ArticlePDF Available

PERSPECTIVA HISTÓRICA SOBRE LA DISTRIBUCIÓN DE ANDIPERLA WILLINKI “DRAGÓN DE LA PATAGONIA” (PLECOPTERA: GRIPOPTERYGIDAE)

Authors:

Abstract and Figures

The geographical distribution of Andiperla willinkiAubert, 1956, is updated based on a literature review and identification of specimens from new localities that extend the distribution range of the species. The implications of the recent glacial history on the species distribution are discussed.
Content may be subject to copyright.
Rev. Chilena Ent.
2012, 37: 87-93
PERSPECTIVA HISTÓRICA SOBRE LA DISTRIBUCIÓN DE
ANDIPERLA WILLINKI “DRAGÓN DE LA PATAGONIA”
(PLECOPTERA: GRIPOPTERYGIDAE)
HISTORICAL PERSPECTIVE ON THE DISTRIBUTION OF
ANDIPERLA WILLINKI “PATAGONIAN DRAGON”
(PLECOPTERA: GRIPOPTERYGIDAE)
Alejandro Vera1*, Alvaro Zuñiga-Reinoso2 y Christian Muñoz-Escobar3
RESUMEN
Se realiza una actualización de la distribución geográca de Andiperla willinki Aubert, 1956,
sobre la base de una revisión bibliográca y la identicación de especímenes provenientes
de nuevas localidades que amplian el rango de distribución de la especie. Son discutidas las
implicancias de la historia glacial reciente sobre la distribución de la especie.
Palabras clave: Ampliación de rango, fragmentación, glaciaciones pleistocenicas, nuevas
localidades, insecto extremólo.
ABSTRACT
The geographical distribution of Andiperla willinki Aubert, 1956, is updated based on a
literature review and identication of specimens from new localities that extend the
distribution range of the species. The implications of the recent glacial history on the species
distribution are discussed.
Key words: Extension of range, fragmentation, new records, pleistocene glaciations, insect
extremophile.
1 Departamento de Biología, Facultad de Ciencias Básicas,
Universidad Metropolitana de Ciencias de la Educación,
Av. José Pedro Alessandri 774, Ñuñoa, Santiago, Chile.
2 Programa de Doctorado en Ecología y Biología
Evolutiva, Departamento de Ciencias Ecológicas,
Facultad de Ciencias, Universidad de Chile. 3 Programa de
Doctorado en Sistemática y Biodiversidad. Departamento
de Zoología, Facultad de Ciencias Naturales y
Oceanográcas, Universidad de Concepción. *Autor
correspondiente: alveras2@gmail.com
Las especies extremólas, presentan adap-
taciones morfológicas, ecológicas y/o sioló-
gicas que les permiten sobrevivir y desarro-
llarse en condiciones ambientales extremas,
ya sean físicas (e.g., temperatura, radiación,
presión hidrostática) o geoquímicas (e.g., pH,
salinidad, desecación), que son particularmen-
te hostiles a la especie humana (Rothschild y
Mancinelli, 2001; Irwin y Baird, 2004). Den-
tro de las especies extremólas, aquellas que
presentan adaptaciones a ambientes de frío ex-
tremo, son denominadas psicrólas, siendo és-
tas habitualmente formas de vida microbianas
(Oarga, 2009). No obstante, unos pocos orga-
nismos pluricelulares también presentan esta
característica (Rothschild y Mancinelli, 2001).
Al respecto, se han descrito algunos insectos
que pueden desarrollarse a bajas temperaturas
e incluso estar asociados a matrices de hielo
donde completan todos los estados de su ciclo
vital (Kohshima et al., 2002), un ejemplo es
Andiperla willinki Aubert, 1956 (Fig. 1), un
Nota Cientíca
88 Rev. Chilena de Ent. 37, 2012
plecóptero endémico de los campos de hielo
australes de Argentina y Chile (Illies, 1963).
En general, los Plecoptera son insectos
relacionados a ambientes dulceacuícolas, con
variados taxones oligotérmicos (Zwick 1973,
2000). Muchas de estas especies se desarro-
llan en aguas de deshielo, pero A. willinki es la
única especie descrita que desarrolla su ciclo
de vida en sistemas dulceacuícolas insertos
en matrices de hielo glaciar (Figs. 2a, b), por
lo que se clasica como un insecto psicrólo
obligado, siendo su distribución tan fragmen-
tada como lo esté su hábitat (Lencioni, 2004).
Observaciones en terreno nos indican que los
imagos caminan activamente sobre y en pe-
queños canales dentro del hielo, mientras que
las ninfas permanecen sumergidas en el agua
de manantiales o posones, saliendo a la super-
cie del hielo en horarios nocturnos (Kohshi-
ma et al., 2002). En general, preeren sectores
planos, en la zona de ablación de los glacia-
res, donde la red hidrológica es más estable
(Kohshima, 1985). Posiblemente ambos esta-
dos se alimentan de otras especies psicrólas,
como microalgas y colémbolos (Takeuchi y
Kohshima, 2004; Kohshima et al., 2002), las
que además sostienen la trama tróca de las
comunidades glaciares (Takeuchi et al., 2001).
Por otra parte, no existen antecedentes sobre
su siología, pero el hecho de mantener una
actividad metabólica regular en matrices de
hielo, supone la capacidad de sintetizar enzi-
mas adaptadas al frío (Siddiqui y Cavicchioli,
2006). Esto último, convierte a A. willinki en
un recurso potencial para obtener productos
biotecnológicos, especialmente aquellos aso-
ciados a procesos enzimáticos efectuados en
ambientes congelados (Oarga, 2009).
La precisión del rango de distribución para
A. willinki ha sido confuso, ya que desde su
descripción por Aubert en 1956 para el glaciar
Upsala (Argentina, Santa Cruz), no se incor-
poraron nuevos antecedentes distribucionales
en más de 20 años, esto a pesar de las revisio-
nes de Illies (1963, 1964). No fue hasta que
Lanfranco (1982) la reporta para Campos de
Hielo Sur y entrega una serie de observacio-
nes y registros para la vertiente continental de
éste, precisamente en los glaciares Dickson y
Balmaceda. Por otra parte, Kohshima (1985)
registra la especie para Campos de Hielo Nor-
te, en los glaciares San Rafael, Soler y cerca
del cerro Largo. Cabe señalar que Kohshima
(1985) no identica sus especímenes como An-
diperla sino hasta la publicación de Kohshima
et al. 2002, donde además entrega un nuevo
registro, también para Campos de Hielo Sur
en el glaciar Tyndall. En cuanto a los registros
de Lanfranco (1982), tres de las localidades
que se citan corresponden a comunicaciones
orales de expediciones donde los especímenes
fueron observados, pero no recolectados. Lo
anterior, ha repercutido en que se disponga de
pocos ejemplares de esta especie y se asuma
que aquellos insectos observados en la matriz
de hielo y con rasgos morfológicos diagnosti-
cados en recientes contribuciones (McLellan
y Zwick, 2007; Stark et al., 2009), pertenez-
can a la especie A. willinki. Ahora bien, hasta
la fecha se ha reconocido a este taxón como
miembro de un género monotípico, condición
que podría evaluarse al contar con un mayor
número de especímenes que abarquen la dis-
tribución total de la especie en cuestión. Sin
desmedro de lo anterior, se le ha tratado como
un género monoespecíco en las revisiones y
catálogos posteriores. Finalmente, Vera y Ca-
mousseigth (2006), analizando la distribución
geográca de las especies de Plecoptera de Chi-
le, señalan a esta especie sólo para Campos de
Hielo Sur entre los 48° y 51° de latitud sur y en
Argentina para la provincia de Santa Cruz des-
de su localidad tipo. Pessacq (2009) señala para
Argentina esta misma localidad. Mientras que
Froehlich (2010) en su catálogo de Plecoptera
neotropicales, no aporta nuevos datos. Estos
tres estudios omiten los registros de Kohshima
(1985) y Kohshima et al. ( 2002).
En conclusión, esta especie ha sido citada
tanto para Campos de Hielo Norte como para
Campos de Hielo Sur. Sin embargo, la cona-
bilidad de los datos citados así como la omi-
sión de los estudios de Kohshima (1985) y
Kohshima et al. (2002) en las últimas revisio-
89
Vera et al.: Perspectiva histórica sobre la distribución de Andiperla willinki.
nes, confunde su rango de distribución. Más
aún, en la actualidad la especie se ha difundi-
do públicamente en la prensa y redes sociales
como el “Dragón de la Patagonia” y existen
varios sitios web de orden turístico que la ci-
tan en nuevas localidades, como por ejemplo
para el glaciar Perito Moreno en Argentina o
en el Glaciar Grey en Chile. Sin embargo, es-
tos registros al no estar publicados no se aso-
cian a ejemplares depositados en colecciones
cientícas, por lo que no serían formales y por
tanto no conables.
Esta revisión bibliográca junto con la
identicación de especímenes recientemente
recolectados, nos permite cumplir con el ob-
jetivo de entregar una actualización del rango
de distribución de A. willinki. Todo el material
citado en la literatura y revisado se entrega en
la Tabla 1, así como en la Fig. 3 se muestra un
mapa con las localidades de colecta y obser-
vación.
Los nuevos registros, amplían el rango
de distribución de la especie y la ubica sobre
los tres campos de hielo del extremo austral:
Norte, Sur y Cordillera de Darwin (Tierra del
Fuego), tanto en la vertiente pacíca como con-
tinental de estas masas de hielo. Por otra parte,
se registra por primera vez a esta especie como
habitante de pequeños ventisqueros “descolga-
dos” de los Campos de Hielo (e.g., 3 Glaciar
Bernal). De los datos informales entregados
en la web y conversaciones con guardaparques
y guías turísticos, pensamos que es factible
Figura 1. Imago hembra de Andiperla willin-
ki proveniente del Glaciar Alemania en Tierra
del Fuego (Chile).
Figura 2. Ninfas de Andiperla willinki en el Glaciar Bernal (Chile). A) in situ, B) recolectadas.
90 Rev. Chilena de Ent. 37, 2012
Glaciar Latitud S. Longitud O. Localidad Individuos Fecha Referencia
1Glaciar Upsala
1000 msnm 49°57° 73°16°
Santa Cruz,
Lago Argentino,
ARGENTINA
5♀, 2♂, 1N 18-III-1953
Leg. A. Willink.
Inst. Miguel Lillo,
Tucumán, Argentina
(Holotipo en
Lausanne) (Aubert,
1956, material tipo)
2Fiordo Calén 48°24° 73°33° Aysén, Capitán Prat,
CHILE ? 1960
Col. J. Ewer. Ex.
Chileno-Británica al
Hielo Patagónico Sur
(Lanfranco, 1982)
3Glaciar Dickson
1300 msnm 50°50° 73°20°
Magallanes, Última
Esperanza,
Cordón Barros
Arana, CHILE
? 30-XI-1982
Col. Ex.
Francesa Andes
de Patagonie
(Lanfranco, 1982)
4
Glaciar
Balmaceda
1500 msnm
51°20° 73°25° Magallanes, Última
Esperanza, CHILE - 1983
Observado por
R. Hemon. Ex.
Francesa Andes
de Patagonie
(Lanfranco, 1982)
5Portezuelo del
cordón Moreno 49°30° 73°30°
Magallanes, Última
Esperanza,
cerca del glaciar
Viedma, CHILE
-XII-
1983-I-1983
Observado por Ex.
Francesa Gauloises
3 Patagonie
(Lanfranco, 1982)
6Glaciar O’Higgins 48°54° 73°09° Aysén, Capitán Prat,
CHILE ? ? (Lanfranco, 1982)
7
Glaciar San
Rafael
600-1100 msnm
46°40° 73°45° Aysén, Coyhaique,
CHILE Muchos? XI-
1983-I1984 (Khoshima, 1985)
8Glaciar Soler
350-700 msnm 46°56° 73°18° Aysén, Coyhaique,
CHILE Muchos? XI-
1983-I1984 (Khoshima, 1985)
9
Campos de Hielo,
Cerro Largo
1000-1200 msnm
47°02° 73°15° Aysén, Coyhaique,
CHILE Muchos? XI-
1983-I1984 (Khoshima, 1985)
10 Glaciar Tyndall 51°07’23.81“ 73°18’16.52“
Magallanes, Última
Esperanza,
P.N. Torres del
Paine, CHILE
1♀, 2♂, 2N 17-I-2003 Col. A. Zuñiga.
MNHN
11 *Glaciar Bernal
42 msnm 51°52’00.8“ 73°19’17.3“
Magallanes, Última
Esperanza,
R.N. Alacalufes,
CHILE
22N 16-III-2011
Col. C. Muñoz-
Escobar. MNHN
y MZUC-UCCC
12 Glaciar Grey 50°58’55.93“ 73°11’41.90“
P.N. Torres del Paine,
Última Esperanza,
CHILE
1♂ I-2007 MNHN
13 *Glaciar
Alemania 54°50’47.52“ 69°18’09.61“
Tierra del Fuego,
cordillera de Darwin,
CHILE
2♀, 2♂, 1N I-2008 MNHN
14
*rumbo a meseta
Caupolicán
1219 msnm
49º20’35.3’’ 73º42’22.5’
Aysén, Capitán Prat,
cerca de península
Exmont, CHILE
1♀ 8-II-2011 Col. Victor
Ardiles. MNHN
Tabla 1. Registros de especímenes y localidades dadas para Andiperla willincki. *= nuevas
localidades, ?= no se indica en literatura, N= ninfa, MNHN= deposito en Museo Nacional de
Historia Natural, Santiago, Chile.
91
Vera et al.: Perspectiva histórica sobre la distribución de Andiperla willinki.
Figura 3. Mapa distribucional de Andiperla willinki. Los puntos rojos muestran los registros de
la especie, con triángulos se distinguen las localidades de los especímenes examinados en este
estudio.
92 Rev. Chilena de Ent. 37, 2012
la presencia de A. willinki en el Glaciar Grey,
mientras que la presencia de esta especie en
el glaciar Perito Moreno debe ser conrmada.
Sin embargo, dado a la cercanía con el glaciar
Dickson, pensamos que es probable su hallaz-
go en el glaciar argentino. En general la distri-
bución actual de la especie está acotada a los
márgenes de los campos de hielo, asociado a
lenguas glaciares y ventisqueros marginales,
por lo que el desarrollo de la especie al interior
de los campos es aún una extrapolación.
Para explicar la actual distribución de A. wi-
llinki desde una perspectiva histórica, debe con-
siderarse que su hábitat ha estado sometido a
una serie de expansiones y retrocesos glaciales.
Al menos durante el Pleistoceno, cuatro pulsos
glaciales habrían dado continuidad a los cam-
pos de hielo australes, mismos que durante los
períodos interglaciales se habrían fragmentado
(Santibáñez et al., 2008). Durante el último
máximo glaciar, los hielos cubrieron de forma
continua la Patagonia desde Tierra del Fue-
go hasta el noreste y sur de la Isla de Chiloé,
formando un amplio campo de hielo (Heusser,
2003). En Patagonia, la desglaciación habría
sido un proceso rápido y continuo con un breve
período estacionario (Lamy et al., 2004). Las
implicancias microevolutivas no son fáciles de
predecir, sin embargo, a priori se plantean dos
predicciones que son dependientes de los pro-
cesos glaciales: 1) Por tratarse de una especie
asociada al hielo sería factible pensar que su
mayor expansión poblacional habría ocurrido
durante los períodos glaciales del pleistoceno y
que durante los períodos interglaciales, su dis-
tribución se fragmentaría, iniciado procesos de
cuellos de botella y extinción local. Sin embar-
go, 2) en el caso que la especie este asociada
sólo a los márgenes de los campos de hielo, lo
más relevante para ella podría ser el aumento
o disminución del perímetro de los campos, lo
que estaría conduciendo a una máxima expan-
sión poblacional durante la fragmentación de
los campos de hielo, seguido de una fragmenta-
ción poblacional, debido a la interrupción de la
dispersión y el ujo génico.
Finalmente hemos presentado un avance
en el conocimiento distribucional de una es-
pecie emblemática para la región austral de
Argentina y Chile, la que se encuentra vir-
tualmente desconocida por la población y por
gran parte de la comunidad cientíca. Se hace
necesario poner en valor los estudios sistema-
tizados en las regiones de hielos patagónicos
que nos pueden conducir al entendimiento de
la evolución de tan particular biota única en
el mundo. La información que el estudio de
esta biota nos proporcionaría, puede estar en
peligro si no se consideran medidas de protec-
ción que faciliten la conservación y estudio de
estos hábitat, cuya fragilidad frente a las ac-
ciones antropogénicas ha sido demostrada.
AGRADECIMIENTOS
Al señor Jovito González, administrador
de la Reserva Nacional Alacalufes, por faci-
litar las actividades de terreno y muestreo en
el Canal de las Montañas. También agradece-
mos a Francisco Garate, por su colaboración
en los análisis de datos geoeferenciados; a
los evaluadores anónimos de este artículo,
cuyas observaciones han contribuido a me-
jorarlo. Álvaro Zúñiga-Reinoso agradece a
la beca CONICYT Nº 21110367 para estudio
de doctorado nacional. Finalmente, Christian
Muñoz-Escobar agradece el nanciamiento de
la Universidad de Concepción en el marco del
Programa de Doctorado en Sistemática y Bio-
diversidad.
LITERATURA CITADA
Aubert, J. 1956. Andiperla willinki n. sp.,
plécoptère nouveau des Andes de Patagonie.
Mitteilungen der Schweizerischen Entomo-
logischen Gesellschaft, 29: 229-232.
Froehlich, c. G. 2010. Cataloge of Neotropi-
cal Plecoptera. Illiesia, 6(12): 118-205.
heusser, c. J. 2003. Ice age in the Southern
Andes: A chronicle of paleoecological
events. Elsevier B.V., Amsterdam.
illies, J. 1963. Revision der südamerikanis-
chen Gripopterygidae (Plecoptera). Mit-
93
Vera et al.: Perspectiva histórica sobre la distribución de Andiperla willinki.
teilungen der Schweizerischen Entomolo-
gischen Gesellschaft, 36: 145-248.
illies, J. 1964. Die Plecopteren-Unterfamilie
Andiperlinae. (Auösung einer unnatürli-
chen Negativgruppe nach Remane). Zoo-
logischer Anzeiger, 172 (1): 37-48.
irwin, J. A y A. w. bAird, 2004. Extremo-
philes and their application to veterinary
medicine. Irish Veterinary Journal, 57(6):
348-354.
KohshimA, s. 1985. Patagonian glaciers as insect
habitats. En: Nakajima, K (ed.) Glaciological
studies in Patagonia northern Iceeld 1982-
1984. Data center for glacier research, Japa-
nese Society of Snow and Ice, Kyoto. 94-99.
KohshimA, s., y. yoshimurA y N.tAKeuchi,
2002. Glacier ecosystem and biological
ice-core analysis. En: Gino Casassa et al.
(eds.), The Patagonian Iceelds: A unique
natural laboratory for environmental and
climate change studies. Kluwer Academic/
Plenum Publishers.
lAmy, F., J. KAiser, u. ninnemAnn, d. he-
bbeln, w.A. helGe y J. stoner, 2004. An-
tarctic timing of surface water changes off
Chile and Patagonian ice sheet response.
Science, 304: 1959-1962.
lAnFrAnco, l. d. 1982. Presencia de Andiper-
la willinki Aubert, en Chile (Plecoptera,
Gripopterygidae). Anales del Instituto de
la Patagonia, 13: 207-209.
lencioni, V. 2004. Survival strategies of fres-
hwater insects in cold environments. J.
Limnol., 63(Suppl. 1): 45-5.
mclellAn, i. d. y P. ZwicK, 2007. New species
of and keys to South American Gripoptery-
gidae (Plecoptera). Illiesia, 3(4): 20-42.
oArGA, A. 2009. Life in extreme environ-
ments. Revista de Biología e Ciencias da
Terra, 9(1): 1-10.
PessAcq, P. 2009. Estado de conocimiento del
orden Plecoptera en la Patagonia. Revista
Sociedad Entomológica Argentina, 68 (1-
2): 169-175.
rothschild, l. J. y r. l. mAncinelli, 2001.
Life in extreme environments. Nature, 409
(22): 1092-1101.
sAntibáñeZ, F., P. roA y P. sAntibáñeZ, 2008.
El medio físico. En: CONAMA (eds), Bio-
diversidad de Chile, Patrimonios y Desa-
fíos, Ocho libros Editores (Stgo. de Chile),
640 pp.
siddiqui, K. s. y r. cAVicchioli, 2006. Cold-
adapted enzymes. Annual Review of Bio-
chemistry, 75: 403-433.
stArK, b. P., c. Froehlich, y m.c. ZúñiGA,
2009. South American stoneies (Plecop-
tera). Volume 5. Aquatic Biodiversity in
Latin America. Pensoft, Soa-Moscow.
154 pp.
tAKeuchi, n. y s. KoshimA, 2004. A snow al-
gal community on a Patagonian glacier,
Tyndall glacier in the Southern Patagonia
Iceeld. Arctic, Antarctic, and Alpine Re-
search, 36(1): 91-98.
tAKeuchi, n., s. KohshimA, t. shirAiwA, y K.
KubotA, 2001. Characteristics of cryoconi-
te (surface dust on glaciers) and surface al-
bedo of a Patagonian glacier, Tyndall Gla-
cier, Southern Patagonia Iceeld. Bulletin
of Glaciological Research, 18: 65-69.
VerA, A. y A. cAmousseiGth, 2006. Estado de
conocimiento de los plecópteros de Chile.
Gayana, 70: 57-64.
ZwicK, P. 1973. Insecta: Plecoptera Phylo-
genetisches System und Katalog Das Tie-
rreich 94:XXXII + 465.
ZwicK, P. 2000. Phylogenetic system and zoo-
geography of the Plecoptera. Annual Re-
view of Entomology, 45: 709-746.
(Recibido: 24 mayo 2012; Aceptado: 13 junio 2012).
94 Rev. Chilena de Ent. 37, 2012
... Microorganismos fotosintéticos, como algas de nieve y cianobacterias, crecen sobre la superficie glaciar sustentando a organismos heterótrofos como insectos (e.g. dragón de la Patagonia, Andiperla willinki), lombrices de hielo, bacterias y hongos, entre otros (Kohshima, 1985;Kohshima et al. 2007;Santibáñez et al. 2008Santibáñez et al. , 2011Takeuchi, 2011;Takeuchi & Kohshima, 2004;Vera et al. 2012). Si bien este campo no ha sido muy explorado en Tierra del Fuego, existe evidencia que los fuertes vientos imperantes en la zona generan un arrastre de partículas de polvo provenientes de diferentes partes del globo, que a su vez contienen bacterias, virus, hongos, semillas, pequeñas plantas e insectos, entre otros, creando diferentes y dinámicos ecosistemas sobre la nieve y el hielo (Miteva, 2008). ...
... Adicionalmente, también existe una dependencia estrecha entre la criósfera y el sistema marino. La producción biológica existente en los fiordos australes tiene una fuerte dependencia de los patrones estacionales del aporte de agua dulce (por precipitación, aporte glaciar y nival), cobertura de glaciares y régimen de luz (Vera et al. 2012). ...
Article
Full-text available
La Reserva de Biosfera Cabo de Hornos (RBCH) alberga una biodiversidad y tipos de ecosistemas únicos a nivel mundial. Éstos han sido mucho menos estudiados que sus homólogos, los ecosistemas subpolares del hemisferio norte. El objetivo de este trabajo es presentar por primera vez una detallada descripción de los marcados gradientes climáticos de la RBCH y examinar cómo éstos se interrelacionan con la distribución de ecosistemas y formaciones vegetacionales. Primero, se generó una caracterización de la distribución espacial de los ecosistemas terrestres definidos por sus especies vegetales dominantes o características físicas marcadas. En segundo lugar, se realizó una caracterización espacial de las principales variables climáticas fisicas (temperatura, precipitación, velocidad del viento y la cubierta de nieve) de la RBCH utilizando tanto productos satelitales (MOD10CM) como productos climáticos grillados (CR2MET y ERA5). Éstos fueron luego contrastados con registros empíricos de las estaciones meteorológicas que son administradas por la Armada de Chile y/o la Dirección General de Aguas (DGA). En tercer lugar, se caracterizaron los gradientes climáticos en base a un Análisis de Componentes Principales (PCA) con las variables climáticas más representativas aquí analizadas: velocidad del viento, temperatura de verano, elevación, cubierta de nieve y precipitación anual.
... In similar habitats on New Zealand's South Island, keen naturalists could spot a different midge, Zelandochlus latipalpis, (Odell, 1956) with flightless males but winged females. In the meltwater pools of South America's southern Andes, a lucky mountaineer might find a Patagonian dragon, Andiperla willinki, (Vera et al., 2012), a flightless stonefly (Insecta: Plecoptera: Gripopterygidae). At the apex of the most complex food-web of all our planet's glacier ecosystems, the Patagonian dragon feeds on other minuscule animals such as collembola, rotifers, and tardigrades. ...
... Studies (reviewed by Kaczmarek et al., 2016) of cryoconite holes report ammonia-oxidizing archaea, nitrogen-fixing bacteria, filamentous cyanobacteria (Oscillatoriaceae) which bind with mineral particles, ciliated protozoa, diatoms (Stanish et al., 2013), purple, red, and orange-colored green algae, as well as a variety of snow and ice fungi. Obligate-glacier dwelling animals include cryoconite copepods (Hexanauplia: Copepoda: Glaciella yalensis Kohshima, 1987;Kikuchi, 1994;Takeuchi et al., 2000) and flightless midges (Insecta: Diptera: Chironimidae: Diamesinae; Kohshima, 1984) on Himalayan glaciers; semi-flightless midges (Insecta: Diptera: Chironimidae: Podomoninae) on New Zealand glaciers (Odell, 1956;Dumbleton, 1973;Boothroyd and Cranston, 1999); two species of stoneflies (Insecta: Plecoptera: Gripopterygidae) in Patagonia (Kohshima, 1985;Vera et al., 2012;Murakami et al., 2018;Pessacq and Rivera-Pomar, 2019); springtails (Insecta: Collembola; Fjellberg, 2010) worldwide; glacier ice worms (Annelida: Oligochaeta: Enchytraeidae) in North America's Pacific northwest (Wright, 1887;Emery, 1898;Tynen, 1970;Goodman, 1971;Shain et al., 2001;Hartzell et al., 2005;Dial et al., 2012;Dial et al., 2016) and Tibet (Liang, 1979); nematodes in Antarctica (Mueller et al., 2001) and Europe (Azzoni et al., 2015); as well as nearly pan-glacial (Zawierucha et al., 2015) tardigrades (Desmet and Vadrompus, 1994;Zawierucha et al., 2016) and rotifers (Desmet and Vadrompus, 1994;Porazinska et al., 2004;Kaczmarek et al., 2014). Facultative-glacier dwelling organisms include moss and the animals associated with that habitat such as rotifers, tardigrades, mites, and collembola . ...
Chapter
If nutrients and a carbon source are available, life as we know it can actively reside nearly anywhere liquid water exists-even glacier ice and snow (Zawierucha et al., 2015). Just as with tropical rainforests, temperate grasslands, and polar tundra, the worldwide collection of glacial ecosystems residing on permanent freshwater ice can be considered as a biological biome (Anesio and Laybourn-Parry, 2012). In fact, all kingdoms of life (Ruggiero et al., 2015) have been found living on glacier surfaces, a land cover that extends over 1.6 × 107 km2 (Williams Jr. and Ferrigno, 2012), or 10% of the Earth's surface. The presence of these organisms living on glaciers leads to melting, and the melt-water they create is necessary for their existence, making the glacier biome important from a global warming perspective (Ganey et al., 2017). While all of the world's glaciers have much microbial life in common, especially single-celled algae, the taxonomic orders of glacier-dwelling macro-invertebrates differ across continents.
... La distribución actual de Andiperla (Fig. 26) se restringe a los márgenes de los campos de hielo asociados a lenguas glaciares (Vera et al. 2012). ...
Book
Full-text available
(ES) Los ecosistemas asociados a los glaciares poseen la característica de tener un origen relativamente reciente en la historia de la Tierra, dada la relación entre el proceso de deglaciación y la colononización de estyos ambientes por las diversas formas de vida. Por otra parte, podemos hablar de que existe una notoria fragilidad de estos ecosistemas relacionada con esta juventud del Sistema. Las diferentes formas de vida pioneras que dan paso al proceso de sucesión ecológica no son del todo conocidas. El glaciar Exploradores presenta condiciones excepcionales para adquirir un mayor conocimiento acerca de esta fragilidad. Aunque el enfoque de este trabajo es el dragon de la Patagonia (Andiperla) se necesita abordar, de una manera introductoria, temáticas como la glaciología, filogenia y la taxonomía para que el lector pueda interpreter de una major manera la información relacionada con esta especie emblemática. / (EN) The ecosystems associated with glaciers have the characteristic of having a relatively recent origin in the history of the Earth, given the relationship between the process of deglaciation and the colonization of these environments by various forms of life. On the other hand, we can speak of a notorious fragility of these ecosystems related to this youth of the System. The different pioneer life forms that give way to the process of ecological succession are not fully known. The Explorers glacier presents exceptional conditions to acquire more knowledge about this fragility.Although the focus of this work is the Patagonian dragon (Andiperla), it is necessary to address, in an introductory manner, topics such as glaciology, phylogeny and taxonomy so that the reader can better interpret the information related to this emblematic species.
... These have extremophile taxa that require singular environmental conditions. Arthropods, such as Andiperla willinki, which inhabits the Patagonian icefield (Plecoptera; see Vera et al. 2012), and Maindronia neotropicalis, which inhabits the Atacama Desert core (Zygentoma; see Zúñiga-Reinoso and Predel 2019), are extremophiles animals that can only survive with specific food nets and environmental conditions, normally with narrow distributions and are highly susceptible to climate change. Therefore, we encourage entomologists and conservation biologists to assess arthropods from other impacted ecosystems, such as intertidal rocky shores, dunes and beaches, Brazilian Serrado, Atlantic and Chaco forest, Paramo or other Andes highlands. ...
Article
Full-text available
Neotropical efforts for arthropod conservation are still insufficient. Some species from the Neotropical region have been assessed by the IUCN Red List criteria (IRL), while others have been assessed using local red lists (LRLs). Unfortunately, these two lists are completely unconnected, even when they use similar criteria to evaluate extinction risks. Therefore, an overview of arthropod conservation using the IRL and LRLs to determine general and common patterns for arthropods in the Neotropical region is still missing, and this was the main goal of our study. The LRLs provided significant information about the species under threat in the Neotropical region, particularly on endemic ones. Both the IRL and LRLs determined that habitat loss (agricultural use land than more 50%) is the most critical threat of arthropod diversity in this region, but other main threats were also found. The conservation efforts for arthropods in Neotropical countries have been developed heterogeneously. Special efforts are necessary to countries without red lists as large countries, islands, or island-like bioregions. So far, the most threatened arthropod diversity in the Neotropical region belongs to the Caribbean islands. Insect conservation is not just about red-listing. It is also crucial to conduct conservation action as habitat management and restoration, citizen science or specific policy to fight the illegal trade. The integration of LRLs with the IRL helped identify common threats to arthropod conservation and also facilitated the macroscopic evaluation of this topic. It is crucial to conserve Neotropical arthropods to protect animal biodiversity. Implications for insect conservation The homologation of the LRLs in the IUCN would increase the representation of endemic arthropods generating (1) an increase in funding for research and (2) for local conservation policies such as ecological restoration, and their use as bioindicators of environmental impact on investment projects in agriculture, mining, forestry, and urbanization.
... To our knowledge, the only aquatic insects found permanently colonizing the ice are non-biting midges of the genus Diamesa in temperate zones and the stonefly Andiperla willinki (family Gripopterygiidae) in South America [43]. Larvae of Diamesa steinboecki and Diamesa latitarsis were collected on one Alpine glacier (2625-2650 m a.s.l., Agola, Brenta Dolomites, Italy), surviving a summer temperature ranging for 0.07 to 0.19°C. ...
Chapter
Full-text available
At first glance, the ground surrounding the glacier front and the streams originated by melting glaciers seem to be too extreme to host life forms. They are instead ecosystems, colonized by bacteria, fungi, algae, mosses, plants and animals (called the "glacial biodiversity"). The best adapted animals to colonize glacier surface, the recently deglaciated terrains and glacial streams are insects, specifically the ground beetles (carabids) and the non-biting midges (chironomids). This chapter aims to overview the species colonizing these habitats, their adaptation strategies to face natural cold and anthropogenic heat and the extinction threats of glacial retreat and pollution by emerging contaminants. Notes on their role in the glacial-ecosystem functioning and related ecosystem services are also given.
... In addition to ice worms, other glacier-obligate macroinvertebrates that may subsidize higher trophic levels include another ice worm species, the Tibetan ice worm (Sinenchytraeus glacialis, Liang 1979); the "Patagonian Dragon" (Andiperla willinki; Fig. 1d), an~2.5-cm stonefly inhabiting Patagonian glaciers (Vera et al. 2012); and two chironomid midges that inhabit glaciers in the Himalayas (Diamesa kohshima, Kohshima 1984;Fig. 1e) and New Zealand (Zealandochlus latipalpis, Boothroyd and Cranston 1999). ...
Article
Glaciers around the world support diverse, thriving ecosystems (Rosvold 2016; Hotaling et al. 2017a). Though dominated by microbial life, glaciers also provide key habitat for larger macroinvertebrates (Hotaling et al. 2019) and vertebrates (e.g., Rosvold 2016). However, the ecology of larger organisms on glaciers, including trophic connections among them, remains largely unknown. This knowledge gap is particularly pressing in light of the rapid, ongoing glacier recession occurring in mountain ecosystems (Roe et al. 2017).
... This species is highly unique worldwide. It is a species native to Chile, found in the Aysén and Magallanes Regions and in Argentina (only one record) [40]. They are extremophilic and psychrophilic insects that live exclusively on ice in the northern, southern, and Darwin mountain ranges. ...
Chapter
Full-text available
This chapter reviews the current state of knowledge of invertebrates of rivers, lakes, and wetlands in western South America, from southern Peru to the Strait of Magellan in southern Chile. A characterization of the diverse groups of insects, mollusk crustaceans, and other smaller groups is presented, and a biogeographic analysis of them is made with emphasis on their main forcing factors, ecology, and threats in the Anthropocene. This fauna presents Gondwanic characteristics, with clear North-South latitudinal patterns, covering from the Desert of Atacama in the North, one of the most arid deserts of the world, to the rainy and cold regions of the southern end of South America. The central zone of this territory includes one of the global biodiversity "hot spots," which currently presents serious threats associated with changes in habitat, introduction of invasive species, climate change, and overexploitation of aquatic resources.
Article
The global cryosphere, Earth's frozen water, is in precipitous decline. The ongoing and predicted impacts of cryosphere loss are diverse, ranging from disappearance of entire biomes to crises of water availability. Covering approximately one-fifth of the planet, mass loss from the terrestrial cryosphere is driven primarily by a warming atmosphere but reductions in albedo (the proportion of reflected light) also contribute by increasing absorption of solar radiation. In addition to dust and other abiotic impurities, biological communities substantially reduce albedo worldwide. In this review, we provide a global synthesis of biological albedo reduction (BAR) in terrestrial snow and ice ecosystems. We first focus on known drivers—algal blooms and cryoconite (granular sediment on the ice that includes both mineral and biological material)—as they account for much of the biological albedo variability in snow and ice habitats. We then consider an array of potential drivers of BAR whose impacts may be overlooked, such as arthropod deposition, resident organisms (e.g., dark-bodied glacier ice worms), and larger vertebrates, including humans, that transiently visit the cryosphere. We consider both primary (e.g., BAR due to the presence of pigmented algal cells) and indirect (e.g., nutrient addition from arthropod deposition) effects, as well as interactions among biological groups (e.g., birds feeding on ice worms). Collectively, we highlight that in many cases, overlooked drivers and interactions among factors have considerable potential to alter BAR, perhaps rivaling the direct effects of algal blooms and cryoconite. We conclude by highlighting knowledge gaps for the field with an emphasis on the underrepresentation of genomic tools, understudied areas (particularly high-elevation glaciers at tropical latitudes), and a dearth of temporal sampling in current efforts. We detail a global framework for long-term BAR monitoring that, if implemented, would yield a tremendous amount of insight for BAR and would be particularly valuable in light of the rapid ecological and physical changes occurring in the contemporary cryosphere.
Book
Full-text available
Glaciers and Polar regions provide important clues to understanding the past and present status of the Earth system, as well as to predict future forms of our planet. In particular, Antarctica, composed of an ice-covered continent in its center and the surrounding Sothern Ocean, has been gradually investigated during the last half century by all kinds of scientific branches; bioscience, physical sciences, geoscience, oceanography, environmental studies, together with technological components. This book covers topics on the recent development of all kinds of scientific research on glaciers and Antarctica, in the context of currently on-going processes in the extreme environment in polar regions. https://www.intechopen.com/books/glaciers-and-the-polar-environment
Book
Full-text available
Inland waters, lakes, rivers, and their connected wetlands are the most important and the most vulnerable sources of freshwater on the planet. The ecology dependent on these systems includes a wide range of flora and fauna, as well as most human populations and civilization. The study of inland waters includes analyses of the biology, chemistry, physical dynamics, morphology, geology, and geography of inland aquatic systems. Inland water investigations may include examinations of lakes, rivers, ponds, streams, reservoirs, wetlands, and groundwater, as well as the ecological and anthropogenic factors that define and influence such systems. In particular, inland waters and wetlands are highly susceptible to chemical and biological pollutants from natural or human sources, changes in watershed dynamics due to the establishment of dams and reservoirs, and land use changes from agriculture and industry. This book provides a comprehensive review of issues important to the understanding of inland waters and discusses many worldwide inland water systems. The main topics of this text are water quality investigation, analyses of the ecology of inland water systems, remote sensing observation and numerical modelling methods, and biodiversity investigations. This book is organized into four main sections. The first section is entitled “Water Quality of Inland Waters”, which is concerned with factors that affect the status of freshwater system quality. Chapter 1 of the first section investigates the contamination by microplastics found in salt works used for table salt in the Portuguese coastal waters, which reveals that microplastic contamination can be a serious concern. Chapter 2 of the first section adopts a novel approach to consider the entropy of inland water systems in the analysis of pollution and analyzes and compares many different freshwater quality indices in the waters of Armenia. The second section of the book is entitled “Ecological Factors Affecting Inland Waters”, which presents different issues related to the ecological health of wetlands and lakes. Chapter 1 of the second section analyzes how the impacts of global climate change can affect the production of inland freshwater fisheries, which in turn can impact the economy of those who depend on these industries. This chapter also provides suggestions for efficient management of fisheries under increased climate change scenarios. Chapter 2 of the second section is about techniques and methodologies of designing constructed wetlands for river diversion as possible improvements to water quality. Chapter 3 of the second section discusses the dynamics of hazardous algae blooms in Lake Erie, and the economic impacts on tourism in the region. Chapter 4 in the second section discusses various forms of constructed wetland structures and how this may help local aquatic plants respond and adapt to contamination by pollutants such as antibiotic resistant genes. The third section of this book is focused on observational and modelling methodology, entitled “Remote Sensing and Modelling of Inland Waters”. Chapter 1 of the third section examines how thermal stratification in lakes and reservoirs can be categorized and provides an in-depth analysis of the governing equations for modelling the hydrodynamics and water quality in stratified inland water systems, including particular case studies. Chapter 2 of the third section analyzes IV precipitation in inland water systems as observed from satellites using the CHIRPS method. Chapter 3 of the third section presents a detailed methodology for using remote sensing to extract narrow water features from satellite imagery using a morphological linear enhancement technique. The fourth and final section of the book deals with biological issues in inland water systems and is entitled “ Biodiversity of Inland Waters”. Chapter 1 of the fourth section presents a detailed zoological study of invertebrates found in the stream and river systems of North America, and discusses relevant factors affecting these populations. Chapter 2 of the fourth section reviews the biodiversity dynamics in the Okavango Delta in Botswana, discussing biotic and abiotic factors, flood dynamics, and other factors important to this wetland system. Chapter 3 of the fourth section discusses the biodiversity and environmental integrity of rivers in Nigeria, involving a detailed and thorough statistical analysis of various ecological factors. Finally, Chapter 4 of the fourth section reviews the present status of knowledge of invertebrates found in rivers, lakes and wetlands in western South America, and provides a characterization of the diverse groups of insects, mollusks, crustaceans and other smaller groups spread over two major invertebrate phyla. The chapters of this book provide detailed and varied information about many of the important factors affecting inland water systems, with a good variety of systems worldwide discussed. It is hoped that the methods and analyses presented here will inspire new in-depth investigations and other future studies. We are grateful to the authors, and to the publishing staff of IntechOpen for their contributions to this textbook and their hard work.
Article
Full-text available
Se analiza el actual conocimiento del Orden en Chile, enfatizando los aspectos taxonómicos útiles para el trabajo limnológico, como son, el grado de discriminación que es posible lograr a través de los estados preimaginales y la distribución geográfica de las especies. Los resultados obtenidos revelan un total de 63 especies distribuidas en 33 géneros y 6 familias. El endemismo en Chile alcanza un 57%.The actual knowledge of the Order in Chile was studied, emphasizing in the taxonomic date useful for the limnological work such as the knowledge of the immature state and geographical distribution of species. A total of 63 species distributed in 33 genera and 6 families are recognized, and the endemism reaches 57% of the species.
Article
Full-text available
We quantitatively investigated a snow algal community on Tyndall Glacier of the Southern Patagonia Icefield, Chile, at an elevation from 300 to 1500 m a.s.l. We observed 7 species of snow and ice algae (Chlorophyta and cyanobacteria) on the glacier. These species were Mesotaenium (M.) berggrenii, Cylindrocystis (Cyl.) brebissonii, Ancylonema sp., Closterium sp., Chloromonas sp., Oscillatoriaceae cyanobacterium, and an unknown alga. The spatial distribution of these algae differed among the species. M. berggrenii, Cyl. brebissonii, Ancylonema sp., and Closterium sp. appeared mainly in the lower-elevation area (370-770 m a.s.l.), the unknown alga in the higher-elevation area (900-1500 m a.s.l.), and Chloromonas sp. and Oscillatoriaceae cyanobacterium in the middle part of the glacier. The mean cell concentration and total cell volume biomass ranged from 0 to 9.2 3 104 (mean: 1.8 3 104) cells mL� 1, from 0 to 327 (mean: 63) l Lm � 2, respectively. The cell volume biomass generally decreased with altitude. The community structure showed that M. berggrenii was dominant in the ice area (65-100% of total cell volume) and lower snow area (50-70%) and that the unknown alga was dominant in the higher snow area (100%). The Simpson's species diversity index was significantly different among the study sites but was generally low (less than 1.9) at all sites. The cell volume biomass and diversity index are relatively smaller on the Patagonian glacier than those in algal communities on Alaskan and Himalayan glaciers. Lower nutrient levels in precipitation are likely to cause the smaller algal biomass on the glacier.
Article
Full-text available
At high latitudes and altitudes, ice formation is a major variable affecting survival of freshwater fauna and hence the abundance and composition of invertebrate communities. Freezing, but also desiccation and anoxia, are lethal threats to all life stages of aquatic insects, from the eggs to the adults. During cold periods, the aquatic stages commonly remain in or move to a portion of the water body that will not freeze or dry (e.g., deep waters of lakes, springs and hyporheic zone) where they can remain active. Less frequently they migrate to habitats that will freeze at the onset of winter. Insects have developed a complex of strategies to survive at their physiological temperature minimum, comprising (a) morphological (melanism, reduction in size, hairiness/pubescence, brachyptery and aptery), (b) behavioural (basking in the sun, changes in feeding and mating habit, parthenogenesis, polyploidy, ovoviviparity, habitat selection and cocoon building), (c) ecological (extension of development to several years by quiescence or diapause and reduction of the number of generations per year), (d) physiological and biochemical (freezing tolerance and freezing avoidance) adaptations. Most species develop a combination of these survival strategies that can be different in the aquatic and terrestrial phase. Freezing avoidance and freezing tolerance may be accompanied by diapause. Both cold hardiness and diapause manifest during the unfavourable season and: (i) involve storage of food resources (commonly glycogen and lipids); (ii) are under hormonal control (ecdysone and juvenile hormone); (iii) involve a depression or suppression of the oxidative metabolism with mitochondrial degradation. However, where the growing season is reduced to a few weeks, insects may develop cold hardiness without entering diapause, maintaining in the haemolymph a high concentration of Thermal Hysteris Proteins (THPs) for the entire year and a slow but continuous growth. A synthesis of literature regarding adaptation strategies in aquatic insects is presented, highlighting the scarcity of information on freshwater insects from Alpine regions. Most references are on Diptera Chironomidae from North America and North Europe. Some recent findings on aquatic insects from Italian Alpine streams are also presented.
Article
Full-text available
The Catalogue of Neotropical Plecoptera lists 508 valid names, of which 32 are dubious. The history of each name is given. The Neotropical Region comprises six families, of which two are endemic to the southern half. The Diamphipnoidae has 3 genera and 6 species, the Eustheniidae, 2 genera and 2 species, the Austroperlidae, 3 genera and 4 species, the Gripopterygidae, 28 genera and 85 species, the Notonemouridae, 4 genera and 18 species and the Perlidae, 10 genera and 393 species, the majority (332 species) in the genus Anacroneuria.
Article
Full-text available
: Extremophiles are organisms that can grow and thrive in harsh conditions, e.g., extremes of temperature, pH, salinity, radiation, pressure and oxygen tension. Thermophilic, halophilic and radiation-resistant organisms are all microbes, some of which are able to withstand multiple extremes. Psychrophiles, or cold-loving organisms, include not only microbes, but fish that live in polar waters and animals that can withstand freezing. Extremophiles are structurally adapted at a molecular level to withstand these conditions. Thermophiles have particularly stable proteins and cell membranes, psychrophiles have flexible cellular proteins and membranes and/or antifreeze proteins, salt-resistant halophiles contain compatible solutes or high concentrations of inorganic ions, and acidophiles and alkaliphiles are able to pump ions to keep their internal pH close to neutrality. Their interest to veterinary medicine resides in their capacity to be pathogenic, and as sources of enzymes and other molecules for diagnostic and pharmaceutical purposes. In particular, thermostable DNA polymerases are a mainstay of PCR-based diagnostics.
Article
Information about the phylogenetic relationships of Plecoptera is summarized. The few characters supporting monophyly of the order are outlined. Several characters of possible significance for the search for the closest relatives of the stoneflies are discussed, but the sister-group of the order remains unknown. Numerous characters supporting the presently recognized phylogenetic system of Plecoptera are presented, alternative classifications are discussed, and suggestions for future studies are made. Notes on zoogeography are appended. The order as such is old (Permian fossils), but phylogenetic relationships and global distribution patterns suggest that evolution of the extant suborders started with the breakup of Pangaea. There is evidence of extensive recent speciation in all parts of the world.