ArticlePDF Available

The Constituents of Rubus rosifolius. The Structure of Rosifoliol, a Biogenetically Significant Sesquiterpenoid



Chemical investigation of the steam-volatile oil of the shrub Rubus rosifolius yielded pregeijerene (2), β-caryophyllene (3), humulene (4), dihydroagarofuran (5), an unidentified sesquiterpene ether, hedycaryol (6) and the novel epieudesmol rosifoliol for which structure (1) is proposed. The bio- genetic significance of these constituents and the carbon-13 magnetic resonance spectra of rosifoliol and related compounds are discussed.
A preview of the PDF is not available
... Its reaction with MeMgI via protection of the alcohol functions as tetrahydropyranyl (THP) ethers yielded 11, the same triol that was also obtained through hydroboration and oxidation of 2. [25] Elemol (2) was later reisolated from various plants including Juniperus sabina and J. scopulorum, [26,27] Chamaecyparis obtusa, [28] Citrus sinensis and C. nobilis, [29][30][31] Saussurea lappa, [32] Cinnamomum camphora, [33] Fokiena hodginsii, [34] Calycanthus floridus, [35] Bunium cylindricum, [36] Gingko biloba, [37] Amyris balsamifera, [38] Canarium zeylanicum, [39] Bothriocloa intermedia, [40] Commiphora abyssimica, [41] Santolina oblongifolia, [42] Cymbopogon proximus, [43] Eremophila flaccida, [44] Piper ribesioides, [45] Monocyclanthus vignei, [46] Neocallitropsis pancheri, [47] Cryptomeria japonica, [48] and Eucalyptus maculata, [49] which demonstrates the widespread occurrence of 1 in nature. After its first report from H. angustifolia, [23] compound 1 was subsequently also isolated from the undistilled oils of the plants Phebalium ozothamnoides, [50] Rubus rosifolius, [51] Thujopsis dolabrata, [52] Thymus praecox, [53] Cryptomeria japonica and C. fortunei, [54] and Chamaecyparis obtusa. [55] For the optical rotation of 2 low negative values between [α] D = À 2 and À 9.7 are given in the literature, [24,26,27,30,32,43,46,48] while for 1 positive values between [α] D = + 24.5 and + 32.7 were reported. ...
... [55] For the optical rotation of 2 low negative values between [α] D = À 2 and À 9.7 are given in the literature, [24,26,27,30,32,43,46,48] while for 1 positive values between [α] D = + 24.5 and + 32.7 were reported. [23,[50][51][52] The enantiomer (À )-1 is only known from the bacterial hedycaryol synthase (HcS) from Kitasatospora setae ([α] D 25 = À 21.3) whose Cope rearrangement gives (+)-2 ([α] D 25 = + 10.0). [56] This finding reflects the observation that also in other cases bacteria and fungi produce the enantiomers of plant terpenes. ...
... Rosifoliol (38), [α] D = + 105, was first isolated from Rubus rosifolius, [144] after its possible formation along the lines of Scheme 11 had been proposed. [145] Its structure and absolute configuration were established by correlation with (À )-40 (Scheme 12A), [51] and also the X-ray crystal structure has been obtained. [146] The alcohol 38 was also found in Phonus arborescens, but this time with a reported negative optical rotation that was not commented on ([α] D 20 = À 17.1). ...
Full-text available
Hedycaryol is a strained 10‐membered monocyclic sesquiterpene alcohol whose chemistry is characterised by its transannular acid catalysed and thermal (Cope) reactions. The compound is widespread in nature and serves as an important biosynthetic intermediate towards many other sesquiterpene alcohols including eudesmols, guaiols and rearranged compounds. This review summarises the known natural products derived through terpene cyclisations from hedycaryol. For each compound, if it has been assigned experimentally, the rationale for its absolute configuration is discussed.
... It has also been extracted from Rubus rosifolius [25,26], a Pimpinella species , species of Skimmia [19,[54][55][56][57][58][59][60], Chloroxylon swietenia [61] and other plant species. ...
Full-text available
The compounds 11,12,13-tri-nor-sesquiterpenes are degraded sesquiterpenoids which have lost the C3 unit of isopropyl or isopropenyl at C-7 of the sesquiterpene skeleton. The irregular C-backbone originates from the oxidative removal of a C3 side chain from the C15 sesquiterpene, which arises from farnesyl diphosphate (FDP). The C12-framework is generated, generally, in all families of sesquiterpenes by oxidative cleavage of the C3 substituent, with the simultaneous introduction of a double bond. This article reviews the isolation, biosynthesis and biological activity of this special class of sesquiterpenes, the 11,12,13-tri-nor-sesquiterpenes.
... The compounds found in the two Rubus varieties, linalool, αterpineol, and geraniol were also reported in five raspberry cultivars ('Chilliwack', 'Tulameen', 'Willamette', 'Yellow Meeker' and 'Meeker') grown in the Pacific Northwest [24] . The essential oil profiles of the fruits of the two raspberry varieties, however, differ from those reported by Southwell [25] and Southwell and Tucker [26] , who examined the essential oil composition of the aerial parts of R. rosifolius. The compounds reported were cyclic sesquiterpenes and include discussion, β-kessane, pregeijerene, β-caryophyllene, humulene, dihydro agar furan, hedycaryol, Bicyclogermacrene, an unidentified sesquiterpene ether, and rosifoliol which is said to be a biogenetically interesting molecule. ...
Full-text available
The essential oil composition of two varieties of the red raspberry, Rubus rosifolius (Red, R and Wine red, WR) was examined and the antimicrobial activity and brine shrimp lethality of their extracts determined. Plant samples were obtained and their essential oil profiles assessed using GC-MS analysis. Antimicrobial activity of the crude extracts of both plant varieties was assessed against drug-resistant and foodborne pathogens and the brine shrimp ethality assay was used to assess the potential lethality of the extracts. The quantity and identified essential oil components of the fruits varied between the varieties with the R variety having in greatest quantity the monoterpene, linalool, while that of the WR variety was found to be the sesquiterpene, α-cadinol. Analysis of the antimicrobial activity of the extracts against the growth of drug resistant pathogens showed the methanol extracts having greatest activity with zones of inhibition of 11 and 13 mm (for the R and WR varieties, respectively) against methicillin-resistant Staphylococcus aureus (MRSA). The methanol extracts also exhibited minimal activity against several food-borne pathogens including two strains of Escherichia coli, Listeriamono cytogenes and Enterobacter aerogenes. Brine shrimp lethality of the various extracts revealed that the essential oils of both plant varieties had the greatest activity with a LC50 value of 63 and 48 ppm for RHex and WRHex, respectively. The biological activities of the fruit extracts indicate that their utilization in the production of functional foods, nutraceuticals and pharmaceuticals should be further explored.
... Nevertheless, the stereochemistry of eudesm-5-en-11-ol was not reported by the authors. Matter-of-factly, some guai-5-en-11-ols and other eudesm-5-en-11-ols such as rosifoliol (Southwell, 1978) display similar mass spectra Ruecker and Hefendehl, 1978). Hence, after isolation and structure characterisation, compound 84 was identified as 4aH,7aH,10b-eudesm-5-en-11-ol. ...
Guaiacwood oil is a common perfume ingredient used in modern compositions for its suave woody-rosy scent. This essential oil is a byproduct of the timber industry obtained by hydrodistillation of the heartwood of Bulnesia sarmientoi, a tree native from Latin America. Despite being widely used in perfumery, guaiacwood oil has been poorly described in the past. This study aims at giving an in-depth characterisation of its chemical composition as well as disclosing the odorant compounds responsible for its characteristic fragrance. Our methodology was based on a combination of fractionation and analytical techniques, including comprehensive two-dimensional gas chromatography coupled to mass spectrometry and preparative capillary-gas chromatography. The entire analytical work led to the isolation of 20 constituents among which 14 have never been reported so far in natural extracts. Each isolated compound was fully characterised by spectroscopic methods. Finally, the accurate knowledge of the chemical composition permitted the identification of the odour-active constituents by gas chromatography-olfactometry.
Full-text available
Les bryophytes sont des végétaux méconnus aux propriétés biologiques remarquables. Leur importante résistance face aux bactéries, virus, champignons ou encore herbivores en font des substrats particulièrement intéressants pour la recherche phytochimique. Pourtant, seuls 10 % d'entre elles ont été étudiées et déjà plus d'une centaine de molécules nouvelles avec parfois des activités biologiques remarquables ont été recensées. En Corse, aucune des 574 espèces n'avait encore été étudiées.Dans le cadre de ces travaux de thèse, nous nous sommes intéressés aux métabolites volatils des bryophytes de Corse et plus particulièrement à quatre hépatiques : Scapania undulata, Frullania tamarisci, Conocephalum conicum et Plagiochila porelloïdes. Le but de notre étude était d'initier les premières caractérisations chimiques des bryophytes insulaires. Afin d'avoir une vision élargie de leurs métabolites volatils, nous avons réalisé : des hydrodistillations permettant d'obtenir l'huile essentielle et l'hydrolat de chacune, des extractions à l'oxyde de diéthyle ainsi que l'analyse par SPME de leurs fractions volatiles. Toutes ces matrices ont été étudiées par CPG-DIF et CPG/MS-IE en routine puis, lorsque cela était nécessaire, nous avons procédé à des analyses complémentaires sur l'huile essentielle et/ou l'extrait incluant des fractionnements successifs, des expériences de RMN et des hémisynthèses.Les quatre espèces étudiées présentent des profils chimiques très différents marqués par des métabolites aux structures complexes et peu communes.Chez S. undulata, nous avons principalement relevé des constituants de type cadinane et muurolane comme l'épi-cubénol qui est majoritaire quelle que soit la matrice mais aussi le τ-muurolol et plusieurs cadinènes. F. tamarisci, est dominée par des pacifigorgianes dont le tamariscol, un sesquiterpène alcool caractéristique de l'espèce ou encore le pacifigorgiol, identifié pour la première fois chez cette espèce. Parmi ses métabolites, plusieurs lactones sesquiterpéniques ont été repérées (12,2 à 32,2 % dans l'huile essentielle), dont la γ-dihydrocyclocostunolide que nous décrivons pour la première fois en tant que substance naturelle.Les métabolites volatils de l'espèce C. conicum sont principalement des monoterpènes de type thujane, avec le sabinène comme composé majoritaire mais aussi plusieurs brasilanes dont le conocéphalénol, caractéristique de l'espèce. Le travail a été l’occasion d’observer l’instabilité chimique de ce composé dans CDCl3, le solvant d'analyse classiquement utilisé pour les analyses RMN. L’étude de cette dégradation à la cinétique rapide a permis de décrire pour la première fois le brasila-1(9),5-diène.Bien que l'huile essentielle et l'extrait n'aient été caractérisés que partiellement (63,0 à 76,8 % et 68,2 à 80,1 % respectivement), les travaux réalisés sur l'espèce P. porelloïdes ont permis d’identifier trois nouveaux alcools sesquiterpéniques dont deux de type humbertiane, les isomères E/Z du p-menth-1-èn-3-[2-méthylbut-1-ènyl]-8-ol et un acyclique, le (3,7,11)-triméthyl-dodéc-4E,6E,10-atrièn-3-ol.De plus, l'évaluation de leurs propriétés antimicrobienne, allélopathique, cytotoxique et antiparasitaire ont permis d'identifier plusieurs candidats prometteurs qu’il convient de soumettre à des analyses par bioguidage. Par exemples, l'huile essentielle de F. tamarisci est capable de restaurer et amplifier jusqu’à 64 fois l'activité d'un antibiotique sur une bactérie multi résistante surexprimant les pompes d'efflux et l'huile essentielle de P. porelloïdes présente une activité antiparasitaire et cytotoxique remarquable.
Main metabolites of the microbial oxidation of (6R)-aristolenepoxide are 5α-, 9β-, 10β-, and 15-hydroxy-aristolenepoxide. Aristolene-7,14-oxide-6α-ol was also formed. Some of them showed modest phytotoxic activity in the cress test, where 9β-hydroxy-aristolenepoxide is the most active one. The actvity of the strains mirrored their phylogenetic positions. Bacteria were most active in oxidizing 15-hydroxy-aristolenepoxide to the aldehyde, while fungi, especially Basidiomycotina, were more active in the hydroxylation of the substrate than bacteria.
Full-text available
The essential oils obtained by hydrodistillation of leaves, stem and roots of Pleiospermium alatum were analyzed by Gas Chromatography and Gas Chromatography—Mass Spectrometry. Thirty-one components comprising 97.3% of the leaf oil, twenty-nine components comprising 96.1% of the stem oil and twenty-three components comprising 95.0% of the root oil were identified. The major components in the leaf oil were elemol (12.5%) followed by pregei- jerene (10.5%), α-cadinol (8.5%) and geijerene (8.5%). The stem oil contained elemol (12.4%), α-cadinol (11.1%) and epi-a-muurolol (9.4%) as the major components, while the root oil had α-cadinol (27.9%), α-bisabolol (11.5%), α-santalene (11.0%) and elemol (9.8 %) as the major components.
Full-text available
The leaf oils of the Australian members of the genera Geijera and Coatesia have been examined by GC and GC/MS. Coatesia paniculata gave a consistent oil in which the principal components were α-pinene (27–57%) and β-caryophyllene (4–12%). Geijera linearifolia gave a leaf oil dominated by spathulenol (10–17%), geranyl acetate (4–9%), bicyclogermacrene (3–6%) and (E,E)-farnesol (23–30%). Four chemotypes of Geijera parviflora were detected: (1) in which geijerene/pregeijerene and linalool predominated, (2) in which linalool and α- and β-eudesmol predominated, (3) in which α-pinene and camphene predominated and (4) in which phloroacetophenone dimethyl ether predominated. Geijera salicifolia also existed in several chemotypes, one of which contained large amounts of phloroacetophenone dimethyl ether (> 65%). Also present in this particular chemotype was the geijerene/pregeijerene and attendant C12H18 complex, totaling approximately 5%. In a second sample of this chemotype, this complex was absent. A second chemotype of this species contained α-pinene (38.6%), camphene (22.4%) and limonene (7.5%) as principal components.
β-Pinene (35.0%, 53.8%) was the major component of both the aerial parts and the root oils of Pteryxia terebinthina var. californica, respectively. β-Phellandrene (12.2%) was the other most abundant component of the oil from aeial parts while δ-3-carene (14.2%) was the second abundant component of the root oil.
Full-text available
Two minor consituents from the essential oil of Rubus rosifolius have been identified as isokessane and β-kessane by spectroscopic and chemical methods. Two dimensional NMR studies defined the stereochemistry of these ethers and enabled a complete C and H assignment to be proposed. The assigned structures are consistent with those of partially characterized ethers obtained chemically from kessane derivatives from Japanese valarian, Valeriana officinalis. Treatment of isokessane with sodium iodide/chlorotrimethylsilane gave β-kessane.
The steam-volatile leaf oil of Phebalium ozothamnoides has been shown to contain elemol as the major component and α-pinene, myrcene, α- and β-eudesmol as minor components. Extraction of the leaf yielded hedycaryol, the heat-labile precursor of elemol.
  • P Pesnelle
  • B Corbier
  • P Teisseire
  • Parfum
  • Cosmet
  • R Kaiser
  • P Naegeli
  • Tetrahedron Lett
  • A Kato
  • M Wu
  • M D Yoshikoshi
  • A Andersen
Pesnelle, P., Corbier, B., and Teisseire, P., Parfum., Cosmet., Savons, 1971, 1, 637. 34 Kaiser, R., and Naegeli, P., Tetrahedron Lett., 1972, 2009. 35 Homma, A,, Kato, M., Wu, M. D., and Yoshikoshi, A., Tetrahedron Lett., 1970, 231; Andersen, N. H., Tetrahedron Lett., 1970, 1755. 36 Andersen, N. H., Falcone, M. S., and Syrdal, D. D., Tetrahedron Lett., 1970, 1759. 37 BOX, V. G. S., Chan, W. R., and Taylor, D. R., Tetrahedron Lett., 1971, 4371.
  • S C Bhattacharyya
  • A S Rao
  • A M Shaligramm
  • C H E M Ind
30 Bhattacharyya, S. C., Rao, A. S., and Shaligramm, A. M., C h e m Ind. (London), 1960,469; Shaligramm, A. M., Rao, A. S., and Bhattacharyya, S. C., Tetrahedron, 1962, 18, 969.
  • A F Thomas
  • M Ozainne
  • R Decorzant
  • F Naf
  • G Lukacs
38 Thomas, A. F., Ozainne, M., Decorzant, R., Naf, F., and Lukacs, G., Tetrahedron, 1976,32,2261. 39 Rohmer, M., Schwartz, A. C., and Anton, R., Phytochemistry, 1977, 16, 773.
6-CH3; 1.69, m, h(C6D6) c. 0.44 A(CfiDfi) +0.18, H4eq; 2.53, dd, J 4 a x , ~ a x 11 A(C6D6) $0.25, H4ax; c. 2.6, m, A(C6D,) c. 0.40, H 10; 5.77, bs, A(C6D6) -0.01, H 2 Mass spectrum
  • A Hz
  • Jz
Hz, A(CGD6) $0.32, 10-CH3; 1.32, s, A(C6Ds) f 0.43. 6-CH3; 1.69, m, h(C6D6) c. 0.44, (H5)2, (H%, ( H ~ ) z, (H9)2: 2.43, dt, JZ,,,~ 0.6, J4eq,, 4, A(CfiDfi) +0.18, H4eq; 2.53, dd, J 4 a x, ~ a x 11, J4ax,5eq 5, A(C6D6) $0.25, H4ax; c. 2.6, m, A(C6D,) c. 0.40, H 10; 5.77, bs, A(C6D6) -0.01, H 2. Mass spectrum: 178 (100°/,), 163 (27), 151 (14), 150 (50), 149 (22), 136 (72), 135 (48). 123 (33), 122 (58), 121 (42), 109 (42), 107 (39), 93 (44), 79 (46), 41 (58). 2,4-Dinitvophenylhydrazone, m.p. 168-169", [a]? f 148" (c, 0.2). v,,, 1638, 1601,1350, 1300,1255,1130,742 cm-l; i,,, 223 (12000), 258 (11000), 382 (19000)nm. P.m.r. 6 (CDCI,) 1.22, d, J I O, M e 8 HZ, 10-CH3; 1.23, S, 6-CH3;
  • H Sulser
  • J R Scherer
  • K L Stevens
Sulser, H., Scherer, J. R., and Stevens, K. L., J. Org. Chem., 1971, 36, 2422; Huffman, J. W., and Zalkow, L. H., Tetrahedron Lett., 1973, 751.
  • H Schildknecht
  • H Holtkotte
  • D Kraus
  • H Tacheci
41 Schildknecht, H., Holtkotte, H., Kraus, D., and Tacheci, H., Justus Liebigs Ann. Chem., 1975, 1850.
49 Southwell, I. A., Phytochemistry Constituents of Rubus rosifolius Eudalene (7) Rosifoliol (280 mg) was mixed with palladium on charcoal (lo%, 140 mg) and heated on an oil bath at 300" for 30 min. I.r
  • A J Birch
  • J Grimshaw
  • A R Penfold
  • N Sheppard
  • R N R V H Speake
  • M D E V Southwell
47 Birch, A. J., Grimshaw, J., Penfold, A. R., Sheppard, N., and Speake, R. N., J. Chem. Soc., 1961, 2286. 48 Jones, R. V. H., and Sutherland, M. D., Chem. Commun., 1968, 1229. 49 Southwell, I. A., Phytochemistry, 1970, 9, 2243. 50 Lassak, E. V., and Southwell, I. A,, Znt. J. Flau. Food Add., 1977, 8, 126. Constituents of Rubus rosifolius Eudalene (7) Rosifoliol (280 mg) was mixed with palladium on charcoal (lo%, 140 mg) and heated on an oil bath at 300" for 30 min. I.r., U.V. and co-chromatographic comparison with authentic material obtained by treating eudesmol from Melaleuca uncinata in an identical manner showed that the product was substantially eudalene (7).
  • A Mcdowell
A,, and McDowell, P. G., J. Chem. Soc., Chem. Commun., 1977, 111.