ArticlePDF Available

Influence of the ambient temperature during heat pipe manufacturing on its function and heat transport ability

Authors:

Abstract and Figures

Heat pipe is heat transfer device working at a minimum temperature difference of evaporator and condenser. Operating temperature of the heat pipe determine by properties of the working substance and pressure achieved during production. The contribution is focused on the determining the effect of the initial surrounding temperature where the heat pipe is manufactured and on the obtaining performance characteristics produced heat pipes in dependence of manufacturing temperature. Generally hold, that the boiling point of the working liquid decrease with decreasing ambient pressure. Based on this can be suppose that producing of lower ambient temperature during heat pipe manufacturing, will create the lower pressure, the boiling point of the working fluid will lower too and the heat pipe should be better performance characteristics.
Content may be subject to copyright.
a
alexander.caja@fstroj.uniza.sk
Influence of the ambient temperature during heat pipe manufacturing on
its function and heat transport ability
A. ýaja
1a
, P. Nemec
1
, M. Malcho
1
1
Department of power engineering, University of Žilina, Univerzitná 8215/1, Žilina, Slovakia
Abstract. Heat pipe is heat transfer device working at a minimum temperature difference of evaporator and
condenser. Operating temperature of the heat pipe determine by properties of the working substance and
pressure achieved during production. The contribution is focused on the determining the effect of the initial
surrounding temperature where the heat pipe is manufactured and on the obtaining performance characteristics
produced heat pipes in dependence of manufacturing temperature. Generally hold, that the boiling point of the
working liquid decrease with decreasing ambient pressure. Based on this can be suppose that producing of
lower ambient temperature during heat pipe manufacturing, will create the lower pressure, the boiling point of
the working fluid will lower too and the heat pipe should be better performance characteristics.
1 Introduction
Miniaturization of electronic components and increases
their performance parameters is also associated with an
increase in the thermal power dissipation, which
contributes significantly to increasing the operating
temperature of these electronic elements, thereby
reducing their reliability. With this phenomenon is
encountered mainly in power electronics and
mechatronics for the design of increasingly complex and
energy-consuming equipment. They arise often
conflicting requirements for intensification of heat
transfer resulting from the trend of reducing these
facilities while maintaining the original performance, or
even an his increase and levy the necessary heat loss in
order to maintain their safe operating temperature. As
these devices have less power and are enclosed in a
sufficiently large space, the heat dissipation of heat
sufficient transport of heat by conduction to the ribbed
coolers and radiator fins transfer of free convection in the
environment, possibly with forced convection airflow
from cooling fans. But when the powerful electronic
devices are space-constrained, or if that requirement for
minimizing their size, it is a classic method of cooling is
sufficient. Therefore, we are finding new ways or
intensification of heat transfer. The coolers with heat
pipes are currently showing as a progressive cooling
system. These devices are structurally and materially to
the relatively simple and affordable devices capable of
very efficiently dissipate heat in a wide temperature
range. Heat pipes are used for cooling equipment with a
wide range of cooling performance, from the smallest (of
the order of 100 W) in computing, to the heat pipes
designed for cooling nuclear reactors or smelters
performance of the order of 108 W. Material heat pipes
and their job descriptions are chosen depending on the
environment in which they are to be applied and the
desired operating temperature. Heat pipes can be
especially useful for heat transfer from a spatially limited
places for heat removal from the sealed enclosure, they
allow heat flow through the flow of steam and condensate
pay in the space in which it is possible to implement the
transfer of heat by convection and where effective natural
cooling be ensured. Evaporation of the tube resides in
thermal contact with a heat source, and the condensation
of the heat is discharged frequently ribbed heat transfer
surface area. Working fluid in the heat pipe is at
operating temperature is in the liquid and in the vapor
phase. If the evaporation of the condensation tube is
heated and cooled, there is a continuous evaporation of
liquid on the inner surface of the evaporation tube, the
flow of vapor from the evaporation of the mercury
condensation of a vapor to condense on the wall of the
condensation. Depending on how it is ensured the return
flow of condensate in the tube working fluid, the heat
pipe divided into gravity and capillary.
2 Heat pipe and its properties
Heat pipe is a device that is used to heat transfer the place
with a high temperature place at a lower temperature
place. It works on the principle of change the physical
state working fluid inside the heat pipe. Operating
temperature range is dependent on the used material and
used the heat pipe working fluid [1, 2]. In various
experimental measurements it was found that even if the
DOI: 10.1051/
C
Owned by the authors, published by EDP Sciences, 2014
,
/
02012 (2014)
201
67
epjconf
EPJ Web of Conferences
46702012
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20146702012
heat pipe were made of the same materials and used
the same number and types of process materials,
nevertheless be the heat pipes had the different transport
capabilities.
One possible cause could be a different temperature
during filling and exhausting heat pipes. This assumption
is confirmed by experimental measurements which were
used in three different working materials at three different
operating temperatures. As working materials were used
water, ethanol and Fluorinert FC72. As the most widely
used working fluid is ethanol for their application
possible also at temperature below 0 °C. Water compared
to ethanol has better thermal capacity. Fluorinert FC72
was used out to determine its characteristics as a working
medium. The Fluorinert FC72 is electrically non-
conductive substance and its use should be of great
importance especially in electrical installations where the
risk keeping of electricity in the event of failure of the
cooling device, which is undesirable [5].
Table 1. Absolute pressure of working medium at ambient
temperature 20 °C.
Temperature
[°C]
Absolute
pressure [kPa]
Water
20 2,34
Ethylen
20 7,40
Fluorinert FC72
20 23,4
3 Measuring device and measuring
values
Figure 1. A heat pipe in an ice bath cooled to 0° C.
Experimental measurement was implemented nine
measurements on gravity heat pipe in a vertical position.
For heat pipes, were implemented nine measurements
with different fillings and performance at different
temperatures. The water, ethanol and Fluorinert FC72
were used as working fluids [7]. Working fluids were
performed at temperatures of 20 °C, 0 °C, - 20 °C. For
the calculation of transferred power heat of the heat pipe
is used calorimetric method. For the purpose of
calculating the transmitted power is determined by the
temperature difference of cooling water that flows
through the condenser, sensed at the inlet and outlet of
the radiator at a given mass flow rate and specific heat
capacity of water.
Figure 2. Heat pipe in the thermostat cooled to -20° C.
Transmitted thermal output is determined by the
relationship [9]:
Q = m . c
p
. ǻt (1)
Q - mean value of power in steady state [W]
m - mass flow rate of cooling water [kg s
-1
]
c
p
- specific heat capacity of water at constant pressure
[J kg
-1
K
-1
]
ǻt
i
- the difference of medium temperature of cooling
water in steady state [°C]
The difference of middle temperatures of cooling water is
calculated according to the relation:
ǻt
i
= t
v2
- t
v1
(2)
ǻt
i
- the difference of medium temperature of cooling
water in steady state [°C]
EPJ Web of Conferences
02012-p.2
t
v2
- the value of the outlet temperature of cooling water
[°C]
t
v1
- The value of the inlet temperature of cooling water
[°C]
Figure 3. Measuring state for measurement thermal
performance transferred by heat pipe.
The condensation part of the total heat pipe was
supplied output of about 550W and the temperature of
heating medium to be maintained at the 80 °C. Given
that, as a heat source was used older type thermostat,
where the desired water temperature has been corrected
manually, there were increased fluctuations temperature
and therefore the thermal power transmitted, which is
also shown in figure 3. On the condensation part was
mounted water cooler, which makes it possible to
relatively accurately measure the size of heat removal .
Inlet and outlet coolant in the radiator was placed
thermocouples to determine the temperature difference
needed for the calculation. Quantity having passed the
coolant was scanned ultrasonic flow KAMSTRUP.
Complete assembly of experimental equipment is shown
in figure 3. On the basis of the measurements were
constructed graphs of temperatures depending on the type
of tube and the conditions during the manufacture of
tubes themselves.
Of readings and graphs show that the filling
temperature of 20 °C, as expected, was the best working
substance with water -borne power of about 375W. As a
second working fluid in order ethyl alcohol was a power
about 300W and the last working fluid Fluorinert FC72 is
the transmitted power of about 230W . An ambient
temperature of 0 °C was again best medium is water, but
the difference between the remaining two substances
were much smaller, approximately 50W. The worst
working medium with transmitted power less than 100W
was water that was frozen and evaporation of the heat
pipe was blowing air over chilled to – 20 °C. Best
working substance was contrary ethyl transmitted power
of about 240W and soon followed with Fluorinert FC72
transmitted power of about 200W.
Figure 4. Graph showing the progress of transferred
performance each heat pipes made at an ambient temperature of
0 °C
.
4 Conclusions
Based on the experimental measurements it is
possible to say that the effect of ambient temperature has
a significant influence on the transport properties of heat
pipes. The most significant the difference was observed
for heat pipes with working medium water. At
temperature of -20 °C, the working fluid of the heat pipe
in a solid state and, therefore, be it negative pressure as
great influence, as in a liquid. However, the value of
absolute pressure at this temperature and a temperature of
20 °C is different, which results in operating temperature
the difference and hence the thermal power transported
by the heat pipes.
Given the above, it creates room for further
investigation of these dependencies. To reduce
fluctuations in temperature would be appropriate to
replace the thermostat with manual corrected for
temperature sensing thermostat with automatic
temperature and corrected. This would avoid the impact
of human error and minimize the impact of inertia
radiator. Taking simply the heat pipes and the use
thereof, it is obvious that the tube filled with water, even
if they have better transport properties such as ethanol,
are not suitable for application in the external
environment in our geographic area. So far, yet most
widely used working fluid in the heat pipe for common
applications up to 120 °C ethanol. It is a substance that
can be used in temperatures below freezing; it is
sufficiently low pour point. Operating temperature range
is set vacuum achieved in the production of heat pipe.
Thereby achieving greater depression, the sooner will
EFM 2013
02012-p.3
heat pipe work. At least we have yet to experience with
Fluorinert FC72. Has a similar property of compounds
such as ethanol, in addition, the electrically non-
conductive. It is therefore assumed its use in electrical
engineering using the right type of heat pipes.
Figure 5. Comparison of heat performance transferred by
individual heat pipes.
Acknowledgment
This work was part of the project KEGA-064ŽU-
4/2012
References
1. Ochterbeck, Jay M., Heat Transfer Handbook, 1.
Edition.M. Ben Rabha, M.F. Boujmil, M. Saadoun,
B. Bessaïs, Eur. Phys. J. Appl. Phys. (to be
published)
2. Gaugler, R. S.: Heat transfer devices, U.S. patent
2,350,348 1944.
3. Trefethen, L.: GE Tech. Int. Ser. No G15-D114,
General Electric Co., NY 1962
4. Grover, G. M., Cotter, T.P. Erikson, G.F.: Structures
of very high thermal conductance, J. Appl. Phys.
(1964)
5. Nemec, P., Jandaþka, J., Malcho, M., ERIN 2013 94
(2013)
6. Kapjor, A., Kosecová, A., Papuþík, Š., TRANSCOM
69-72 (2005)
7. Hužvár, J., Jandaþka, J., Oksanen, A. Optimization
using exergy-based methods and computational fluid,
219-224 (2009)
8. Lenhard, R. Power control and optimization, (2010)
9. Kolkovám A., Smitka, M., Malcho, M., Transcom
2013, 269-272 (2013)
10. Pilát, P., Miþicová, J. TRANSCOM 2009, 117-119
(2009)
11. Jandaþka, J., Nosek, R., Papuþík, Š. Vykurovanie 95-
98 (2011)
12. M. Malcho, S. Gavlas, R. Lenhard, Acta metallurgica
slovaca conference. Vol. 2, no. 1, 132-137 (2011)
13. F. De Lillo, F. Cecconi, G. Lacorata, A. Vulpiani,
EPL, 84 (2008)
EPJ Web of Conferences
02012-p.4
... Changes in the external ambient temperature directly affect the temperature difference that drives the working fluid properties and evaporation and condensation process of an HP, which is one of the important factors affecting the heat transfer performance of the HP [31]. Meanwhile, ambient temperature is the primary factor affecting the safety of coal gangue dumps [32]. ...
Article
Full-text available
In order to investigate the influence of ambient temperature on the temperature field of coal gangue dumps governed by heat pipes (HPs), using self-developed heat pipe and intelligent cloud monitoring software, a 1-year field test was conducted in the spontaneous combustion coal gangue dump of Danao liang. This study analyzed the temperature distribution changes of a spontaneous combustion coal gangue dump under different ambient temperatures, as well as the temperature changes of the coal gangue at different time scales. Correlation analysis between ambient temperature and coal gangue temperature was conducted, and a quadratic regression model was established for goodness of fit and significance testing. The results show that ambient temperature affects the distribution of the temperature field of the spontaneous combustion coal gangue dump under the action of the HPs, and the cooling effect on the high-temperature zone is stronger in autumn and winter. The daily change in coal gangue temperature at each measurement point is similar, showing a peak-shaped curve of low at night and high during the day. The inter-day changes of each measuring point have seasonal characteristics: the cooling rate of the high-temperature zone measuring point is affected by the ambient temperature; the seasonal characteristics of the low-temperature zone measuring point are more obvious than the high-temperature zone, and its daily average temperature is affected by the ambient temperature. The ambient temperature and the internal temperature of the coal gangue dump are correlated, and the quadratic regression equation has a high degree of goodness of fit and meets the F-test, indicating that the quadratic regression model can be used for the empirical regression formula of the ambient temperature and the internal temperature of the coal gangue dump. The results of this study provide some references for the sustainable development of mining environments.
... However, highly efficient might be a combined application of surface extension with the use of microfins and another technique, for example sintering perforated foil on the pin-fin array as presented in (Pastuszko, Wójcik, 2015). Some other methods also seem possible to be used, especially for heat pipe applications as discussed in (Nemec et al., 2009;Čaja et al., 2014 andNemec et al. 2017). ...
... However, highly efficient might be a combined application of surface extension with the use of microfins and another technique, for example sintering perforated foil on the pin-fin array as presented in (Pastuszko, Wójcik, 2015). Some other methods also seem possible to be used, especially for heat pipe applications as discussed in (Nemec et al., 2009;Čaja et al., 2014 andNemec et al. 2017). ...
Article
Full-text available
The paper deals with the important issue of boiling heat transfer enhancement using mechanical treatment of the heater surface. The surface has been modified in such a way that microfins have been produced. The application of such a structure leads to highly increased heat fluxes in relation to the smooth surface as has been presented and discussed in the paper. The experiments including distilled water and ethyl alcohol on the horizontal copper samples of 3 cm diameter have been considered. The heat flux value of microfinned surface was even nine times higher than the heat flux dissipated from the smooth surface without any coating. It proves a considerable enhancement of boiling with the application of the mechanically treated surfaces of heat exchangers.
Article
Full-text available
We consider passive inertial particles settling under the combined action of gravity and a Stokes drag in two-dimensional velocity fields with increasing complexity. The average settling speed is studied in simple steady and time-dependent cellular and in turbulent flows. Different regimes are identified in relation to the physical properties and complexity of the fields. While for steady and slowly varying weak cellular fields the settling velocity is a decreasing quadratic function of the Eulerian velocity, the same behaviour does not occur for actual turbulent fields. Large fluid velocities, on the other hand, generally speeds up the settling process. The relationships between settling times and the properties of particle trajectories in the different regimes are discussed.
Article
Scitation is the online home of leading journals and conference proceedings from AIP Publishing and AIP Member Societies
Article
Scitation is the online home of leading journals and conference proceedings from AIP Publishing and AIP Member Societies
Power control and optimization
  • R Lenhard
Lenhard, R. Power control and optimization, (2010)
  • M Malcho
  • S Gavlas
  • R Lenhard
M. Malcho, S. Gavlas, R. Lenhard, Acta metallurgica slovaca conference. Vol. 2, no. 1, 132-137 (2011)
  • F De Lillo
  • F Cecconi
  • G Lacorata
  • A Vulpiani
F. De Lillo, F. Cecconi, G. Lacorata, A. Vulpiani, EPL, 84 (2008)
Heat Transfer Handbook, 1. Edition
  • Jay M Ochterbeck
Ochterbeck, Jay M., Heat Transfer Handbook, 1. Edition.M. Ben Rabha, M.F. Boujmil, M. Saadoun, B. Bessaïs, Eur. Phys. J. Appl. Phys. (to be published)
  • L Trefethen
Trefethen, L.: GE Tech. Int. Ser. No G15-D114, General Electric Co., NY 1962
Optimization using exergy-based methods and computational fluid
  • J Hužvár
  • J Jandačka
  • A Oksanen
Hužvár, J., Jandaþka, J., Oksanen, A. Optimization using exergy-based methods and computational fluid, 219-224 (2009)