ArticlePDF Available

Abstract and Figures

We reconsider classical features of Schwarzschild and Kerr metrics, basis of the Black Hole model, through new space and time coordinates which transform the object into a space bridge linking two folds of the universe, PT symmetrical. In addition, such change gives a fast mass transfer through such spheroidal throat, one way membrane, which makes the black hole model questionable. Back to TOV model we assume that the physical criticity at r = 0,942 Rs, occuring before geometrical criticity, corresponds to real physics. We associate this to the fast establishment of a small space bridge between the two folds, through which matter in excess would be immediatly transfered, transformed into negative mass, and consquently spread away. So that such space bridge would correspond to an instant picture of a fast transient phenomenon, that would keep neutron stars’mass above 3 solar masses. The discussion is extended to so- called « Giant Black Holes ».
No caption available
… 
Content may be subject to copyright.
!
!
"!
Black holes do not exist
Jean-Pierre Petit1
Key$ words$#! $%&'(! )*%+,! -.&'+! $/012+,! 20&34! $%&'(! )*%+,! 3+54/*3! -4&/,! 6')7&/8-')0%1!
9+4/0',!:+//!9+4/0'!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;$
Abstract!
<+!/+'*3-01+/!'%&--0'&%!=+&45/+-!*=!6')7&/8-')0%1!&31!:+//!9+4/0'-,!$&-0-!*=!4)+!>%&'(!
?*%+!9*1+%,!4)/*52)!3+7!-.&'+!&31!409+!'**/103&4+-!7)0')!4/&3-=*/9!4)+!*$@+'4!034*!&!
-.&'+!$/012+!%03(032!47*!=*%1-!*=!4)+!530A+/-+,!BC!-D99+4/0'&%E!F3!&11040*3,!-5')!')&32+!
20A+-! &! =&-4! 9&--! 4/&3-=+/! 4)/*52)! -5')! -.)+/*01&%! 4)/*&4,! *3+! 7&D! 9+9$/&3+,! 7)0')!
9&(+-! 4)+! $%&'(! )*%+! 9*1+%! G5+-40*3&$%+E! >&'(! 4*! CHI! 9*1+%! 7+! &--59+! 4)&4! 4)+!
.)D-0'&%! '/040'04D! &4! /! J! K,LMN! O-,! *''5/032! $+=*/+! 2+*9+4/0'&%! '/040'04D,! '*//+-.*31-! 4*!
/+&%!.)D-0'-E!<+!&--*'0&4+!4)0-!4*!4)+!=&-4!+-4&$%0-)9+34!*=!&!-9&%%!-.&'+!$/012+!$+47++3!
4)+! 47*! =*%1-,! 4)/*52)! 7)0')! 9&44+/! 03! +P'+--! 7*5%1! $+! 099+10&4%D! 4/&3-=+/+1,!
4/&3-=*/9+1! 034*! 3+2&40A+! 9&--,! &31! '*3-G5+34%D! -./+&1! &7&DE! 6*! 4)&4! -5')! -.&'+!
$/012+! 7*5%1! '*//+-.*31! 4*! &3! 03-4&34! .0'45/+! *=! &! =&-4! 4/&3-0+34! .)+3*9+3*3,! 4)&4!
7*5%1!(++.!3+54/*3!-4&/-Q9&--!&$*A+!R!-*%&/!9&--+-E!C)+!10-'5--0*3!0-!+P4+31+1!4*!-*S
'&%%+1!T!U0&34!>%&'(!?*%+-!VE!!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;!
!
Introduction$!
!
W*3-01+/!4)+!9+4/0'!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
dΣ2=dr2
1Rs
r
+r2d
ϕ
2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!X"Y!
!
F4-! -023&45/+! 0-! X! Z! ,! Z! YE! F4! 4+31-! 4*! +5'%010&3! 9+4/0'! 7)+3! /! 4+31-! 4*! 03=0304+E! C)0-!
-023&45/+!0-!9*10=0+1! 0=!r![!Rs!!&31!$+'*9+-! X!S!,!Z!YE!W*3-01+/!%+32)4!9+&-5/+1!&%*32!&!!
/&10&%!.&4)!X
ϕ
=0
!YE!F=!r!\!Rs$4)0-!%&-4!0-!/+&%E!F=!!r![!Rs$04!$+'*9+-!09&203&/DE!]+4!5-!-)*7!
4)&4!7+!&/+!*54!*=!4)+!-5/=&'+E!F34/*15'032!4)+!')&32+!*=!'**/103&4+-!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
r=Rs( 1 +Log ch
ρ
)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XNY!
!
C)+!9+4/0'!$+'*9+-!#!!
!
!!!!!!!!!!!!!!!!!!!!!!
dΣ2=Rs
2( 1 +Log ch
ρ
)
Log ch
ρ
th 2
ρ
d
ρ
2+( 1 +Log ch
ρ
)2d
ϕ
2
!!!!!!!!!!!!!!!!XRY!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1! !^*/9+/!O+-+&/')!_0/+'4*/!&4!4)+!=/+3')!`&40*3&%!W+34+/!=*/!6'0+340=0'!O+-+&/'),!
W`O6E!B/0A&4+!9&0%!#!@..+404"LRabD&)**E=/!
!
!
N!
r=Rs
!'*//+-.*31-! 4*!
E! c4! 4)+! .*034! 4)+! 1+4+/903&34! *=! 4)+! 9+4/0'! 0-! 3*! %*32+/!
8+/*!#!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
det g=Rs
4( 1 +Log ch
ρ
)2
Log ch
ρ
th2
ρ
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XMY!
!
C)+!9+4/0'!0-!7+%%!1+=03+1!=*/! &%%! A&%5+-! *=
ρ
!E!C)+!1+4+/903&34!1*+-!3*4! 4+31! 4*! 8+/*!
7)+3!
ρ
±0
E! F=! 7+! 09$+1! 4)+! -5/=&'+! 03! &! R1! +5'%010&3! -.&'+! 7+! '&3! 1+=03+! 4)+!
9+/010&3,!'*//+-.*31032!4*!#!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
dΣ2=dr2
1Rs
r
+d z2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XdY!
!
7+!099+10&4%D!2+4!4)+!9+/010&3!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
z= ± 2Rs
r
Rs
1r2=Rs+z2
4Rs
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XeY!
!
!
C)+!-5/=&'+!0-!&!!-.&'+!$/012+,!%03(032!47*!N_!+5'%01+&3!-5/=&'+-E!!
!
Fig.1$:$The$surface,$imbedded$in!
3
!
!
!
fA+/D4)032!$+'*9+-! /+&%E! ^/*9! ]&2/&32+! +G5&40*3-! 7+! 9&D! '*9.54+! 4)+! 2+*1+-0'-! 03!
!
!
R!
ρ
,
ϕ
[ ]
! '**/103&4+! -D-4+9E! F=! 09$+11+1,! 4)+! -5/=&'+! )*%1-! &! 4)/*&4! '0/'%+! 7)*-+!
.+/09+4+/!0-!
2
π
Rs
E!<+!'&3!+P4+31!4)0-!03!R_,!034/*15'032!4)+!9+4/0'!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
dΣ2=dr2
1Rs
r
+r2(d
θ
2+sin2
θ
d
ϕ
2)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XaY!
!
7)0')!0-!+5'%010&3!&4!03=0304+E!F34/*15'032!4)+!-&9+!'**/103&4+!')&32+!XNY!7+!'&3!09$+1!
4)0-!R_!)D.+/-5/=&'+!034*!&!M_!+5'%01+&3!-.&'+E!C)+3!04!$+'*9+-!&!-.&'+!$/012+!%03(032!
47*!R_!+5'%010&3!)D.+/-5/=&'+-!4)/*52)!&!4)/*&4!-.)+/+!7)*-+!-5/=&'+!0-!
4
π
Rs
2
E!F=!7+!
4)03(!&$*54!4)0-!-5/=&'+!4)/*52)4!
r,
θ
,
ϕ
[ ]
!'**/103&4+-!,!7)+3!r!\!Rs$ 4)+!%+324)!0-!/+&%,!
$54!7)+3!!!r![!Rs$ $ 4)0-!%+324)!$+'*9+-! 09&203&/DE! F4! @5-4! 9+&3-! 4)&4! 7+! &/+! *54!*=!4)+!
)D.+/-5/=&'+E! C)+! G5+-40*3! ! T!7)&4! 0-! 03-01+! &! -.)+/+! 7)*-+! /&105-! 0-!!
Rs
V! )&-! 3*!
.)D-0'&%! 9+&3032E! C)+! /&10&%! '**/103&4+! r!@5-4!'*//+-.*31-!4*!&!7/*32!')*0'+,!7)0')!
1*+-!3*4!=04!4)+!/+&%!3&45/+!*=!4)+!)D.+/-5/=&'+E!!
!
!
The$topology$associated$to$the$Schwarzschild$solution!
!
W*3-01+/!3*7!4)+!6')7&/8-')0%1!9+4/0'![1]!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
d s 2=( 1 Rs
r)( d x°)2d r 2
1Rs
r
r2(d
θ
2+sin2
θ
d
ϕ
2)
!!!!!!!!!!!!!!!!!!!!!!!!XgY!
F4!0-!-090%&/!4*!4)+!9+4/0'!XdYE!F34/*15'+!4)+!')&32+!*=!'**/103&4+!XNY,!7+!2+4!#!!
!
!!!!!!!
d s 2=Log ch
ρ
1+Log ch
ρ
(d x°)2
Rs
2( 1 +Log ch
ρ
)
Log ch
ρ
th 2
ρ
d
ρ
2+( 1 +Log ch
ρ
)2(d
θ
2+sin2d
ϕ
2)
!!!!!!!XLY!
!
C)+!9+4/0'!0-!-40%%!]*/+340&3!&4!03=0304+E!F4!0-!1+=03+1!=*/!&%%!A&%5+-!*=!4)+!A&/0&$%+!
ρ
E!C)+!
-4/5'45/+! 0-! -090%&/! &31! +A*(+-! -*9+! -*/4! *=! -.&'+! $/012+! %03(032! 47*! M_! ]*/+340&3!
-.&'+-E!!
W%&--0'&%%D,!4)+!'*3'+.4!*=!$%&'(!)*%+-!&..+&/-!7)+3!7+!7/04+!#!!
!
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$x°$=$c$t$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$(10)!
!
c$$+032!&!'*3-4&34E! C)+3!0=!7+!'*9.54+! 4)+!=/++!=&%%!409+-!7+! =031!10-403'4!A&%5+-!0=! 7+!
+P./+--!04!03!4+/9!*=!./*.+/!409+!-!*=!409+!t!,!&--*'0&4+1!4*!T!&3!+P4+/3&%!*$-+/A+/!VE!<+!
/+=031!&%%!4)+-+!=+&45/+-!704)!4)+!:+//!9+4/0'![2]E!!
!
!
!
M!
!!!!!
d s 2=( 1 2m
ρ
ρ
2+a2cos2
θ
)( dx°)2
ρ
2+a2cos2
θ
ρ
2+a22m
ρ
d
ρ
2(
ρ
2+a2cos2
θ
)d
θ
2
(
ρ
2+a2)sin2
θ
+2m a 2sin4
θ
ρ
2+a2cos2
θ
d
ϕ
24m
ρ
a
ρ
2+a2cos2
θ
d x°d
ϕ
!!!!!!!!X""Y$
$
C)+! ./+-+3'+! *=! &! '/*--+1! 4+/9!
d x°d
ϕ
!034/*15'+-!&3!azimutal$ frame$ draggingE! c-! &!
'*3-+G5+3'+,!7)+3!'*9.54032!4)+!-.++1!*=!%02)4!&%*32!&!'0/'%+!7)*-+!&P0-!0-!4)+!*3+!*=!
4)+! -D-4+9! *3+! =031-! 47*! 10==+/+34! A&%5+-! 0=! 4)+! 4+-4! .)*4*3! '0/'%+-! 704)! 4)0-! /*4&4032!
*$@+'4!*/!&2&03-4!4)0-!9*A+9+34E!!
>&'(!4*!4)+!6')7&/8-')0%1!9+4/0',!034/*15'+!4)+!f110324*3!409+S9&/(+/!')&32+![4]!#!!
!
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
x° = xRsLog r
Rs
1
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$X"NY!
&31!7/04+!#!!
!
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$x$=$c$t$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$X"RY$
$
704)!c!'*3-4&34E!F3!
x,r,
θ
,
ϕ
[ ]
!4)+!%03+!+%+9+34!$+'*9+-!#!!
!!
!!!!!!!!!
d s 2=( 1 Rs
r)c2dt 2( 1 +Rs
r)dt 22Rs
r
c d t d r r2(d
θ
2+sin2
θ
d
ϕ
2)
!!!!!!!!!!!X"MY!
!
<)+3!
r=Rs
!4)+!1+4+/903&34!*=!4)+!9+4/0'!3*!%*32+/!A&30-)+-E!<)+3!/!4+31-!4*!03=0304+!
4)0-!9+4/0'-!4+31-! 4*!]*/+3480&3E!F=!7+! '*9.54+!4)+!2+*1+-0'-,!15+! 4*!4)+!'/*--+1!4+/9!!
dx$*$dt!7+!=031!&!radial$frame:dragging$effectE!C)+! -.++1!*=!%02)4!&%*32!/&10&%!.&4)-!)&-!
10-403'4! A&%5+-,! 1+.+31032! 0=! 4)+! 9*A+9+34! 0-! 10/+'4+1! 037&/1-! */! *547&/1-E! ^*/! &3!
+P4+/3&%! *$-+/A+/,! 4)+! =/++! =&%%! 409+! $+'*9+-! =0304+,! 7)0%+! 04! 4&(+! &3! 03=0304+! 409+! 4*!
+-'&.+!=/*9!7)&4!-40%%!$+)&A+-!%0(+!&!*3+S7&D!9+9$/&3+E!!
f&')!9+4/0'!-*%540*3!2*+-! 704)! &3! 0-*9+4/D! 2/*5.E! W%&--0'&%%D! 6HR! x! O! 0-! 4)+! 0-*9+4/D!
2/*5.! &--*'0&4+1! 4*! 6')7&/8-')0%1! 9+4/0'E! F4! '*//+-.*31-! 4*! 0-*4/*.D! &31! 409+S
031+.+31&3'+!'*31040*3-E!6090%&/!'*31040*3-!+P0-4!=*/!:+//!&P0-D99+4/0'!:+//!-*%540*3E!!
`*7!7+!'&3! +P4+31! 4)0-! -*%540*3! 4*! 4)+! 47*! =*%1-! '*A+/! *=! 4)+! 9&30=*%1! hM,!704)!47*!
9+4/0'-!4)&4! 7+! '&%%!
g
µν
(+)
&31!
g
µν
()
,!'*//+-.*31032,! &=4+/! cE! 6&()&/*A! [3], 4*! 47*! T!4703!
530A+/-+-!V,!+3&340*9*/.)0',!704)!*..*-04+!&//*7-!*=!409+!X!BC!-D99+4/0'!YE!C)+3!7+!
'&3!'*33+'4!4)+!47*!=*%1-!4)/*52)!&!4)/*&4!-.)+/+,!5-032!4)+!'**/103&4+!')&32+-!#!
!!
!!!!!!!!!
r=Rs( 1 +Log ch
ρ
)x° = ct +
δ
Log Log ch
ρ
Rs
with
δ
= ± 1
!!!!!!!!!X"dY!
!
7)+/+!
δ
J!S"!'*//+-.*31-!4*!4)+!=*%1!X!*/!T!-+'4*/!V!Y!
F(+)
!X*5/-Y!&31!
δ
J!Z"!4*!4)+!=*%1!
X*/!T!-+'4*/!VY!
F()
E!C)+3!4)+!9+4/0'-!$+'*9+-!#!!
!
!
!
d!
d s 2=Log ch
ρ
1+Log ch
ρ
c2dt 22+Log ch
ρ
1+Log ch
ρ
th 2
ρ
d
ρ
2
+2
δ
c dt d
ρ
1+Log ch
ρ
Rs
2( 1 +Log ch
ρ
)2(d
θ
2+sin2
θ
d
ϕ
2)with
δ
= ± 1
(16)!
!
!
<+! '&3! +P./+--! 4)+! 2+*1+-0'-! 03! 10==+/+34! '**/103&4+! -+4-E! F4! 0-! +&-0+/! 4*! (++.! 4)+!
A&/0&$%+!r,!&31!7/04+!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!
x° = c t +
δ
RsLog (r
Rs
1 ) with
δ
= ± 1and r >Rs
!!!!!!!!!!!!!!!!!X"aY!
!
C)+3!4)+!'*5.%+1!6')7&/8-')0%1!9+4/0'-!&/+!#!!
!
!!!!!!!!!!
d s2=(1 Rs
r)c2dt 2(1 +Rs
r)r2+2
δ
Rs
r
c dt d r r2(d
θ
2+sin2d
ϕ
2)
!!!!!!!!!!!!!X"gY!
!
!
^*/!
r>Rs
!7+!/+=031!4)+!'%&--0'&%!.&44+/3!*=!G5&-0S:+.%+/0&3! .&4)-! 704)! &--*'0&4+1!
.&/&9+4+/-!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
d
ϕ
= ± dr
r2
λ
21
h2+Rs
h2r1
r2+Rs
r3
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!X"LY!
!
!
Questionable$black$hole!
!
^*'5--032! *3! /&10&%! .&4)-,!
ν
!J!Z!"!'*//+-.*31-!4*!'+34/0=52&%!.&4)-,!
ν
!J!S!"!4*!
'+34/0.+4&%!.&4)-E!!!
δ
!J!Z!"!'*//+-.*31-!4*!T!*5/!=*%1!*=!*5/!530A+/-+!V!
F(+)
,!&31!
δ
!J!S!"!
4*!4)+!T!4703!=*%1!V!
F()
!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
dt =
λ
r
δ ν
Rs
λ
21+Rs
r
c
ν
(rRs)
λ
21+Rs
r
dr
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XNKY!
!
C)+!6')7&/8-')0%1!-.)+/+!$+)&A+-!%0(+!&!*3+S7&D!9+9$/&3+E!F%!*5/!=*%1,!&!4+-4!.&/40'5%+!!
=*%%*7032!&!'+34/0=52&%!.&4)! 3++1-!&!03=0304+!409+!4*! +-'&.+E!W*3A+/-+%D,!4)+!'+34/0.+4&%!
=/++!=&%%!409+!0-!=0304+!X&31!-)*/4YE!C)+!-045&40*3!0-!/+A+/-+1!03!4)+!4703!=*%1E!6*!4)&4!-5')!
)D.+/4*/0'!-.&'+!$/012+!9&D!.*5/!9&44+/!=/*9!*5/!=*%1,!&31!-+31!04!4*!4)+!4703!=*%1!X*/!
T!-+'4*/!VY! 03! &! =0304+! &31! -)*/4! 409+E! C)+/+! 3*! 9*/+! 409+! =/++8032! =*/! &3! +P4+/3&%!
*$-+/A+/,! -*! 4)&4! 4)+! '%&--0'&%! 034+/./+4&40*3! *=! 4)+! 6')7&/8-')0%1! 9+4/0'! &-! &! T!>%&'(!
?*%+!V! $+'*9+-! G5+-40*3&$%+E! >D! 4)+! 7&D,! 7)0%+! &! %044%+! $04! 9*/+! '*9.%0'&4+1,! -090%&/!
!
!
e!
/+-5%4-!'&3!$+!*$4&03+1!=/*9!:+//!9+4/0'E!C)0-!&-D99+4/D!0-!+&-D!4*!-++,!'*3-01+/032!4)+!
-045&40*3!'%*-+!4*!4)+!*3+S7&D!9+9$/&3+!X
rRs
Y!#!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
dt
λ ν
c
r
δ ν
Rs
(rRs)
dr
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XN"Y!
!
C)0-!@5-40=0+-!4)+!=*/9-!*=!4)+!9+4/0'-!,!4*!+3-5/+!4)+!'*3403504D!*=!9*A+9+34-E!!
<+! )&A+! '*3-01+/+1! &! -.&'+! $/012+! %03(032! 47*! BCS-D99+4/0'&%! )D.+/-5/=&'+-E! C)0-!
'*//+-.*31-!4*!@*034!$09+4/0'!2+*9+4/0+-,!1+/0A+1!=/*9!4)+!&'40*3!!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
J=(R(+)+R())d4x
D4
δ
J=0
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XNNY!
-&40-=0+1!=*/!#!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
R(+)=R()R
µν
(+)=R
µν
()=0
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XNRY!
!
c!.*-040A+!9&--!4+-4S.&/40'5%+!9,!0=!%*'&4+1!03!
F(+)
,!0-!&44/&'4+1!$D!4)+!-.&'+!$/012+,!&31!
/+.+%%+1!0=!%*'&4+1! 03!
F()
E!^*%%*7032!i+&3Sh&/0+!6*5/0&5![5],!409+S03A+/-0*3!2*+-!704)!
+3+/2D!&31!9&--!03A+/-0*3E!!
!
The$fate$of$a$neutron$star$that$overcomes$its$limit$of$stabilityE!!
!
F=! 7+! '*5.%+! 4)+! +P4+/3&%! 6')7&/8-')0%1! 9+4/0'! -*%540*3! XeY! 4*! 4)+! =*%%*7032! 034+/3&%!
6')&/8-')0%1!9+4/0'!-*%540*3!#!
(24)
7+!2+4!&!2+*9+4/0'&%!/+./+-+34&40*3!*=!&!-.)+/+,!7)*-+!/&105-!0-!
r
n
,!=0%%+1!$D!'*3-4&34!
1+3-04D!
ρ
!9&4+/0&%!,!-5//*531+1!$D!A*01E!C)+!-4&$0%04D!'*31040*3!0-!#!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Rs=8
π
G
ρ
3c2r
n
3<r
n<3
8
π
G
ρ
=ˆ
R
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!XNdY!
!
'*//+-.*31032!4*!=025/+!NE!!
!
!
!
a!
!
!
Fig.2$:$Subcritical$neutron$star,$schematical!
!
F3!'*3-4&34!1+3-04D!2/*74)!4)+!47*!/&100!$+'*9+-!+G5&%!4*!4)+!/&105-!*=!4)+!-4&/,!-*!4)&4!
7+!)&A+!&!1*5$%+!2+*9+4/0'&%!'/040'04DE!6++!=025/+!RE!!
Fig.3 : Double geometrical criticity.
The famous TOV equation [6] gives the pressure versus radius in such object.
d p
dr
=
ρ
+p
c2
m+4
π
G p r 3
c4
r(r2m)
=
ρ
+p
c2
Rs
2
+4
π
G p r 3
c4
r(rRs)
(26)
When integrating this differential equation, we get figure 4.
!
!
g!
Fig.4 : Physical criticity in a neutron star
For
r
n=0.9428 Rs
a physical criticity appears, before geometrical criticity. Classically one
considers the two values as just quite close. If we assume this is physics, it means that
something happens in the center of the star when this physical critical condition is reached. In
former papers we developped the concept of joints variations for the so-called constants of
physics ( [7], [8], [9] ). Then such very important increase of pressure would go with the
increase of c to infinite and create a bridge between the two sectors, the one for positive
energy and mass particles, the other for negative energy and mass particles. The challenging
decoding of Schwarzschild metric would then correspond to some instant picture of a fast
process, to be built from the set of field equations introduced in [10].
A control mechanism for neutron stars’masses.
The universe contains a very large number of objects, at distance, of even in our galaxy.
When some theoretician predicts the existence of some object, if he is right, it will be
discovered late or soon. As an example Fritz Zwicky predicted the phenomenon of supernova
in 1931. He observed the first in 1937, then he found one more four months later. Three years
after he had evidenced 12. Now we have thousands. Same thing for neutron stars, exo-planets.
The existence of black hole was conjectured in 1963, when Kerr built his axisymmetrical
metric solution. Half century have passed, and we have very few stellar black holes
candidates. In fact, they are more black holes in poplar journals that in the sky. A control
mechanism for neutron stars could justify such absence. According to this model, when a
!
!
L!
neutron star receives matter from a companion star, and get a pressure jump at its center, a
small space bridge opens there. Matter flows in at large density and relativistic density. The
sign of such mass is inverted, so that it escapes the star. It does not any longer interfer with
this dense material for matters with opposite signs only interact through gravitational force.
Subsidiarily it becomes invisible to our eyes and telescopes. Then the mass of neutron stars
should be limited to 3 solar masses, instead 3.3 .
What about « giant black holes » ?
h+&-5/+9+34-!*=!A+%*'040+-!*=!=&-4!-4&/-,!*/$04032!'%*-+!4*!4)+!'+34+/!*=!2&%&P0+-!0310'&4+!
4)&4!!*$@+'4-!7)*-+!9&--+-!7*5%1!/&32+!$+47++3!"Ka! &31!"KL!-*%&/!9&--+-!-)*5%1!$+!
%*'&4+1!4)+/+!j"RkE!C)+!-'0+340=0'!'*995304D!1+'01+1!4*!'&%%!04!T!20&34!$%&'(!)*%+-!VE!>54!
&/+!4)+D!$%&'(!)*%+-!l!?*7!1*!4)+D!=*/9!l!F!)&A+!-522+-4+1!&!-'+3&/0*!03!j""kE!^/*9!9D!
.*034! *=! A0+7,! 4)+! 530A+/-+! 0-! =0%%+1! $D! .*-040A+! &31! 3+2&40A+! 9&--+-E! F3! "Lda! ?E>*310!
j"Nk! -)*7+1! 4)&4! 4)0-! '*)&$04&40*3! 7&-! 09.*--0$%+,! 15+! 4*! 4)+! ./+.*-4+/*5-! /53&7&D!
.)+3*9+3*3E! F=! 4)+! 530A+/-+! 0-! '*3-01+/+1! &-! &! hM! 9&30=*%1! 704)! &! -032%+! 9+4/0',!
-*%540*3! *=! f03-4+03Q-! +G5&40*3,! &31! 0=! 47*! 9&--+-! 704)! *..*-04+! -023-! +3'*534+/! 4)+!
.*-040A+!*3+!+-'&.+-!7)0%+!4)+!3+2&40A+!*3+!/53-!&=4+/!04E!C)0-!'*//+-.*31-!4*!4)+!&%%+2+1!
T!/53&7&D!.)+3*9+3*3!VE!6)0=4032! 4*!&!$09+4/0'!/+./+-+34&40*3!Xjgk,!jLk,!j"Kk! Y!7+!=031!
10==+/+34! 4)+! 2/&A04&40*3&%! 034+/&'40*3! %&7-#! 9&--+-! 704)! -&9+! -023-! 9545&%%D! &44/&'4,!
4)/*52)!`+74*3Q-!%&7E!h&--+-!704)!*..*-04+!-023-!9545&%%D!/+.+%!4)/*52)!&340S`+74*3Q-!
%&7E! C)0-! 9*1+%! =5%%D! ')&%%+32+-! 4)+! 1&/(! 9&44+/! 9*1+%E! i*034! 2/&A04&40*3&%! 03-4&$0%04D!
+P.%&03-! I]6,! 2&%&P0+-Q! '*3=03+9+34,! =%&43+--! *=! 4)+0/! /*4&40*3! '5/A+-! &31! %&/2+!
2/&A04&40*3+%!%+3-!+==+'4-,!9&03%D!09.54+1!4*!3+2&40A+!%+3-032!jgkE!!H3!'*-9*%*20'&%!-'&%+-!
04!+P.%&03-!4)+!*$-+/A+1!&''+%+/&40*3!*=!4)+!530A+/-+,!704)*54!3++1!4*!9D-4+/0*5-!T!1&/(!
+3+/2D!VE!!
W*5.%+1! =0+%1! +G5&40*3-! -D-4+9! 9&D! ./*15'+! @*034! 9+4/0'! *-'0%%&40*3-! 15/032! 4)+!
+P.&3-0*3!./*'+--E!F4!7*5%1! 9*10=D!4)+!-4/+32)4!*=! 4)+!'*3=03+9+34!*=!2&%&P0+-,!15+! 4*!
4)+0/! +3A0/*39+34! *=! 03A0-0$%+! 3+2&40A+! 9&--E! F=! 95')! 7+&(+3+1,! 4)+! '*3=03+9+34!
$+'*9+-! 3*! %*32+/! +3-5/+1! &31! 7+! 2+4! 0//+25%&/! 2&%&P0+-E! F=! -4/*32%D! /+03=*/'+1! 04!
'/+&4+-!&3!&335%&/!1+3-04D! 7&A+! 7)0')! =*'5-! 4*7&/1-! 4)+! '+34+/! *=! 4)+! 2&%&PDE! >D! 4)+!
7&D,!4)+!1+3-04D!7&A+!4/022+/-!D*532!-4&/-Q!$0/4)E!C)+D!0*308+!4)+!2&-!&31!'/+&4+!)02)!
9&23+40'!O+D3*%1-!359$+/!'*31040*3-,!-*!4)&4!4)+!/032!'*%%+'4-!4)+!9&23+40'!%023+-!&-!&!
.+&-&34!2&4)+/-!'*/3!+&/-E!C)0-!/+03=*/'+-!4)+!9&23+40'!=0+%1E!<)+3!4)+!/032!/+&')+-!4)+!
'+34+/,!04!=*/9-!&!$&%%!*=!)*4!2&-! 03!7)0')!]&7-*3!'*31040*3-!*''5/-!03!4)+!$5%(E!^5-0*3!
1+$/0-! &/+! +@+'4+1! &%*32! 47*! 10&9+4/&%%D! *..*-04+! %*$+-E! <+! 2+4! &! m6HE! C)+! 9&23+40'!
=0+%1!2/&10+34!&'4-!&-! &! 3&45/&%!.&/40'%+!&''+%+/&4*/!&31!4)+! *$@+'4!0-!4)+!-*5/'+!*=! )02)!
+3+/2D!.&/40'%+-,!'*-90'!/&D-E!!
6*=4! ./*'+--! 7*5%1! '&5-+! 2&-! %*--,! 0=! 4)+! '*3=03+9+34! 0-! 7+&(%D! /+15'+1E! 6*=4!
/+03=*/'+9+34!7*5%1!-+31!2&-!4*!4)+!'+34+/!*=!4)+!2&%&PD,!&4!9*1+/&4+!A+%*'04DE!C)0-!2&-!
7*5%1E! C)+! 9&--! '*34/*%! 9+')&30-9! +A*(+1! &$*A+! 7*5%1! %0904! 04-! 2/*74)! &31! 7*5%1!
.%&'+!04!03!-5$S'/040'&%! '*3=025/&40*3!
R0.942 Rs
E!F=!-*9+!9&44+/! 7*5%1!.&--!$D,!7)+3!
'&.45/+1,!04-!+%+'4/*3-,!&''+%+/&4+1,!7*5%1!+904!/&10&40*3,!nS/&D-!E!>54!4)+!7&A+%+324)!*=!
4)+!/&10&40*3! +9044+1! $D! 4)+! *$@+'4! 7*5%1! $+!2/+&4%D! +3%&2+1! $D! 2/&A04&40*3&%! /+1-)0=4!
+==+'4E!!
H3! &3*4)+/! )&31,! -5')! -5.+/9&--0A+! *$@+'4-! 9&D! )&A+! $++3! =*/9+1! A+/D! +&/%D! $D!
2/&A04&40*3&%! 03-4&$0%04D,! &4! 4)+! A+/D! $+203032! *=! 4)+! %0=+! *=! 2&%&P0+-E! c''*/1032! 4*! 4)+!
'%&--0'&%!4)+*/D!4)&4!7*5%1!20A+!20&34!$%&'(!)*%+-E!W*3-01+/032!4)0-!3+7!.*034!*=!A0+7!04!
!
!
"K!
7*5%1!20A+!-5$S'/040'&%!*$@+'4-,!15+!4*!4)+!+A*(+1!9&--!'*34/*%!./*'+--E!!
Conclusion$
!
64&/4032! =/*9! 4)+! 9*1+%! *=! $%&'(! )*%+,! $&-+1! *3! 6')7&/8-')0%1! &31! :+//! 9+4/0'-! 7+!
034/*15'+!47*!-5''+--0A+!')&32+-!*=!'**/103&4+-E!C)+!=0/-4!/+A+&%-!4)+! 4/5+! 531+/%D032!
4*.*%*2D! *=! 4)0-! =*5/! 109+3-0*3&%! )D.+/-5/=&'+,! +%0903&4032! -0325%&/04D,! -)*7032! 4)&4!
4)0-!%&-4!'*9+-!=/*9!&!7/*32!')*0'+!*=!-.&'+!'**/103&4+!&31!0-!3*4!&3!034/03-0'!&44/0$54+E!!
!
C)+!)*/08*3,!0-!-40%%!&!*3+S7&D!9+9$/&3+!7)0')!$+'*9+-!4)+!901!.&/4!*=!&!-.&'+!$/012+!
%03(032! 4)+! 47*! WBC! -D99+4/0'&%! h03(*7-(0&3! -+'4*/-! *=! &! $09+4/0'! -4/5'45/+E! <)+3!
4/+-.&--032,!9&44+/!2+4-!3+2&40A+!9&--E!!
!
c!-+'*31!')&32+!*=!409+S9&/(+/,!03-.0/+1!$D!4)+!*3+!034/*15'+1!$D!f110324*3!(++.-!4)+!
9+4/0'!]*/+3480&3!&4!03=0304+E!C*!4)+!&80954&%!:+//Q-!=/&9+S1/&22032!+==+'4!04!&11-!/&10&%!
=/&9+S1/&22032E! C)+! =/++! =&%%! 409+! *=! &! 4+-4! .&/40'%+! 4*7&/1-! 4)+! 6')7&/8-')0%1! 4)/*&4!
-.)+/+!$+'*9+!=0304+,!7)0')!9&(+-!4)+!$%&'(!)*%+!9*1+%!G5+-40*3&$%+E!E!!
!
C)+! CHI! 9*1+%! ./+10'4-! 4)&4! 7)+3! 4)+! /&105-! *=! &! 3+54/*3! -4&/! /+&')+-! KELMN! O-! 4)+!
./+--5/+!&4!4)+!'+34/+!$+'*9+-!03=0304+E!<+!&--59+!04!'*//+-.*31-!4*!&!.)D-0'&%!'/040'04D,!
7)0')!7*5%1!&..+&/-!before!2+*9+4/0'&%!'/040'04D!&31!./+A+34!4)+!$0/4)!*=!&!-0325%&/04DE!
<+! '*3@+'45/+! 4)&4! 4)0-! ./+--5/+! /0-+! 2*+-! 704)! &! /0-+! *=! 4)+! %*'&%! -.++1! *=! %02)4! 4*!
03=0304D! &31! '&5-+! &! 2+*9+4/0'&%! -5/2+/D! 7)0')! 9*10=0+-,! 15/032! &! -)*/4! 409+! 4)+!
2+*1+-0'!1+-023!704)! %*'&%!9&--!03A+/-0*3!./*'+--E! C)0-!G5+-40*3-!$%&'(!)*%+! 9*1+%,!&-!
/+'+34%D!1*3+!$D!6E!?&7(032![14]E!!
!
C)0-!9+')&30-9!7*5%1!%0904!4)+!3+54/*3!-4&/Q-!9&--!4*!R!-*%&/!9&--+-E!<+!-522+-4!4)&4!
-090%&/!9+')&30-9!'*5%1!4&(+!.%&'+!&4!4)+!'+34+/!*=!2&%&P0+-!&31!1/&03032!*==!&%%!9&44+/!
03!+P'+--,!4/&3-=*/9032!04!034*!3+2&40A+!9&--!&31!./+A+34032!4)+!$0/4)!*=!&!-0325%&/04DE!E!
!
References$
$
j"k! :E! 6')7&/8-')0%1! ! T!o$+/! 1&-! U/&A04&40*3&%! +03+-! h&--+3.53(4+-! 3&')! 1+/!
f03-4+03+-')+3!C)+*/D!V!6048$+/E!B/+5--E!c(&1E!<0--E!>+/%03,!.E"gLS"Le!X"L"eY!
!
jNk!OE!BE!:+//,!!T!U/&A04&40*3&%!^0+%1!*=!&!6.033032!h&--!&-!&3!fP&9.%+! *=! c%2+$/&0'&%%D!
6.+'0&%!h+4/0'-$»$!B)D-E!O+AE!]+4E!"",!NRaSNRg!X"LeRY!
!
jRk!cE6&()&/*A,!T!WB!A0*%&40*3!&31!$&/D*30'!&-D99+4/D!*=!4)+!p30A+/-+!V!q)fC^!B0-r9&!d!
#!RNSRd!X"LeaY!s!C/&15'40*3!ifCB!]+44E!d!#!NMSNa!X"LeaY!!
!
jMk! cE! 6E! f110324*3,! T!c! '*9.&/08*3! *=! <04)+)+&1r-! &31! f-03-4+03r-! =*/95%t!V! `&45/+!
113!#!"LN!X"LNMY!!
!
jdk!iEhE! 6*5/0&5,! T!64/5'45/+! *=! 1D3&90'&%! -D-4+9-!V! >0/()&5-+/! f1E! X"LLgY!&31! _53*1!
!
!
""!
f1E!X"LaMY!
!
jek!iEOE!H..+3)+09+/!&31!?E63D1+/,!uH3!'*34035+1!U/&A04&40*3&%!W*34/&'40*3v!B)D-E!O+AE!
56,!Mdd!X"LRLY!
!
jak! iEBEB+404,! T!c3! 034+/./+4&40*3! *=! '*-9*%*20'&%! 9*1+%! 704)! A&/0&$%+! %02)4! A+%*'04D!V!
h*1+/3!B)D-0'-!]+44+/-!c,!I*%E!R,!3w"e,!.E"dNa!X"LggY!
!
jgk! iEBEB+404,! T!C703! p30A+/-+! '*-9*%*2D!V! c-4/*3*9D! &31! 6.&'+! 6'0+3'+,! NNe! ..E! NaRS
RKa!X"LLdY!
!
jLk!iEBE!B+404,! BEh01D!x!^E]&31-)+&4!T!C703!9&44+/!&2&03-4!1&/(! 9&44+/E!F34+/3E!h++4E!*3!
c4/*.)D-E!&31!W*-9E!y<)+/+!0-!4)+!9&44+/!l!y!V!h&/-+0%%+!i53+!NdSNL!XNKK"Y!
!
j"Kk! ! iEBEB+404,! T!C)+! 90--032! 9&-! ./*$%+9!V! F%! `5*A*! W09+34*! >,! I*%E! "KL! ! .EeLaSa"K!!
X"LLMY!
!
j""k!!iEBEB+404,!T!H3!&!.+/15!%&!9*040z!1+!%Qp30A+/-!V!f1E!c%$03!h0')+%!X"LLaY!
!
j"Nk!?E>*310,!T!`+2&40A+!9&--!03!U+3+/&%!O+%&40A04D!V!O+AE!*=!h*1E!B)D-E!NL!3wR!X"LdaY!
!
j"Rk!6'){1+%!O!+4!&%E!c31!#!c!-4&/!03!&!"dEN!*/$04!&/*531!&!-5.+/9&--0A+!$%&'(!)*%+!&4!4)+!
'+34/+!*=!4)+!h0%(D!<&D,!`&45/+,!M"L,!"a!*'4E!eLMSeLe!XNKKNY!
!
j"Mk! 6E?&7(032!#! F3=*/9&40*3! B/+-+/A&40*3! &31! <+&4)+/! ^*/+'&-4032! =*/! >%&'(! ?*%+-E!
&/n0A!#!"MK"Edae"!XNN!@&3E!NK"MY!
!
$$
Annex$:$Didactic$model$
F4!'&3!$+!5-+=5%!4*!20A+!-*9+!09&2+-!*=!4)+!./*'+--E!!
Fig.5 : The two surfaces figures the gravitational potential, « in mirror ».
!
!
"N!
Fig. 6 : Stellar wind brings matter
Fig.7 : Matter in excess is evacuated. Its mass is inverted
and it spreads away.
Fig.8 : Stand by in sub-critical conditions
!
!
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Recent 3d mapping of dark matter (Fort and Meillier, 1999) implies the existence of "dark clusters", which would be exclusively composed by dark matter. Exploring a new way, one assume in a first step that dark matter owns a negative mass and energy and shows it fits observational data: VLS, spiral structure formation, confinement and rotation curves of galaxies, gravitational lensing. By passing it suggests a possible scenario for galaxies' formation. A new geometrical description of matter-dark matter couple is proposed, through a two-points cover of a M4 manifold, forming a two folds (F , F) space-time structure. The fold F is called the twin fold (Sakharov 1967) and the matter it contains is called the twin matter. In such geometrical background matter and (negative mass and energy) twin matter interact only through gravitational forces, the last one being optically invisible from our fold of the Universe. Our world and the twin world being disconnected this prevents encounters between opposite energy particles. Group theory shows that matter-antimatter duality holds in the twin universe and that it is filled by CPT and PT-symmetrical matter, so that the Feynman PT-symmetrical antimatter is nothing but the antimatter of the twin fold, while CPT-symmetrical composes its matter, going backwards in time, enantiomorphic, and owing opposite electric charge. We present a coupled field equations system. Exact solutions are derived, including spherically symmetric one, similar to Schwarzschild. We get conjugated geometries, with opposite scalar curvatures R = -R. It is shown that the presence of twin matter in an adjacent portion of space creates induced local negative curvature in our fold, which goes with negative gravitational lensing effect. Comparizon with observational data is discussed. As a cosmological model the couple universe-twin universe shows different histories. The twin matter acts as a repulsive matter and accelerates the expansion of our universes, playing the role of a "cosmological constant". Conversely the expansion of the twin in slowed down. For radiative era we develop a variable speed of light model, which ensures the homogeneity of the early univers: the inflation hypothesis is no longer necessary. Time's nature is discussed. In Newtonian approximation, joint gravitational instability theory is developed, based on two coupled Jeans-like equations. Starting from the TOV equation, we build a model of sleaking neutron star (SNS) in which a central space bridge, connecting fold F and F, drains off any excess of matter in the twin space, preventing geometrical criticity. This challenges black hole model, whose validity is contested on theoretical grounds.
Article
Full-text available
Algebraically special solutions of Einstein's empty-space field ; equations that are characterized by the existence of a geodesic and shear-free ; ray congruence are considered. A class of solutions is presented for which the ; congruence is diverging and is not necessarily hypersurface orthogonal. (C.E.S.);
Article
Full-text available
A new field equation is proposed, associated to anS 3×R 1 topology. We introduce a differential involutive mappingA which links any point of space σ to the antipodal regionA(σ). According to this equation, the geometry of the manifold depends both on the energy-momentum tensorT and on the antipodal tensorA(T). Considering time-independent metric with low fields and small velocities, we derive the associated Poisson equation, which provides cluster-like structures interacting with halo-like antipodal structures. The second structure helps the confinement of the first. It is suggested that this model could explain the missing-mass effect and the large-scale structure of the Universe.
Article
Full-text available
Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.
Article
DOI:https://doi.org/10.1103/RevModPhys.29.423
Article
A cosmological model with variable c, h, G is proposed. The characteristic lengths of physics (Compton, Jeans, Schwarzschild) are assumed to vary like R(t). Both light and matter's worlds are found to obey the same law R&ap;t2/3. The Planck constant is found to vary like t and the gravitation one like 1/R, while the Planck length vary like R. The particle masses follow m&ap;R. The Hubble law still applies. The redshifts come from the secular variation of the Planck constant.
Article
When all thermonuclear sources of energy are exhausted a sufficiently heavy star will collapse. Unless fission due to rotation, the radiation of mass, or the blowing off of mass by radiation, reduce the star's mass to the order of that of the sun, this contraction will continue indefinitely. In the present paper we study the solutions of the gravitational field equations which describe this process. In I, general and qualitative arguments are given on the behavior of the metrical tensor as the contraction progresses: the radius of the star approaches asymptotically its gravitational radius; light from the surface of the star is progressively reddened, and can escape over a progressively narrower range of angles. In II, an analytic solution of the field equations confirming these general arguments is obtained for the case that the pressure within the star can be neglected. The total time of collapse for an observer comoving with the stellar matter is finite, and for this idealized case and typical stellar masses, of the order of a day; an external observer sees the star asymptotically shrinking to its gravitational radius.
Über das Gravitational eines Massenpunktes nach der Einsteineschen Theory » Sitzber
  • K Schwarzschild
K. Schwarzschild « Über das Gravitational eines Massenpunktes nach der Einsteineschen Theory » Sitzber. Preuss. Akad. Wiss. Berlin, p.189-­‐196 (1916)
« CP violation and baryonic asymmetry of the Universe » ZhETF Pis
  • A Sakharov
A.Sakharov, « CP violation and baryonic asymmetry of the Universe » ZhETF Pis'ma 5 : 32-­‐35 (1967) ; Traduction JETP Lett. 5 : 24-­‐27 (1967)
« A comparizon of Withehead's and Esinstein's formulae
  • A S Eddington
A. S. Eddington, « A comparizon of Withehead's and Esinstein's formulae » Nature 113 : 192 (1924)