Annexin-1 Regulates Macrophage IL-6 and TNF via Glucocorticoid-Induced Leucine Zipper

Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia.
The Journal of Immunology (Impact Factor: 4.92). 07/2009; 183(2):1435-45. DOI: 10.4049/jimmunol.0804000
Source: PubMed


Annexin-1 (ANXA1) is a mediator of the anti-inflammatory actions of endogenous and exogenous glucocorticoids (GC). The mechanism of ANXA1 effects on cytokine production in macrophages is unknown and is here investigated in vivo and in vitro. In response to LPS administration, ANXA1(-/-) mice exhibited significantly increased serum IL-6 and TNF compared with wild-type (WT) controls. Similarly, LPS-induced IL-6 and TNF were significantly greater in ANXA1(-/-) than in WT peritoneal macrophages in vitro. In addition, deficiency of ANXA1 was associated with impairment of the inhibitory effects of dexamethasone (DEX) on LPS-induced IL-6 and TNF in macrophages. Increased LPS-induced cytokine expression in the absence of ANXA1 was accompanied by significantly increased LPS-induced activation of ERK and JNK MAPK and was abrogated by inhibition of either of these pathways. No differences in GC effects on MAPK or MAPK phosphatase 1 were observed in ANXA1(-/-) cells. In contrast, GC-induced expression of the regulatory protein GILZ was significantly reduced in ANXA1(-/-) cells by silencing of ANXA1 in WT cells and in macrophages of ANXA1(-/-) mice in vivo. GC-induced GILZ expression and GC inhibition of NF-kappaB activation were restored by expression of ANXA1 in ANXA1(-/-) cells, and GILZ overexpression in ANXA1(-/-) macrophages reduced ERK MAPK phosphorylation and restored sensitivity of cytokine expression and NF-kappaB activation to GC. These data confirm ANXA1 as a key inhibitor of macrophage cytokine expression and identify GILZ as a previously unrecognized mechanism of the anti-inflammatory effects of ANXA1.

Download full-text


Available from: Daniel Aeberli
  • Source
    • "In accordance, studies with the macrophage-like cell line THP-1 cells indicated that GILZ overexpression results in reduced expression of macrophage activation markers, chemokine expression, and NF-κB activity upon LPS treatment [42]. In murine macrophages, another GC-inducible anti-inflammatory protein, Annexin-A1 (ANXA1), was shown to participate in GILZ induction upon GC treatment and to require GILZ to exert its antiinflammatory effects [56]. The LPS resistance being characteristic for the inbred mouse strain SPRET/Ei has been linked to genetic variations causing increased GILZ expression. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids has been reported to be essential for their anti-inflammatory actions. At the same time, GILZ is actively downregulated under inflammatory conditions, resulting in an enhanced pro-inflammatory response. Two papers published in the recent past showed elevated GILZ expression in the late stage of an inflammation. Still, the manuscripts suggest seemingly contradictory roles of endogenous GILZ: one of them suggested compensatory actions by elevated corticosterone levels in GILZ knockout mice, while our own manuscript showed a distinct phenotype upon GILZ knockout in vivo. Herein, we discuss the role of GILZ in inflammation with a special focus on the influence of endogenous GILZ on macrophage responses and suggest a cell-type specific action of GILZ as an explanation for the conflicting results as presented in recent reports.
    Full-text · Article · Oct 2015 · Oncotarget
  • Source
    • "In vitro, steroid-mediated clearance of apoptotic cells by monocyte-derived macrophages requires ANX-A1 and FPR2 (Maderna et al., 2005). Deficiency of ANX-A1 in murine macrophages and fibroblasts also impairs dexamethasone resolution of inflammation, including attenuation of its ability to blunt the upregulation of pro-inflammatory cytokines (Yang et al., 2006, 2009). Similar effects are observed in human lung fibroblasts in which endogenous ANX-A1 has been silenced (Jia et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI. Copyright © 2014. Published by Elsevier Inc.
    Full-text · Article · Nov 2014 · Pharmacology [?] Therapeutics
  • Source
    • "Mechanistic studies in THP-1 cells, a human monocyte cell line, show that GILZ directly interacts with the NF-κB p65 subunit and suppresses transcriptional activity, resulting in reduced expression of macrophage activation markers CD80, CD86, and TLR2, and chemoknies CCL5 and CCL3 (Berrebi et al., 2003). Moreover, another GC induced anti-inflammatory protein, AnxA1, requires GILZ to mediate inhibitory effects of GC in murine macrophage (Yang et al., 2009). In keeping with these findings, GILZ expression is inhibited in macrophages from patients with Crohn's disease, tuberculosis and alcoholic hepatitis (AH), typical inflammatory diseases associated with macrophage activation (Berrebi et al., 2003; Hamdi et al., 2007a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids (GC) are the most commonly prescribed medications for patients with inflammatory diseases, despite their well-known adverse metabolic effects. Previously, it was understood that the anti-inflammatory effects of the GC/GC receptor (GR) complex were mediated via transrepression, whilst the adverse metabolic effects were mediated via transactivation. It has recently become clear that this "divergent actions" paradigm of GC actions is likely insufficient. It has been reported that the GC/GR-mediated transactivation also contributes to the anti-inflammatory actions of GC, via up-regulation of key anti-inflammatory proteins. One of these is glucocorticoid-induced leucine zipper (GILZ), which inhibits inflammatory responses in a number of important immune cell lineages in vitro, as well as in animal models of inflammatory diseases in vivo. This review aims to compare the GILZ and GC effects on specific cell lineages and animal models of inflammatory diseases. The fact that the actions of GILZ permit a GILZ-based gene therapy to lack GC-like adverse effects presents the potential for development of new strategies to treat patients with inflammatory diseases.
    Full-text · Article · Jul 2014 · Frontiers in Pharmacology
Show more