Recent research has revealed that hydrolyzed collagen peptides have beneficial effects in various diseases such as osteoarthritis and human rheumatoid arthritis and also play a protective role in skin by improving the activity of antioxidants. In this study, we investigated the effects of a novel mixture (AP-CPM01) containing collagen peptides and elastin peptides on photoaged hairless mice skin both in vivo and in vitro. To evaluate the effects of AP-CPM01 on UVBinduced skin wrinkle formation in vivo, the hairless mice were exposed to UVB irradiation and orally administered the AP-CPM01 at 333 mg/kg per day for 10 weeks. The effects on skin appearance and epidermal thickness were measured using bioengineering and histochemical methods. In addition, the influence of AP-CPM01 on collagen metabolism in human skin fibroblasts was also investigated. The skin of mice in the AP-CPM01 treated group had better appearance and less wrinkling than that of mice in the control group. In the human fibroblast cells, the amount of de novo procollagen synthesis was increased after AP-CPM01 treatment, reflecting that AP-CPM01 can induce de novo procollagen synthesis and reduce UVB-induced skin wrinkle formation. These results suggest that AP-CPM01 is a potent candidate for antiphotoaging functions.