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The plastic number and its generalised polynomial
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Abstract

We study the zeroes of the polynomial Xn−∑n−2
j=0 X

j and prove that its unique

positive root converges to the golden ratio φ =
1+

√
5

2 .
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1 Introduction

The recurrence Fn = Fn−1 + Fn−2, with initial values F0 = 0 and F1 = 1 yields the
celebrated Fibonacci numbers. It is well known that

Fn =
φn − (1− φ)n√

5

where φ = 1+
√
5

2
is the positive root of the characteristic polynomial X2−X−1, known

as golden ratio.
One can readily generalise the recurrence and define the k ≥ 2 order Fibonacci

sequence Fn = Fn−1 + . . . + Fn−k, with initial conditions F0 = . . . = Fk−2 = 0 and
Fk−1 = 1. The characteristic polynomial of this recurrence is Xk−Xk−1− . . .−X−1.
Its zeroes are much studied in literature: we refer to [3], [4], [5], [8] and [9], where it
is proved that the unique positive root tends to 2, as k → ∞. Series representations
for this root are derived in [1] by Lagrange inversion theorem.

In this note, we turn our attention to the positive zero of the polynomial X3−X−1,
known as plastic number, which will throughout be denoted by ρ and is equal to
3

√

1 +
3

√

1 + 3
√
1 . . . [6]. The plastic number was introduced by van der Laan [2]. The

recurrence relation is an = an−2 + an−3, with initial conditions a0 = a1 = a2 =
1 and defines the integer sequence, known as Padovan sequence [7]. Although the
bibliography regarding the analysis of Fibonacci numbers is quite extensive, it seems
not to be this case regarding the plastic number. In the next section, we will examine
a generalisation of the Padovan sequence and its associated characteristic polynomial.
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2 The Generalised sequence

Consider the recurrence

an =

k
∑

l=2

an−l

for k ≥ 3 and initial conditions a0 = . . . = ak−1 = 1. For k = 3, we obtain as a special
case the Padovan sequence. A lemma follows regarding the roots of its characteristic
polynomial.

Lemma 2.1. The polynomial Fk(X) = Xk −Xk−2 − . . .−X − 1 has k simple roots.

Its real roots are the positive λk; λk and −1 when k is even, along with the 2⌊k−1
2
⌋

complex roots µ1, . . . , µ⌊k−1

2
⌋ with their conjugates µ1, . . . , µ⌊k−1

2
⌋.

Proof. It can be easily seen that neither 0 nor 1 are roots of Fk(X). Following [4] and
[5], it is convenient to work with the polynomial

(X − 1)Fk(X) = Xk+1 −Xk −Xk−1 + 1. (1)

Differentiating Eq. (1), we obtain

((X − 1)Fk(X))′ = (k + 1)Xk − kXk−1 − (k − 1)Xk−2. (2)

Eq. (2) is 0, at X = 0 or at the roots of the quadratic polynomial:

(k + 1)X2 − kX − (k − 1). (3)

Its discriminant can be easily computed to ∆ = 5k2 − 4 > 0, for all k ≥ 3 and the two
real roots of polynomial of Eq. (3) are

β1,2(k) =
k ±

√
5k2 − 4

2(k + 1)
. (4)

For any root r of (X − 1)Fk(X), holds that

rk+1 − rk = rk−1 − 1,

which by the binomial theorem is not valid for r = β1,2(k). Therefore the polynomial
(X − 1)Fk(X) has (k + 1) simple roots.

We identify the real roots by elementary means. Note that Fk(1) = 2− k < 0 and
Fk(φ) = φ and applying Descartes’ rule of signs to Eq. (1), there is a unique positive
root λk in (1, φ) and for k even, the unique negative root of the polynomial is −1.

Further, the polynomial of Eq. (3) is positive and increasing for X > k+
√
5k2−4

2(k+1)
and

(X − 1)Fk(X) is positive and increasing for X > λk and negative for 1 < X < λk.

A direct consequence of Lemma 2.1 is

Corollary 2.2. The polynomial Fk(X) is irreducible on the field of rational numbers

Q if and only if k is odd.
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Further, it is easy to prove that all complex zeroes of the polynomial are inside the
unit circle. The next Lemma is from Miles [4] and Miller [5].

Lemma 2.3 (Miles [4], Miller [5]). For all the complex zeroes µ of the polynomial

Fk(X), it holds that |µ| < 1.

Proof. Assume that there exists a complex µ (and hence µ), with 1 < |µ| < λk. We
have that (µ− 1)Fk(µ) = 0 and

|µk+1| = |µk + µk−1 − 1|. (5)

Applying the triangle inequality to Eq. (5), we deduce that

(|µ| − 1)Fk(|µ|) > 0,

which contradicts Lemma 2.1. Assuming now that |µ| > λk, we have

|µk| =
∣

∣

∣

∣

∣

k−2
∑

j=0

µj

∣

∣

∣

∣

∣

≤
k−2
∑

j=0

|µj|,

which is equivalent to Fk(|µ|) ≤ 0 and again we arrive in contradiction. Finally, by
the same reasoning it can be easily proved that there is no complex zero µ, with either
|µ| = λk or |µ| = 1.

Lemma 2.3 implies that the solution of the generalised recurrence can be approxi-
mated by

an ≈ Cλn
k , (6)

with negligible error term. In Eq. (6), C is a constant to be determined by the solution
of a linear system of the initial conditions.

We now consider more carefully Eq. (4)

β1,2(k) =
k ±

√
5k2 − 4

2(k + 1)
.

Observe that β1(k) =
k+

√
5k2−4

2(k+1)
is increasing and bounded sequence. Furthermore,

lim
k→∞

k +
√
5k2 − 4

2(k + 1)
=

1

2
+

√

5

4
= φ. (7)

Also, β2(k) =
k−

√
5k2−4

2(k+1)
is decreasing and bounded and

lim
k→∞

k −
√
5k2 − 4

2(k + 1)
=

1

2
−

√

5

4
= 1− φ. (8)

From Eq. (7) and (8), we deduce that two of the critical points of Eq. (1), (recall
that these are 0 with multiplicity (k−2), β1(k) and β2(k)), converge to φ and 1−φ. An
elementary calculation can show that β1(k) are points of local minima of the function
(X−1)Fk(X) to the interval (1, λk) and β1(k) < λk < φ for all k ≥ 3, so limk→∞ λk = φ

and more precisely λk ∈ [ρ, φ).
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