Reclassification of the members of the genus Tetrathiobacter Ghosh et al. 2005 to the genus Advenella Coenye et al. 2005

Department Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
International Journal of Systematic and Evolutionary Microbiology (Impact Factor: 2.51). 07/2009; 59(Pt 8):1914-8. DOI: 10.1099/ijs.0.007443-0
Source: PubMed


The taxonomic position of the genera Advenella and Tetrathiobacter was examined. 16S rRNA gene sequence analysis revealed that the two genera are closely related, representing a monophyletic cluster with high sequence similarity (98.1-99.7%) within the family Alcaligenaceae. The phenotypic characteristics of the type strains of Advenella incenata, Tetrathiobacter kashmirensis and Tetrathiobacter mimigardefordensis were re-examined using the API 20NE, API ZYM and API 50CH systems. Phylogenetic data together with similarities in phenotypic characteristics, G+C content and cellular acid composition suggest that they should be classified in the same genus. On the basis of the data presented, the two species of the genus Tetrathiobacter should be transferred to the genus Advenella, since this genus has nomenclatural priority. Therefore, Tetrathiobacter kashmirensis and Tetrathiobacter mimigardefordensis should be transferred to the genus Advenella as Advenella kashmirensis comb. nov. (type strain WT001T=LMG 22695T=MTCC7002T) and Advenella mimigardefordensis comb. nov. (type strain DPN7T=DSM 17166T=LMG 22922T). Emended descriptions of Advenella incenata and the genus Advenella are also presented.

Download full-text


Available from: Anna Barra Caracciolo
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A bacterial community in an aquifer contaminated by s-triazines was studied. Groundwater microcosms were treated with terbuthylazine at a concentration of 100 microg L(-1) and degradation of the herbicide was assessed. The bacterial community structure (abundance and phylogenetic composition) and function (carbon production and cell viability) were analysed. The bacterial community was able to degrade the terbuthylazine; in particular, Betaproteobacteria were involved in the herbicide biotransformation. Identification of some bacterial isolates by PCR amplification of the 16S rRNA gene revealed the presence of two Betaproteobacteria species able to degrade the herbicide: Advenella incenata and Janthinobacterium lividum. PCR detection of the genes encoding s-triazine-degrading enzymes indicated the presence of the atzA and atzB genes in A. incenata and the atzB and atzC genes in J. lividum. The nucleotide sequences of the PCR fragments of the atz genes from these strains were 100% identical to the homologous genes of the Pseudomonas sp. strain ADP. In conclusion, the results show the potential for the use of a natural attenuation strategy in the treatment of aquifers polluted with the terbuthylazine. The two bacteria isolated could facilitate the implementation of effective bioremediation protocols, especially in the case of the significant amounts of herbicide that can be found in groundwater as a result of accidental spills.
    Full-text · Article · Sep 2009 · FEMS Microbiology Ecology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Application of the non-toxic 3,3'-thiodipropionic acid (TDP) and 3,3'-dithiodipropionic acid (DTDP) as precursors for the microbial production of polythioesters (PTEs), a class of biologically persistent biopolymers containing sulphur in the backbone, was successfully established previously. However, synthesis of PTEs containing 4-mercaptobutyrate (4MB) as building blocks could not be achieved. The very harmful 4MB is not used as a PTE precursor or as the carbon source for growth by any known strain. As a promising alternative, the harmless oxidized disulfide of two molecules of 4MB, 4,4'-dithiodibutyric acid (DTDB), was employed for enrichments of bacterial strains capable of biodegradation. Investigation of novel precursor substrates for PTEs and comparison of respective strains growing on TDP, DTDP and DTDB as sole carbon source was accomplished. A broad variety of bacteria capable of using one of these organic sulphur compounds were isolated and compared. TDP and DTDP were degraded by several strains belonging to different genera, whereas all DTDB-utilizing strains were affiliated to the species Rhodococcus erythropolis. Transposon mutagenesis of R. erythropolis strain MI2 and screening of 7500 resulting mutants yielded three mutants exhibiting impaired growth on DTDB. Physiological studies revealed production of volatile hydrogen sulphide and accumulation of significant amounts of 4MB, 4-oxo-4-sulphanylbutanoic acid and succinic acid in the culture supernatants. Based on this knowledge, a putative pathway for degradation of DTDB was proposed: DTDB could be cleaved into two molecules of 4MB, followed by an oxidation yielding 4-oxo-4-sulphanylbutanoic acid. A putative desulphydrase probably catalyses the abstraction of sulphur, thereby generating succinic acid and hydrogen sulphide.
    Preview · Article · Dec 2009 · Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The catabolism of the disulfide 3,3′-dithiodipropionic acid (DTDP) is initiated by the reduction of its disulfide bond. Three independent Tn5::mob-induced mutants of Advenella mimigardefordensis strain DPN7T were isolated that had lost the ability to utilize DTDP as the sole source of carbon and energy and that harbored the transposon insertions in three different sites of the same dihydrolipoamide dehydrogenase gene encoding the E3 subunit of the pyruvate dehydrogenase multi-enzyme complex of this bacterium (LpdAAm). LpdAAm was analyzed in silico and compared to homologous proteins, thereby revealing high similarities to the orthologue in Ralstonia eutropha H16 (PdhLRe). Both bacteria are able to cleave DTDP into two molecules of 3-mercaptopropionic acid (3MP). A. mimigardefordensis DPN7T converted 3MP to 3-sulfinopropionic acid, whereas R. eutropha H16 showed no growth with DTDP as the sole carbon source but was instead capable of synthesizing heteropolythioesters using the resulting cleavage product 3MP. Subsequently, the genes lpdAAm and pdhLRe were cloned, heterologously expressed in Escherichia coli applying the pET23a expression system, purified, and assayed by monitoring the oxidation of NADH. The physiological substrate lipoamide was reduced to dihydrolipoamide with specific activities of 1,833 mkat/kg of protein (LpdAAm) or 1,667 mkat/kg of protein (PdhLRe). Reduction of DTDP was also unequivocally detected with the purified enzymes, although the specific enzyme activities were much lower: 0.7 and 0.5 mkat/kg protein, respectively.
    Preview · Article · Nov 2010 · Applied and Environmental Microbiology
Show more