00011990
120. M. K. Peters, T. Lung, G. Schaab, J. W. Wägele, Deforestation and the population
decline of the army ant Dorylus wilverthi in western Kenya over the last century.
J. Appl. Ecol. 48, 697–705 (2011). doi:10.1111/j.1365-2664.2011.01959.x
121. W. Turnock, I. Wise, F. Matheson, Abundance of some native coccinellines
(Coleoptera: Coccinellidae) before and after the appearance of Coccinella
septempunctata. Can. Entomol. 135, 391–404 (2003). doi:10.4039/n02-070
122. T. S. Van Dijk, P. Den Boer, Oecologia 90, 340 (1992). doi:10.1007/BF00317690
123. H. Van Dyck, A. J. Van Strien, D. Maes, C. A. Van Swaay, Declines in common,
widespread butterflies in a landscape under intense human use. Conserv. Biol. 23,
957–965 (2009). Medline doi:10.1111/j.1523-1739.2009.01175.x
124. R. J. Wilson, I. M. Maclean, Recent evidence for the climate change threat to
Lepidoptera and other insects. J. Insect Conserv. 15, 259–268 (2011).
doi:10.1007/s10841-010-9342-y
125. H. Wolda, B. Dennis, Oecologia 95, 581 (1993).
126. J. Barlow, W. L. Overal, I. S. Araujo, T. A. Gardner, C. A. Peres, The value of
primary, secondary and plantation forests for fruit-feeding butterflies in the
Brazilian Amazon. J. Appl. Ecol. 44, 1001–1012 (2007). doi:10.1111/j.1365-
2664.2007.01347.x
127. J. Beck, C. H. Schulze, K. E. Linsenmair, K. Fiedler, J. Trop. Ecol. 18, 33 (2002).
128. K. S. Bobo, M. Waltert, H. Fermon, J. Njokagbor, M. Mühlenberg, From forest to
farmland: Butterfly diversity and habitat associations along a gradient of forest
conversion in southwestern Cameroon. J. Insect Conserv. 10, 29–42 (2006).
doi:10.1007/s10841-005-8564-x
129. D. Bowman, J. C. Z. Woinarski, D. P. A. Sands, A. Wells, V. J. McShane, Slash-
and-burn agriculture in the wet coastal lowlands of Papua New Guinea: Response
11
of birds, butterflies and reptiles. J. Biogeogr. 17, 227 (1990).
doi:10.2307/2845121
130. D. F. R. Cleary, An examination of scale of assessment, logging and ENSO-induced
fires on butterfly diversity in Borneo. Oecologia 135, 313–321 (2003). Medline
131. S. K. Collinge, K. L. Prudic, J. C. Oliver, Effects of local habitat characteristics and
landscape context on grassland butterfly diversity. Conserv. Biol. 17, 178–187
(2003). doi:10.1046/j.1523-1739.2003.01315.x
132. J. Ghazoul, Biodivers. Conserv. 11, 521–541 (2002). doi:10.1023/A:1014812701423
133. C. A. Harvey, A. Medina, D. M. Sánchez, S. Vílchez, B. Hernández, J. C. Saenz, J.
M. Maes, F. Casanoves, F. L. Sinclair, Patterns of animal diversity in different
forms of tree cover in agricultural landscapes. Ecol. Appl. 16, 1986–1999 (2006).
Medline doi:10.1890/1051-0761(2006)016[1986:POADID]2.0.CO;2
134. I. Perfecto, A. Mas, T. Dietsch, J. Vandermeer, Biodivers. Conserv. 12, 1239–1252
(2003). doi:10.1023/A:1023039921916
135. M. R. C. Posa, N. S. Sodhi, Effects of anthropogenic land use on forest birds and
butterflies in Subic Bay, Philippines. Biol. Conserv. 129, 256–270 (2006).
doi:10.1016/j.biocon.2005.10.041
136. D. B. Ribeiro, A. V. Freitas, The effect of reduced-impact logging on fruit-feeding
butterflies in Central Amazon, Brazil. J. Insect Conserv. 16, 733–744 (2012).
doi:10.1007/s10841-012-9458-3
137. N. Stork, D. Srivastava, A. Watt, T. Larsen, Biodivers. Conserv. 12, 387–410
(2003). doi:10.1023/A:1022470308591
138. K. S. Summerville, Forest lepidopteran communities are more resilient to
shelterwood harvests compared to more intensive logging regimes. Ecol. Appl. 23,
1101–1112 (2013). Medline doi:10.1890/12-0639.1
139. K. S. Summerville, L. M. Ritter, T. O. Crist, Forest moth taxa as indicators of
lepidopteran richness and habitat disturbance: A preliminary assessment. Biol.
Conserv. 116, 9–18 (2004). doi:10.1016/S0006-3207(03)00168-X
140. S. Willott, D. Lim, S. Compton, S. Sutton, Effects of Selective Logging on the
Butterflies of a Bornean Rainforest. Conserv. Biol. 14, 1055–1065 (2000).
doi:10.1046/j.1523-1739.2000.98427.x
141. F. A. Smith, S. K. Lyons, S. K. M. Ernest, K. E. Jones, D. M. Kaufman, T. Dayan,
P. A. Marquet, J. H. Brown, J. P. Haskell, Body mass of late quaternary
mammals. Ecology 84, 3403 (2003). doi:10.1890/02-9003
142. A. Hubbe, M. Hubbe, W. Neves, Early Holocene survival of megafauna in South
America. J. Biogeogr. 34, 1642–1646 (2007). doi:10.1111/j.1365-
2699.2007.01744.x
143. R. A. Cooper, P. A. Maxwell, J. S. Crampton, A. G. Beu, C. M. Jones, B. A.
Marshall, Completeness of the fossil record: Estimating losses due to small body
size. Geology 34, 241 (2006). doi:10.1130/G22206.1
12
144. C. N. Jass, C. O. George, An assessment of the contribution of fossil cave deposits
to the Quaternary paleontological record. Quat. Int. 217, 105–116 (2010).
doi:10.1016/j.quaint.2009.11.008
145. S. K. Lyons, F. A. Smith, J. H. Brown, Evol. Ecol. Res. 6, 339 (2004).
146. K. R. McConkey, D. R. Drake, Flying foxes cease to function as seed dispersers
long before they become rare. Ecology 87, 271–276 (2006). Medline
doi:10.1890/05-0386
147. T. Fukami, D. A. Wardle, P. J. Bellingham, C. P. Mulder, D. R. Towns, G. W.
Yeates, K. I. Bonner, M. S. Durrett, M. N. Grant-Hoffman, W. M. Williamson,
Above- and below-ground impacts of introduced predators in seabird-dominated
island ecosystems. Ecol. Lett. 9, 1299–1307 (2006). Medline doi:10.1111/j.1461-
0248.2006.00983.x
148. D. L. Ogada, M. E. Torchin, M. F. Kinnaird, V. O. Ezenwa, Effects of vulture
declines on facultative scavengers and potential implications for mammalian
disease transmission. Conserv. Biol. 26, 453–460 (2012). Medline
doi:10.1111/j.1523-1739.2012.01827.x
149. R. Dirzo, A. Miranda, Plant-Animal Interactions: Evolutionary Ecology in Tropical
and Temperate Regions (Wiley, New York, 1991).
150. M. R. Whiles, K. R. Lips, C. M. Pringle, S. S. Kilham, R. J. Bixby, R. Brenes, S.
Connelly, J. C. Colon-Gaud, M. Hunte-Brown, A. D. Huryn, C. Montgomery, S.
Peterson, The effects of amphibian population declines on the structure and
function of Neotropical stream ecosystems. Front. Ecol. Environ 4, 27–34 (2006).
doi:10.1890/1540-9295(2006)004[0027:TEOAPD]2.0.CO;2
151. A. I. Roldán, J. A. Simonetti, Plant-mammal interactions in tropical bolivian forests
with different hunting pressures. Conserv. Biol. 15, 617–623 (2001).
doi:10.1046/j.1523-1739.2001.015003617.x
152. E. M. Slade, D. J. Mann, O. T. Lewis, Biodiversity and ecosystem function of
tropical forest dung beetles under contrasting logging regimes. Biol. Conserv.
144, 166–174 (2011). doi:10.1016/j.biocon.2010.08.011
153. L. Martínez-Estévez, P. Balvanera, J. Pacheco, G. Ceballos, Prairie dog decline
reduces the supply of ecosystem services and leads to desertification of semiarid
grasslands. PLOS One 8, e75229 (2013). Medline
doi:10.1371/journal.pone.0075229
154. T. P. Young, B. Okello, D. Kinyua, T. M. Palmer, KLEE: A longterm multispecies
herbivore exclusion experiment in Laikipia, Kenya. African J. Range Forage Sci.
14, 94–102 (1997). doi:10.1080/10220119.1997.9647929
155. D. L. Ogada, M. E. Gadd, R. S. Ostfeld, T. P. Young, F. Keesing, Impacts of large
herbivorous mammals on bird diversity and abundance in an African savanna.
Oecologia 156, 387–397 (2008). Medline doi:10.1007/s00442-008-0994-1
156. R. M. Pringle, T. P. Young, D. I. Rubenstein, D. J. McCauley, Herbivore-initiated
interaction cascades and their modulation by productivity in an African savanna.
13
Proc. Natl. Acad. Sci. U.S.A. 104, 193–197 (2007). Medline
doi:10.1073/pnas.0609840104
157. D. J. McCauley, F. Keesing, T. Young, K. Dittmar, Effects of the removal of large
herbivores on fleas of small mammals. J. Vector Ecol. 33, 263–268 (2008).
Medline doi:10.3376/1081-1710-33.2.263
158. D. J. McCauley, F. Keesing, T. P. Young, B. F. Allan, R. M. Pringle, Indirect effects
of large herbivores on snakes in an African savanna. Ecology 87, 2657–2663
(2006). Medline doi:10.1890/0012-9658(2006)87[2657:IEOLHO]2.0.CO;2
159. F. Keesing, B. F. Allan, T. P. Young, R. S. Ostfeld, Effects of wildlife and cattle on
tick abundance in central Kenya. Ecol. Appl. 23, 1410–1418 (2013). Medline
doi:10.1890/12-1607.1
160. J. R. Goheen, T. M. Palmer, F. Keesing, C. Riginos, T. P. Young, Large herbivores
facilitate savanna tree establishment via diverse and indirect pathways. J. Anim.
Ecol. 79, 372–382 (2010). Medline doi:10.1111/j.1365-2656.2009.01644.x
161. T. M. Palmer, M. L. Stanton, T. P. Young, J. R. Goheen, R. M. Pringle, R. Karban,
Breakdown of an ant-plant mutualism follows the loss of large herbivores from an
African savanna. Science 319, 192–195 (2008). Medline
doi:10.1126/science.1151579
162. T. P. Young, B. D. Okello, Relaxation of an induced defense after exclusion of
herbivores: Spines on Acacia drepanolobium. Oecologia 115, 508–513 (1998).
doi:10.1007/s004420050548
163. M. Huntzinger, R. Karban, T. P. Young, T. M. Palmer, Relaxation of induced
indirect defenses of Acacias following exclusion of mammalian herbivores.
Ecology 85, 609–614 (2004). 10.1890/03-3056 doi:10.1890/03-3056
164. D. K. Kimuyu, R. L. Sensenig, C. Riginos, K. E. Veblen, T. P. Young, Native and
domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant
mortality in an African savanna. Ecol. Appl. 24, 741–749 (2014). doi:10.1890/13-
1135.1
165. W. O. Odadi, M. K. Karachi, S. A. Abdulrazak, T. P. Young, African wild ungulates
compete with or facilitate cattle depending on season. Science 333, 1753–1755
(2011). Medline doi:10.1126/science.1208468
166. R. H. Petipas, A. K. Brody, Termites and ungulates affect arbuscular mycorrhizal
richness and infectivity in a semiarid savanna. Botany 92, 233–240 (2014).
doi:10.1139/cjb-2013-0223
167. E. G. King, K. K. Caylor, Herbivores and mutualistic ants interact to modify tree
photosynthesis. New Phytol. 187, 17–21 (2010). Medline doi:10.1111/j.1469-
8137.2010.03286.x
14
... However, these represent only a small fraction of Earth's biodiversity. Several reports have raised the possibility that insects are in sharp decline, in both abundance and species diversity (6)(7)(8)(9)(10)(11). It is therefore important to evaluate progress in insect population genomics and to consider how this field can contribute to insect conservation. ...
... They are important sources of food for a huge range of vertebrates and play a vital role in a wide range of ecosystem functions, most notably decomposition and plant pollination. Several recent reports have highlighted insect declines, indicating that losses could exceed even those found in other taxonomic groups (6)(7)(8)(9)(10)(11). Large numbers of species may therefore face extinction before they are known. ...
... Reports of insect declines focus mainly on population trends, finding declines in total biomass, abundance, range size, and species richness (6)(7)(8)(9)(10)(11). One of the most comprehensive studies, focusing on flying insects in 63 sites in northwestern Germany, indicated a 75% reduction in biomass over 27 years (8). ...
Article
Insects constitute vital components of ecosystems. There is alarming evidence for global declines in insect species diversity, abundance, and biomass caused by anthropogenic drivers such as habitat degradation or loss, agricultural practices, climate change, and environmental pollution. This raises important concerns about human food security and ecosystem functionality and calls for more research to assess insect population trends and identify threatened species and the causes of declines to inform conservation strategies. Analysis of genetic diversity is a powerful tool to address these goals, but so far animal conservation genetics research has focused strongly on endangered vertebrates, devoting less attention to invertebrates, such as insects, that constitute most biodiversity. Insects’ shorter generation times and larger population sizes likely necessitate different analytical methods and management strategies. The availability of high-quality reference genome assemblies enables population genomics to address several key issues. These include precise inference of past demographic fluctuations and recent declines, measurement of genetic load levels, delineation of evolutionarily significant units and cryptic species, and analysis of genetic adaptation to stressors. This enables identification of populations that are particularly vulnerable to future threats, considering their potential to adapt and evolve. We review the application of population genomics to insect conservation and the outlook for averting insect declines. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 11 is February 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
... The scientific community is currently debating whether the planet has entered a new geological epoch, i.e., the Anthropocene, characterized by widespread human-mediated environmental impact (Lewis and Maslin 2015). Irrespective of the lexical semantics, current extensive habitat destruction and deterioration coupled with global climate change are resulting in the unparalleled extinction of species at both a local and global scale (Dirzo et al. 2014). Thus, our efforts to document the extant biodiversity and understand the Abstract Phenotypic dissimilarity does not always evolve in concert with genetic diversification, resulting in cryptic species complexes that represent a major challenge for documenting actual biodiversity. ...
... Importantly, these approaches are expensive both in terms of time and money, in addition to major investments in training personnel. Considering the current background of major environmental deterioration at both local and global scales, resulting in an unparalleled rate of species extinction (Dirzo et al. 2014;Wilson 2016), our approach is somewhat different (and more simple), as it aims to speed up the discovery of cryptic species taking into account monetary, personnel, and time constraints. Using this approach, we revealed two cryptic species complexes in a shrimp genus long considered a 'taxonomic nightmare' (Chace 1997). ...
Article
Full-text available
Phenotypic dissimilarity does not always evolve in concert with genetic diversification, resulting in cryptic species complexes that represent a major challenge for documenting actual biodiversity. Resolving these complexes is of paramount importance. Herein, we tested whether Saron marmoratus (Olivier, 1811) and S. neglectus de Man, 1902, two coral reef-dwelling shrimp species distributed over contiguous biogeographic provinces in the Indo-West Pacific and crossing various biogeographic and phylogeographic breaks, are such cryptic species complexes, as indicated by their significant diversity of color patterns. Firstly, a principal component analysis using 19 morphological traits confirmed that S. marmoratus and S. neglectus were morphologically distinctive, however, failing to detect morphologically defined groups within each of these taxa. On the other hand, molecular phylogenetic analyses (nuclear Histone 3 and mitochondrial 16S RNA markers) demonstrated a total of five well-supported clades in these two taxa, with moderate to deep genetic divergence among them. Species delimitation approaches indicated at least 10 (and a maximum of 15) putative cryptic species in the S. marmoratus and S. neglectus species complexes. Furthermore, color patterns segregated most but not all cryptic lineages. Altogether, the information above demonstrates that S. marmoratus and S. neglectus represent two cryptic species complexes, which diversified in somewhat parallel ways. Additional integrative studies, as we have shown here, to reveal the extend and magnitude of cryptic species complexes in coral reefs, are warranted given the current acute biodiversity crisis.
... Long-term ecological monitoring (more than 10 years) can help to identify complex ecological patterns and processes 71 . Currently, many insect species have shown a decline in diversity and abundance 30,72 . Sánchez-Bayo and Wyckhuys 32 reviewed the status of the decline of moths and butterflies in Europe, North America, and Asia and estimated the global rate of decline to be approximately 40% over the next few decades. ...
Article
Full-text available
Montane species on islands attract attention due to their small and isolated populations and limited dispersal potential, making them vulnerable to extinction. We investigated the diversity pattern of moth assemblages over the 12-years-period (2009–2020) at 11 study plots on an island mountain (Mount Hallasan, Jeju-do Island, South Korea) to assess the changes in the moth assemblages in terms of species composition, richness, and abundances. We expected to find a decline in the number of species at these sites, given the reported decline in similar taxa in other temperate regions, such as Europe and North America. In contrast, we found that the numbers of species and individuals of moth populations on the island mountain have not significantly changed, except at the high-elevation sites, where the number of species has increased. Our results also show that the numbers of species and individuals are closely related to energy availability, actual evapotranspiration. Moreover, we found that the species composition during the study period has not been greatly changed, except at the lowermost and uppermost elevations. The mechanism driving this high dissimilarity of moth assemblages differed: the low-elevation site experienced high temporal turnover, and the high elevation sites also experienced high temporal turnover and nestedness resulting from active species replacement due to a recent forest fire and vegetation changes and the geographic and ecological constraints of the high elevations. To date, the moth species diversity of the temperate forests of the island mountain is not showing a drastic change. However, we observed that the moth assemblages had changed the number of species and individuals at low and high elevations. Given the biological and ecological limitations of moths (ectothermic organisms with limited habitat range) and considering the results of our study, we infer that climate change has impacted the diversity and species composition of moths on the island mountain.
... Protected areas play a major role in conserving biodiversity worldwide 17,18,19 , especially for terrestrial biodiversity. In Bangladesh, they are especially important because they abate key anthropogenic stressors that impact native species, such as forest loss, conversion of natural forests to plantations, and habitat fragmentation 8, 20,21,22,23,24,25 . Only 4.6% of land (including inland waters), and 5.4% of marine areas in Bangladesh are protected, and less than 1% of protected areas have been subject to management evaluations 26, 27 . ...
Preprint
Full-text available
Human-induced threats are severely impacting biodiversity globally. Although protected areas play an essential role in safeguarding biodiversity from anthropogenic threats, the performance of such areas in tropical countries remains poorly understood. Here we examined the capacity of protected areas in Bangladesh to represent biodiversity, and identified priority areas to address conservation shortfalls. To achieve this, we used citizen science data to model the suitable habitats of 1,097 vertebrate and invertebrate species. Our results indicate that existing protected areas in Bangladesh are insufficient to conserve the country’s remaining biodiversity. Although protected areas cover 4.6% of Bangladesh, we found that only 6 of 1,097 species (0.005%) are adequately represented, and 22 species are entirely absent from the existing protected area system. To address these shortfalls, our spatial prioritization approach identified priority areas that span 32% of Bangladesh. The priority areas are mostly distributed across the northeast and southeast regions of Bangladesh. The priority areas with the greatest irreplaceability (top 10%) tended to be located in forests and, to a lesser extent, agricultural landscapes. Our findings serve to inform conservation policies for the Bangladesh government and, more generally, the implementation of the Post-2020 Biodiversity Framework.
... Over the past few centuries, rapidly increasing anthropogenic impacts such as habitat degradation and fragmentation, overexploitation, and invasive species have driven widespread changes across many of the earth's terrestrial habitats (Dirzo et al. 2014;Steffen et al. 2015). This transformation continues, as currently 95% of terrestrial ecoregions are experiencing increasing human pressures in recent years (Theobald et al. 2020). ...