How to phenotype a mouse

Center for Genomic Pathology, 2795 Second Street, Suite 400, University of California, Davis, CA 95618, USA .
Disease Models and Mechanisms (Impact Factor: 4.97). 06/2009; 2(7-8):317-21. DOI: 10.1242/dmm.003335
Source: PubMed
3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: While genome projects continue to provide crucial information about the structure of genomes and their genes, functional genomics (or functional genetics) initiatives strive to understand the function of genomes and their genes. Identification of a protein gene product and determination of its function as a receptor, ligand or enzyme is a proximal goal. Understanding the role of the gene and its product, in the context of a living organism, in its environment is the ultimate goal of functional genomics initiatives. Thus, functional genomics efforts in genetically engineered animals aim to produce and characterize phenotype(s) that clearly result from the intended genetic manipulation(s) and help to elucidate gene function(s). However, phenotypes reflect genetic influences other than the intended genetic manipulations, as well as experiential and environmental influences including infectious agents. Potential impacts of extra-experimental variables must be considered when interpreting phenotype data.
    No preview · Article ·
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of induced and spontaneous mutant mice and genetically engineered mice (and combinations thereof) to study cancers and other aging phenotypes to advance improved functional human life spans will involve studies of aging mice. Genetic background contributes to pathology phenotypes and to causes of death as well as to longevity. Increased recognition of expected phenotypes, experimental variables that influence phenotypes and research outcomes, and experimental design options and rationales can maximize the utility of genetically engineered mice (GEM) models to translational research on aging. This review aims to provide resources to enhance the design and practice of chronic and longevity studies involving GEM. C57BL6, 129, and FVB/N strains are emphasized because of their widespread use in the generation of knockout, transgenic, and conditional mutant GEM. Resources are included also for pathology of other inbred strain families, including A, AKR, BALB/c, C3H, C57L, C58, CBA, DBA, GR, NOD.scid, SAMP, and SJL/J, and non-inbred mice, including 4WC, AB6F1, Ames dwarf, B6, 129, B6C3F1, BALB/c,129, Het3, nude, SENCAR, and several Swiss stocks. Experimental strategies for long-term cross-sectional and longitudinal studies to assess causes of or contributors to death, disease burden, spectrum of pathology phenotypes, longevity, and functional healthy life spans (health spans) are compared and discussed.
    Full-text · Article · Jan 2012 · Veterinary Pathology