The plastic number and its generalised polynomial

Vasileios Iliopoulos ${ }^{\ddagger}$

July 9, 2014

Abstract

We study the zeroes of the polynomial $X^{n}-\sum_{j=0}^{n-2} X^{j}$ and prove that its unique positive root converges to the golden ratio $\phi=\frac{1+\sqrt{5}}{2}$.

Keywords: Fibonacci, golden ratio, plastic number.
AMS Subject Classification 2010: 11B39, 11B83.

1 Introduction

The recurrence $F_{n}=F_{n-1}+F_{n-2}$, with initial values $F_{0}=0$ and $F_{1}=1$ yields the celebrated Fibonacci numbers. It is well known that

$$
F_{n}=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}}
$$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the positive root of the characteristic polynomial $X^{2}-X-1$, known as golden ratio.

One can readily generalise the recurrence and define the $k \geq 2$ order Fibonacci sequence $F_{n}=F_{n-1}+\ldots+F_{n-k}$, with initial conditions $F_{0}=\ldots=F_{k-2}=0$ and $F_{k-1}=1$. The characteristic polynomial of this recurrence is $X^{k}-X^{k-1}-\ldots-X-1$. Its zeroes are much studied in literature: we refer to [3], [4], [5], [8] and [9], where it is proved that the unique positive root tends to 2 , as $k \rightarrow \infty$. Series representations for this root are derived in [1] by Lagrange inversion theorem.

In this note, we turn our attention to the positive zero of the polynomial $X^{3}-X-1$, known as plastic number, which will throughout be denoted by ρ and is equal to $\sqrt[3]{1+\sqrt[3]{1+\sqrt[3]{1 \ldots}}}[6]$. The plastic number was introduced by van der Laan [2]. The recurrence relation is $a_{n}=a_{n-2}+a_{n-3}$, with initial conditions $a_{0}=a_{1}=a_{2}=$ 1 and defines the integer sequence, known as Padovan sequence [7]. Although the bibliography regarding the analysis of Fibonacci numbers is quite extensive, it seems not to be this case regarding the plastic number. In the next section, we will examine a generalisation of the Padovan sequence and its associated characteristic polynomial.

[^0]
2 The Generalised sequence

Consider the recurrence

$$
a_{n}=\sum_{l=2}^{k} a_{n-l}
$$

for $k \geq 3$ and initial conditions $a_{0}=\ldots=a_{k-1}=1$. For $k=3$, we obtain as a special case the Padovan sequence. A lemma follows regarding the roots of its characteristic polynomial.

Lemma 2.1. The polynomial $\mathcal{F}_{k}(X)=X^{k}-X^{k-2}-\ldots-X-1$ has k simple roots. Its real roots are the positive $\lambda_{k} ; \lambda_{k}$ and -1 when k is even, along with the $2\left\lfloor\frac{k-1}{2}\right\rfloor$ complex roots $\mu_{1}, \ldots, \mu_{\left\lfloor\frac{k-1}{2}\right\rfloor}$ with their conjugates $\bar{\mu}_{1}, \ldots, \bar{\mu}_{\left\lfloor\frac{k-1}{2}\right\rfloor}$.
Proof. It can be easily seen that neither 0 nor 1 are roots of $\mathcal{F}_{k}(X)$. Following [4] and [5], it is convenient to work with the polynomial

$$
\begin{equation*}
(X-1) \mathcal{F}_{k}(X)=X^{k+1}-X^{k}-X^{k-1}+1 \tag{1}
\end{equation*}
$$

Differentiating Eq. (1), we obtain

$$
\begin{equation*}
\left((X-1) \mathcal{F}_{k}(X)\right)^{\prime}=(k+1) X^{k}-k X^{k-1}-(k-1) X^{k-2} . \tag{2}
\end{equation*}
$$

Eq. (2) is 0 , at $X=0$ or at the roots of the quadratic polynomial:

$$
\begin{equation*}
(k+1) X^{2}-k X-(k-1) . \tag{3}
\end{equation*}
$$

Its discriminant can be easily computed to $\Delta=5 k^{2}-4>0$, for all $k \geq 3$ and the two real roots of polynomial of Eq. (3) are

$$
\begin{equation*}
\beta_{1,2}(k)=\frac{k \pm \sqrt{5 k^{2}-4}}{2(k+1)} \tag{4}
\end{equation*}
$$

For any root r of $(X-1) \mathcal{F}_{k}(X)$, holds that

$$
r^{k+1}-r^{k}=r^{k-1}-1,
$$

which by the binomial theorem is not valid for $r=\beta_{1,2}(k)$. Therefore the polynomial $(X-1) \mathcal{F}_{k}(X)$ has $(k+1)$ simple roots.

We identify the real roots by elementary means. Note that $\mathcal{F}_{k}(1)=2-k<0$ and $\mathcal{F}_{k}(\phi)=\phi$ and applying Descartes' rule of signs to Eq. (1), there is a unique positive root λ_{k} in $(1, \phi)$ and for k even, the unique negative root of the polynomial is -1 . Further, the polynomial of Eq. (3) is positive and increasing for $X>\frac{k+\sqrt{5 k^{2}-4}}{2(k+1)}$ and $(X-1) \mathcal{F}_{k}(X)$ is positive and increasing for $X>\lambda_{k}$ and negative for $1<X<\lambda_{k}$.

A direct consequence of Lemma 2.1 is
Corollary 2.2. The polynomial $\mathcal{F}_{k}(X)$ is irreducible on the field of rational numbers \mathbb{Q} if and only if k is odd.

Further, it is easy to prove that all complex zeroes of the polynomial are inside the unit circle. The next Lemma is from Miles [4] and Miller [5].
Lemma 2.3 (Miles [4], Miller [5]). For all the complex zeroes μ of the polynomial $\mathcal{F}_{k}(X)$, it holds that $|\mu|<1$.
Proof. Assume that there exists a complex μ (and hence $\bar{\mu}$), with $1<|\mu|<\lambda_{k}$. We have that $(\mu-1) \mathcal{F}_{k}(\mu)=0$ and

$$
\begin{equation*}
\left|\mu^{k+1}\right|=\left|\mu^{k}+\mu^{k-1}-1\right| \tag{5}
\end{equation*}
$$

Applying the triangle inequality to Eq. (5), we deduce that

$$
(|\mu|-1) \mathcal{F}_{k}(|\mu|)>0,
$$

which contradicts Lemma 2.1. Assuming now that $|\mu|>\lambda_{k}$, we have

$$
\left|\mu^{k}\right|=\left|\sum_{j=0}^{k-2} \mu^{j}\right| \leq \sum_{j=0}^{k-2}\left|\mu^{j}\right|,
$$

which is equivalent to $\mathcal{F}_{k}(|\mu|) \leq 0$ and again we arrive in contradiction. Finally, by the same reasoning it can be easily proved that there is no complex zero μ, with either $|\mu|=\lambda_{k}$ or $|\mu|=1$.

Lemma 2.3 implies that the solution of the generalised recurrence can be approximated by

$$
\begin{equation*}
a_{n} \approx C \lambda_{k}^{n}, \tag{6}
\end{equation*}
$$

with negligible error term. In Eq. (6), C is a constant to be determined by the solution of a linear system of the initial conditions.

We now consider more carefully Eq. (4)

$$
\beta_{1,2}(k)=\frac{k \pm \sqrt{5 k^{2}-4}}{2(k+1)}
$$

Observe that $\beta_{1}(k)=\frac{k+\sqrt{5 k^{2}-4}}{2(k+1)}$ is increasing and bounded sequence. Furthermore,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{k+\sqrt{5 k^{2}-4}}{2(k+1)}=\frac{1}{2}+\sqrt{\frac{5}{4}}=\phi . \tag{7}
\end{equation*}
$$

Also, $\beta_{2}(k)=\frac{k-\sqrt{5 k^{2}-4}}{2(k+1)}$ is decreasing and bounded and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{k-\sqrt{5 k^{2}-4}}{2(k+1)}=\frac{1}{2}-\sqrt{\frac{5}{4}}=1-\phi \tag{8}
\end{equation*}
$$

From Eq. (7) and (8), we deduce that two of the critical points of Eq. (1), (recall that these are 0 with multiplicity $(k-2), \beta_{1}(k)$ and $\left.\beta_{2}(k)\right)$, converge to ϕ and $1-\phi$. An elementary calculation can show that $\beta_{1}(k)$ are points of local minima of the function $(X-1) \mathcal{F}_{k}(X)$ to the interval $\left(1, \lambda_{k}\right)$ and $\beta_{1}(k)<\lambda_{k}<\phi$ for all $k \geq 3$, so $\lim _{k \rightarrow \infty} \lambda_{k}=\phi$ and more precisely $\lambda_{k} \in[\rho, \phi)$.

References

[1] K. Hare, H. Prodinger, J. Shallit (2014)"Three Series for the Generalized Golden Mean". http://arxiv.org/abs/1401.6200
[2] D. H. van der Laan (1960) "Le Nombre Plastique: Quinze Leçons sur l'Ordonnance architectonique". Leiden: Brill.
[3] P. A. Martin (2004) "The Galois group of $x^{n}-x^{n-1}-\ldots-x-1$ ". J. Pure Appl. Algebr. 190, 213-223.
[4] E. P. Miles Jr. (1960) "Generalized Fibonacci numbers and associated matrices". Amer. Math. Monthly 67, 745-752.
[5] M. D. Miller (1971) "On generalized Fibonacci numbers". Amer. Math. Monthly 78, 1108-1109.
[6] T. Piezas III, F. van Lamoen and E. C. Weisstein "Plastic Constant", MathWorld. http://mathworld.wolfram.com/PlasticConstant.html.
[7] I. Stewart (1996) "Tales of a Neglected Number". Sci. Amer. 274, 102-103.
[8] D. A. Wolfram (1998) "Solving generalized Fibonacci recurrences". Fibonacci Quart. 36, 129-145.
[9] X. Zhu and G. Grossman (2009) "Limits of zeros of polynomial sequences". J. Comput. Anal. Appl. 11, 140-158.

[^0]: ${ }^{\ddagger}$ E-mail: iliopou@gmail.com

