ArticlePDF Available

Healthy, Wealthy, and Wise: Retirement Planning Predicts Employee Health Improvements

Authors:

Abstract and Figures

Are poor physical and financial health driven by the same underlying psychological factors? We document that the decision to contribute to a 401(k) retirement plan predicts whether or not an individual will act to correct poor physical health indicators revealed during an employer-sponsored health examination. Using this examination as a quasi-exogenous shock to employees’ personal health knowledge, we examine which employees are more likely to improve health, controlling for differences in initial health, demographics, job type, and income. We find that existing retirement contribution patterns and future health improvements are highly correlated. Those that save for the future by contributing to a 401(k) improved abnormal health test results and poor health behaviors approximately 27% more than non-contributors. These findings are consistent with an underlying individual time discounting trait that is both difficult to change and domain interdependent, and that predicts long-term individual behaviors on multiple dimensions.
Content may be subject to copyright.
!"#$%&'()*"#$%&'()#+,)*-."/)0"%-1"2"+%)3$#++-+4)31",-5%.)
627$8'"")!"#$%&)92718:"2"+%.)
;-28%&')<=>$"1)#+,)?#2#1)3-"15")
@$-+)A=.-+"..)B5&88$()*#.&-+4%8+)C+-:"1.-%')-+)B%D)?8=-.)
)
!"#"$%&'(!")*%+(
(
Abstract:)),%"()**%()'-#.&$/($01(2.0$0&.$/('"$/+'(1%.3"0(4-(+'"(#$5"(601"%/-.07()#-&'*/*7.&$/(2$&+*%#8((
9"(1*&65"0+(+'$+(+'"(1"&.#.*0(+*(&*0+%.46+"(+*($(:;<=>?(%"+.%"5"0+()/$0()%"1.&+#(@'"+'"%(*%(0*+($0(
.01.3.16$ /(@.//($&+(+*(&*%%"&+()**%()'-#.&$/('"$/+'(.01.&$+*%#(%"3"$/"1(16%.07($0("5)/*-"%A#)*0#*%"1 (
'"$/+'("B$5.0$+.*0C(D#.07(+'.#("B$5.0$+.*0($#($(E6$#.A"B*7"0*6#(#'*&>(+*("5)/*-""#F()"%#*0$/('"$/+'(
>0*@/"17"G(@"("B$5.0"(@'.&'("5)/*-""#($%"(5*%"(/.>"/-(+*(.5)%*3"('"$/+'G(&*0+%*//.07(2*%(1.22"%"0&"#(.0(
.0.+.$/('"$ /+' G(1 " 5 * 7 %$ ) ' .&# G(H* 4(+-)"G($01(.0&*5 "C((9 " (2.0 1(+' $ +("B.#+.07(%"+.%"5"0+(&*0+%.46+.* 0(
)$++"%0#($01(26+6%"('"$/+'(.5)%*3"5"0+#($%"('.7'/-(&*%%"/$+"1C(I'*#"(+'$+(#$3"(2*%(+'"(26+6%"(4-(
&*0+%.46+.07(+*($(:;<=>?(.5)%*3"1 ($40*%5$/('"$/+'(+"#+(%"#6/+#($01()**%('"$/+'(4"'$3.*%#($))%*B.5$+"/-(
JKL(5*%"(+'$0(0*0A&*0+%.46+*%#C(I'"#"(2.01.07#($%"(&*0#.#+"0+(@.+'($0(601"%/-.07(.01.3.16$/(+.5"(
1.#&*60+.07(+%$.+(+'$+(.#(4*+'(1.22.&6/+(+*(&'$07"($01(1*5$.0(.0+"%1")"01"0+G($01(+'$+()%"1.&+#(/*07A+"%5(
.01.3.16$ /(4 " ' $ 3.* %# (* 0 (5 6 /+ .)/" (1 .5"0#.*0#C()
)
Keywords:);-2"),-.58=+%-+4()-+%"1%"27 81 #$)5 & 8 -5" (), 82#-+)-+%"1 ," 7 " + ," + 5 "()1" %-1" 2"+%).#:-+ 4 .()
"27$8'"")&"#$%&()E-"$,),#%#)
)
)
)
)
)
)
)
)
)
F)
)
G1")%H8)8E)%&")41"#%)>"&# :-81#$)718>$"2.)E#5-+4)%&"),":"$87",)H81$,),1-:"+)>')%&").#2")
=+,"1$'-+4)7.'5&8$84-5#$)E#5%81I)9+.=EE-5-"+%)1"%-1"2"+%).#:-+4.)#+,)5&18+-5)&"#$%&)718>$"2.)#1")
$882-+ 4 )51-. ". )-+ )28.%),":" $8 7 ", )5 8 =+ % 1-" .D)J"#1$')KLM)8E)G2"1-5#+.)8:"1)FN)#1")8>".")OJP!B()FNQFR()
H-%&),-#>"%".)-+51"#.-+4)#$28.%)E8=1)%-2" .).-+ 5")QS TN )OPU P ()FN QKRD))B-2-$#1),-.%=1>-+4)%1"+,.)"V-.%)E81)
1"%-1"2"+%)7$# ++ -+4 D)G$28.%)&#$E)8E)1"%-1"".)&#:")+8)1"%-1"2"+%).#:-+4.()H-%&)2",-#+).#:-+4.)E81)+"#1W
1"%-1"".)O#4".)XXWLYR)#%)8+$')ZQF(NNN)O0&""()FNQKRD)31":-8=.)1"."#15&)& #.)#14=",)%&#%)>8%&)&"#$%&)#+,)
.#:-+4.)>"&#:-81.)1"71"."+%)%-2")71"E"1"+5" .)OP&# 72#+)[)6$.%"-+()QSSXR().-+5")%&"')1"71"." +%)
-+,-:-,=# $. )5& 8 8 . -+ 4)%8)E81"48)E=%=1")H "# $%& ) 81)&"#$%&)E81)-22 ", -#%")58 +.=2 7%-8+D))62 7-1-5#$)1"."#15&)
8:"1H&"$2-+4$').=7781%.)%&-.)#14=2"+%D)9+,-:-,=#$)%-2")71"E"1"+5".)-+E$= "+ 5 " )&"#$%&)#+,)E-+#+5-#$)
>"&#:-81.)%&#%)-+5$=,")4#2>$-+4)OU-V8+()\#1$" '()[ )]#58 >.()FN NK R(),1=4)=." )# + , ). 28^-+4)O! # 11-.8+ ()?#= ()[)
0=%.%1_2()FNQN`)a-1>'()3"%1'()[)A-5^"$()QSSSR(),-"%)5&8 -5 " )O! =. %8+ )[ )b-+^" ()FNN KR ()5# + 5 " 1 )58+%18$)
OP&#72 #+ ()FNNX R()4'2 )#%%" +, # +5" )O U"$$#c-4+#)[)\#$2"+,-"1()FNNLR()51",-%H81%&-+"..)O\"-"1)[)
B71"+4"1()FNQN`)FNQFR)#+,)E-+#+ 5-# $).#:-+ 4.)O61.+"1W!"1.&E-"$,)"%)#$D()FNNSRD))
)G$%&8=4&)-+%"1%"278 1# $)5& 8 -5" )718>$"2.)-+),-EE"1 "+ % ) ,82 #-+.)O.=5&)# .)&" #$%& )#+, )E-+#+ 5" R)
E1"d="+%$')58"V-.%)-+)-+,-:-,=#$.()%&"1")-.).%-$$),">#%")#>8=%)H&"+)%&"."),82#-+W.7"5-E-5)>"&#:-81.).%"2)
E182)582 2 8+)=+,"1$'-+4)%-2")71"E"1"+5".)8 1)-+.%"# ,)E18 2)."7#1#%"),82#-+W.7"5-E-5)E#5%81.)#+,)
28%-:".()-+5$=,-+4)-27=$.-:-%'()58 27=$.-:-%'()-+ & -> -%-8 + (). " $EW58+%18$()Ob1","1-5^()?8"H"+.%"-+()[)
@eU8+84&="()FNNF`)?#->.8+)"%)#$D()QSST`)G1-"$')[)*"1%"+>185&()FNNFR()#+,).%1"+4%&)8E)58++"5%-8+.)H-%&)
%&")E=%=1"W." $E)OA#1%"$.)[)0-7.()FNQN`)61.+"1W!"1.&E-"$,()<#1%8+()A#$$#1,()B#2#+"fW?#1^-+()[)a+=%.8+()
FNNSRD);&".")2#+')=+,"1$'-+4)E#5%81.)#1")%&8=4&%)%8)"V7$#-+)H&')-+,-:-,=#$.)E1"d="+%$')"V&->-%)
-+58+.-. %" + %)-+ %" 1%" 2781#$)5& 8-5 " .)#518..),82#-+.)OP&#72 #+ ()QSS L`)FNNX`)b1","1-5^)"%)#$D()FNNFRD))
9+)%&-.)7# 7 " 1)H")718:-,")":-,"+5")%&#%)-+.=EE-5-"+ % )1"%-1" 2 "+ %)#+, )5& 18+ -5)&" #$%&)7 18> $"2 .) #1")
#%)$"#.%)7#1%-#$$'),1-:"+)>')58228+)%-2"),-.58=+%-+4)7 1"E" 1"+ 5".D)*")=.")7"1.8++"$)#+,)&"#$%&),#%#)
E182)"-4&%)-+,=.%1-# $)$# = + ,1 ')$8 5 #% -8+ . )%8 ).&8H )%&#%)-+,-:-,=#$),-.58=+%-+4),-EE"1"+5".)#77"#1)%8)>")
,82#-+)-+%"1,"7"+,"+%g%&")71":-8=.),"5-.-8+)8E)#+)"27$8'"")%8)E81"48)-22", -#%")-+5 82")#+,)
58+%1->=%")%8)#)YNQO^R)1"%-1"2"+%)7$#+)71",-5%.)H&"%&"1).&")H-$$)1".78+,)78.-%-:"$')%8)%&")1":"$#%-8+)8E)
7881)7&'.-5#$)&"#$%&D)@=1)#7718#5&)-.)=+-d=")-+)"V7$8-%-+4)#)d=#.-W"V84"+8=.).&85^)%8)"27$8'"")&"#$%&)
^+8H$",4")E182)#)5827#+'W .7 8+ .81",)H "$$+"..)7$#+)%8)71",-5%)H&8)-.)281")$-^"$')%8)-2718:")&"#$%&D))
GE%"1)58+%18$$-+4)E81),-EE"1"+5".)-+)-+-%-#$)&"#$%&(),"2841#7&-5.()#+,)h8>)%'7"()H")E-+,)%&#%)
1"%-1"2"+%).#: -+4.)#+,)&"#$%&)-2718:"2"+%)>"&#:-81.)#1")&-4&$')5811"$#%",D));&8.")%&#%)&#,)71":-8=.$')
5&8."+)%8 ).#:" )E81)%&" )E=%=1" )%&18= 4& )YNQO^R)58+%1->=%-8+.)-27 18 :" ,)%&"-1)&"#$%&).-4+-E-5#+%$')281")%&#+)
+8+W58+%1->=%81.(),".7-%")&#:-+4)E"H)&"#$%&),-EE"1"+5".)71-81)%8)71841#2)-27$"2"+ %# %-8 + D); & -.)
,-.%-+5%-8+)-.)-2781%#+%)>"5#=.")#$%&8=4&)&"#$%&)#+,)E-+#+5-#$),-.58=+%-+4)#77"#1)%8)>"),82#-+)
-+,"7"+ , " + %)-+ )%& " )51 8 .. W."5%-8+()E-+#+5-#$),-.58=+%-+4)-.)71",-5%-:")8E)1-0$5.&(1".78+.".)%8)&" #$%& )
-+E812# %-8 + D)G$%&8=4&)H")5#++8%),-1"5%$')2"#.=1"),-.58=+%-+4)71"E"1"+5".)#.)%&")2"5&#+-.2),1-:-+4)
>8%&)>"&#:-81.()81)58+5$=.-:"$')1=$")8=%)#$$)#$%"1+#%-:")"V7$#+#%-8+.()#,,-%-8+#$)#+#$'.".).=7781%)%&-.)
#.."1%-8+)#+,)5#.%),8=>%)8+)#$%"1+#%-:")"V7$#+#%-8+.)8E)58+.5-"+%-8=.+"..()#,:-5"W%#^-+4()E-+#+5-#$)+"",()
#+,)$-E"W"V7"5%#+5')58+.-,"1#%-8+.D)
K)
)
;&".")E-+,-+4.)#1")-2781%#+%)E81).":"1#$)1"#.8+.D)b-1.%()%& "' ).=44".%)%&#%)E81)$8+ 4W%"12)#+,)&-4&W
.%#^".),"5-.-8+.),-.58=+%)1#%".)5#+)>")-+%"1,"7"+ , " + %)#518..)-2781%#+%),82#-+.D);&-.).=44".%.)%&#%)%&")
"EE-5#5')8E)71841#2.)%&#%)%#14"%)&"#$%&)-2718:"2"+%.)2#')>")71",-5%",)>')-+,-:-,=#$)E-+#+5-#$)&-.%81'()
#+,)%&#%)5881,-+#%-+4)&"#$%&)#+,).#:-+4.)71841#2.)2#')-2718:")"EE-5-"+5')#+,)"EE-5#5'D)9%)#$.8)-27$-".)
%&#%)-E)%-2"),-.58=+ %-+4)5# +)%1= $')>")5& #+ 4", )%&18 =4 &)%1"# %2 "+ %.).=5&)#.)78H "1)O]8.&-)[)b#.%()FNQKR)81)
5822-%2"+%),":-5".)OG1-"$')[)*"1%"+>185&()FNNFR()%&")>"+"E-%.)2# ').7 -$$)8:"1)%8) -+ E$= " + 5" )
-+%"1%"2 7 8 1# $)5 &8 -5 ". )-+ )8%&"1),82#-+.D)B"58+,()8=1)1".=$%.).=44".%)%&"1")#1"),"$->"1#%")-+,-:-,=#$)%1#-%.)
%&#%)#1"),-EE-5=$%)%8)5&#+ 4" )#+,)H&-5&)-+E$= " + 5" )$8 + 4 W%"12)-+,-:-,=#$)>"& #:-8 1.)8+ )2 =$%-7$"),-2"+.-8+.)
O6-4.%-)"%)#$D()FNNL`)0"=> " +()B#7 -"+ f# ()[)i-+ 4# $".()FNQ NRD);&-1,()H").&8H)%&#%)":"+)H&"+)&6%%"0+)
-+%"1%"2 7 8 1# $)5 &8 -5 ". )# 7 7" # 1)%8 )> " )-+ , "7 " + , "+ % )#5 18 .. ), 8 2 # -+ . ()8+ " ), 8 2 # -+ )2#')71",-5 %) 26 +6%" )
&'$07"#)-+)%& ")8 % & "1)#E%"1)718:-,-+4)-+E812#%-8+)%8)71841#2)7#1%-5-7#+%.D))b-+#$$'()8=1)1".=$%.).=44".%)
%&#%)787=$#1).8$=%-8+ .)%8).&81%W%"12 ), "5-.-8 +)E1#2 -+ 4( ).=5&)#.),"E#=$%.()2#')>")-+"EE"5%-:")-+)5&#+4-+4)
$8+4W%" 12 )>"& #: -81.)E81)5"1%#-+)5$#..".)8 E)-+, -:-,= #$. D)
Method-
Subjects-
;&")."%%-+4)-.)#+)-+,=.%1-#$)$#=+,1')5827#+')H-%&)E#5-$-%-".)-+)2=$%-7$").%#%".D);&")5827#+')
-+.%-%=%", )# )5 827#+'WH-,")H"$$+"..)71841#2)%&#%)8EE"1",)#++=#$)>-82"%1-5).51""+-+4.)E182)FNQN)%8)
FNQFD)3#1%-5-7#%-+4)"27$8'"".)1"5"-:",)#).2#$$),"51"#.")OQXM)81)#7718V-2#%"$')ZQDjX)%8)ZQQ)7"1)28+%&R)
-+)%&"-1)&" # $%& )-+ .= 1# + 5" )7 1" 2-=2)>')7 # 1% -5-7 # %-+ 4 )-+)% & ")7 18 4 1# 2D))b8=1W&=+,1",)E8=1%""+)H81^"1.)
H"1")"27$8'",)>"%H""+)FNQN)#+,)FNQF)-+)%&").":"+ )+8+W=+-8+)7$#+%.)#+,)581781#%")&"#,d=#1%"1.)%&#%)
7#1%-5-7#%",D);&").51""+-+4.)H"1")#,2-+-.%"1",)8+.-%")>')1"4-.%"1",)+=1.".)#+,)-+5$=, ", )% H 8 )7#1%./)QR)G)
E=$$)7#+"$)8E)YF)>$88,)%".%.()#+,)FR)#)&"#$%&)&#>-%.).=1:"'D))G7718V-2#%"$')%&1"")H""^.)#E%"1)%".%-+4()
1".=$%)7#5^"%.)H"1")1"%=1+ ", )%8)"2 7$8'"".),"%#-$-+4)%&"-1)&"# $%&).%#%= .()-+5$=, -+4)>$88,)1".=$%.)
O&-4&$-4&%-+4)#> + 812 # $-%-".R()&"#$%&)>"&#:-81).581".()#+%-5-7#%",)E=%=1")&"#$%&)1-.^.()#+,)7"1.8 + # $- f" , )
.=44".%-8+.)E81)&"#$%&)-2718: "2"+%D))J=1.".)58+%#5%",)#+')-+,-:-,= # $)H-%&)&-4&$')#>+812#$)1".=$%.)%8)
,-.5=..)#+,)1"d=".%)7"12-..-8+)%8)E81H#1,)%&")1".=$%.)%8)%&"-1)7&'.-5-#+D))
)@E)%&")YQY)"27$8'"".),=1-+4)%&-.)7"1-8,()FQK)7#1%-5-7#%",)281")%&#+)8+5"()H&-$")QXT)8+$')
7#1%-5-7#%",)8+5")#+,)YK),-,)+8%)7#1%-5-7#%"D)A"5#=.")8=1)#+#$'.-.)1"d=-1".)%H8)'"#1.)8E)%".%-+4)%8)
8>."1:")&"#$%&)-2718:"2"+%.()H")H"1")#>$")%8)#+#$'f")8+$')%&8.")FQK)"27$8'"".)H-%&)1"7"#%)
7#1%-5-7#%-8+D)@E)%&")QXT)H&8)7#1%-5-7#%",)8+$')8+5"()QFL)H"1")8+$')"27$8'",)8+)8+")%".%-+4),#'()H&-$")
KF)1"2#-+",)"27$8'",)>=%),-,)+8%)7#1%-5-7#%")-+)#)."58+,)%".%D)G$%&8=4&)H"),8)+8 %)&#: "),# %#)8+ )%&" )
1"#.8+)E81)%&-.)+8 +W7#1%-5-7#%-8+()-+%"1:-"H.)H-%&)%&")5827#+')&=2#+)1".8=15")2#+#4"1)-+,-5#%",)%&# %)
28.%)8E)%&".")."58+,W'"#1)+8+W7#1%-5-7#+%.)H"1")$-^"$')#>."+%)E182)%&")H81^7$#5")8+)%&")%".%-+4),#')E81)
7"1.8+#$)81)h8>W1"$#%",)1"# .8+ .D))b81)%&")YK)%&#%)5&8.")%8)+":"1)7#1%-5-7#%"()%&")&=2#+)1".8=15")
2#+#4"1).%#%",)%&#%)#)E"#1)8E),85%81.()58:"1#4")=+,"1)#).78=."e.)-+.=1#+5")7$#+()#>."+5")8+),#%")8E)
%".%-+4()#+,)78%" +%-#$),1= 4)=. ")H "1" )#$$)1"#.8+ .)-+, -:-,=# $.)2 #')& #:" )5&8."+)+8%)%8)7#1%-5-7#%"D))@E)8=1)
E-+#$).#27$")8 E)FQK )1"7 "#% W7#1%-5-7#+%.()FNT)OSjMR)-+-%-# $$')&#,)#%)$"#.%)8+")#>+812#$)>$88,)E-+,-+4()#+,)
XK)OFXMR)&#,)#%)$"#.%)8+").":"1"$')#>+812#$)E-+,-+4D)
Y)
)
G$%&8=4&)%&")."$"5%-8+)7185"..),".51->",)#>8:")51"#%".)58+5"1+)E81).#27 $")."$"5%-8+)>-#.()H")
,8)+8%)>"$-":")-%).-4+-E-5#+%$')>-#.".)8=1)1".=$%.D);&"1"),8)+8%)#77"#1)%8)>")#+').'.%"2#%-5),-EE"1"+5".)
>"%H""+)1"7"#%)7#1%-5-7#+%.)#+,).-+4$"W7#1%-5-7#+%.)-+)%&")1"$#%-8+.&-7)>"%H""+)1"%-1"2"+%)58 +%1-> =%-8 +)
#+,)-+-%-#$)&"#$%&)O.-+5")H")5#++8%)8>."1:")&"#$%&)5&#+4".)E81).-+4$"W7#1%-5-7#+%.RD)b=1%&"1281"()1"7" #%)
7#1%-5-7#+%.().-+4$")7#1%-5-7#+%.()#+,)+8+W7#1%-5-7#+%.)#$$)&#:"):"1').-2-$#1)8>."1:#>$")5&#1#5%"1-.%-5.D);8)
.=7781%)%&#%).#2 7 $")."$"5 %-8+ )>-#.)-.)+8 %)-+E$="+ 5-+4 )8=1)1".=$%.()H")#$%"1+#%-:"$')-27$"2"+%)!"5^2#+)
."$"5%-8+)28,"$.)%&#%)58+%18$)E81)%&")"+,84"+8= .)."$"5%-8+)7185"..D));&".")1".=$%.)718:-,")$-%%$")
":-,"+5")%&#%)#+')."$"5%-8+)-.)855=11-+4()#+,)58+%18$$-+4)E81)."$"5%-8+),8".)+8%).-4+-E-5#+%$')5&#+4")%&")
2#-+)1".=$%.D))*")1"781%)%&".")28,"$)1".=$%.)-+)%&")B=7781%-+4)\#%"1-#$.D)
b-+#$$'()H")+8%")%&#%)-+)FNQF)%&")$#=+ , 1')5827#+'),"5-," ,)%8 ).5#$")> #5^ )%&")H "$$+" ..)718 41# 2)
#+,)%8)8+$')8EE"1)%& ")E=$$)1#+4")8E)>$88,)%".%.)%8)+"H)7#1%-5-7#+%.)H&-$")58+%-+=-+4)%8)58+,=5%),-#>"%".)
#+,)5&8$".%"18$)%".%.()#.)H"$$)#.)%&")E=$$).=1:"'()E81)#$$)1"7"#%)7#1%-5-7# +%.D));&-.)5&#+4")2"#+.)%&#%)H")
5#+)8+$')8>."1:")%H8)'"#1.)8E)E=$$)>$88,)7#+"$.)O#+,)%&=.)#+)#++=#$)5&#+4"R)E81)%&")QXY)1"7"#%)
7#1%-5-7#+%.)H&8)E-1.%)%".%",)-+)FNQN()#+,)+8%)E81)%&")XS)1"7"#%)7#1%-5-7#+%.)H&8)E-1.%)%".%",)-+)FNQQ)>=%)
H"1")+8%)4-:"+)%&")E=$$)>$88,)7#+"$)-+)FNQFD)9+)58+%1#. %()8=1)E-+#$),#%#)-+5$= , " .)"-%&"1)8+")81)%H8)#++=#$)
5&#+4".)7"1)-+,-:-,=#$)E81),-#>"%".()5&8$".%"18$()#+,).=1:"'W>#.",)O"D4D()&-4&)1-.^)E#5%81.R):#1-#>$".)OKFT)
8>."1:#%-8+.)E182)FQK )1"7 "# %)7#1%-5-7#+%.RD))
Measure-of-financial-discounting)
*")2"#.=1")E-+#+5-#$),-.58=+%-+4)=.-+4)"#5&)-+,-:-,=#$e.)5&8."+)H-%&&8$,-+4)7"15"+%#4")E81)
%&"-1)YNQO^R),"E-+" ,)58 +%1-> =%-8+ )1"%-1"2 " +%)7 $#+) E18 2 )-2 2",-#%"$')>"E81" )-2 7$" 2 "+ %#%-8 +)8 E)%&")
H"$$+"..)71841#2D)6#5&)"27$8'""),".-4+#%".)7#'5&"5^)H-%&&8$,-+4)#%)&-1-+4)H-%&)%&")&"$7)8E)&=2#+)
1".8=15")7"1.8++"$D))627$8'"".)5#+)5&#+4")58+%1->=%-8+.)#%)#+')78-+%()>=%),"E#=$%)-+%8)#)LM)
58+%1->=%-8+)-E)+8)5&8-5")-.)2#,")H-%&-+)SN),#'.D)G$%&8=4&)jTM)8E)"27$8'"".).%#1%)H-%&)%&"),"E#=$%)
58+%1->=%-8+()QjM)8E)%&"."),"E#=$%"1.)5&#+4")H-%&-+)KN),#'.)#E%"1)%&")-+-%-#$)SNW,#')7"1-8,()H-%&)FTM)
5&#+4-+4)H-%&-+)SN),#'.)#+,)KjM)5&#+4-+4)H-%&-+)8+")'"#1D)0"%-1"2"+%)71841#2)7#1%-5-7#%-8+)
.-4+-E-5#+%$')-+51"#.".)E=%=1")H"#$%&)>"5#=.")%&")5827#+')2#%5 &" .)XNM )8 E)%&" )%# VW"V"27%)"27$8'"")
58+%1->=%-8+.)=7)%8)LMD)U".7-%")%&-.()2#+')"27$8'"".)OXXR)5&88.")+8%)%8)H -%&&8 $,D)G:"1#4").#$#1-".)# 1" )
h=.%)=+, " 1)Z KS (N N N(). 8 )"#5&),8$$#1)H-%&&"$,),"51"#.".)-22",-#%" )58 + .= 27%-8+D));&-.)%1#, "8 EE),1-:".)%&")
5811"$#%-8+)>"%H""+)1"%-1"2 "+ %).#:-+ 4.)#+,)=+,"1$'-+4)%-2"),-.58=+%)1#%".)8>."1:",)-+)71":-8=.).%=,-".)
O"D4D()61.+"1W!"1.&E-"$,)"%)#$D()FNNSRD)*")7$#5")"27$8'"".)-+%8)%H8)418=7.)>#.",)8+)H&"%&"1)%&"'),"5-,")
%8)58+%1->=%"/)58+%1->=%81.)O$8H),-.58=+%)1#%"R)#+,)+8+W58+%1->=%81.)O&-4&),-.58=+%)1#%"RD));&")
,-.%1->=%-8+)8E)58+%1->=%-8+.)-.)>-28,#$()H-%&)jYM)8E)"27$8'"".)5&88.-+4)%8)58+%1->=%" D))
Measure-of-health-improvement-
*")2"#.=1")>8%&)#441"4#%")#+,).7"5-E-5)&"#$%&)-2718:"2"+%.)E81)-+,-:-,= #$) "2 7$8'"".)=.-+4)
,-EE"1"+5".)>"%H""+)'"#1$')&"#$%&)%".%)1".=$%.D));&")E-1.%)#441"4#%")2 " #.= 1" )-. )%& " )#++=#$)5&#+4")-+)%&")
+=2>"1)8E)5#%"481-".)H-%&)#%)$"#.%)8+")#>+812#$)>$88,)E-+,-+4D));&")&"#$%&)%".%-+4)5827#+'),"E-+",)
%&".")%H"$:")5# %"48 1-".)#./),-#>"%".()5&8$".%"18$()^-,+"'()"$"5%18$'%".()H&-%")>$88,)5"$$.()718.%#%"()-18+()
>$88,)5#$5-=2()5"$$)>#$#+5"()"+f'2".()%&'18-,()#+,)8:"1#$$)>$88,)58=+%D);&")2"#+)#>+812#$)>$88,)
E-+,-+4)58=+ %)E81)E-1.%)%-2 " )7#1%-5-7#+%.)-.)FDjF()1#+4-+4)E182)f" 18)%8).":"+D);&")."58+,)#441"4#%")&"#$%&)
X)
)
2"#.=1")-.)%&")#++=#$)5&#+4")-+)%&")+=2>"1)8E)&-4&W1-.^)E#5%8 1.D);&")%".%-+4)5827#+'),"E-+",)%&-.)
:#1-#>$")%8)-+5$=,")E-E%" "+)>-82"%1-5)#+,)."$EW1"781%",)1-.^)E#5 %81. /)5=11"+%).28^"1()+8)1"4=$#1)"V"15-."()
+8%)=.-+4)."#%)>"$%.()&"#:')#$5 8 &8$)=."()1" 4 = $# 1 )1" $# V # %- 8 + )8 1). $" " 7 )2",-5# %-8 + )=.#4"()$-E" ), -. .# % -. E# 5 %-8 +()
h8>),-..# %-. E# 5%-8 + ()7 8 8 1)7 & '. -5# $)& "# $% &)7 " 15 "7 % -8+ () &-4&).%1"..).581")OKk).%1"..)-+, -5 # %8 1. )E18 2).=1:"')
:#1-#>$".R()&-4&)> $8 8 , )71"..=1" )OQ Y N l S N k R()& -4 & )5 & 8$".%"18$)O F Y N k )24l,?R()$8 H)!U?)5 & 8 $" . %" 1 8 $)Om Y N )
24l,?R()8>".-%')OA\9)FjkR()E1"d="+%).-5^),#'.)OLk)7"1)'"#1R()#+ , )5 & 1 8 + -5 )& " # $% & )7 1 8 > $" 2.)-+5$=, -+ 4)& " # 1%)
,-."#."()5#+5"1().%18^"(),-#>"%".()#.%&2#()81)#1%&1-%-.D));&")2"#+)8E)%&-.):#1-#>$")E81)E-1.%)%-2")
7#1%-5-7#+%.)-.)FDjL()1#+4-+4)E182 )f"18 )%8)+-+"D))@=1),#%#)-+5$=,")8+$')8+")#++=#$)5&#+4")E81)28.%)>$88,)
%".%.()>=%)-+ 5 $= , " )% H 8)#++=# $)5 & # +4".)E81)&-4&W1-.^)E#5%8 1.)#.)H"$$)#.),-#>"%".)#+,)5&8$".%"18$)2"#.=1".D))
9+)#,,-% -8 + )%8 )% & ". " )#4 4 1" 4 #% ")2"#.=1" .()H")#$.8)"V#2-+")%&")5&#+ 4")> "%H "" +)%" .%.)E81)"# 5& ).7"5 -E-5)
>$88,)%".%):#1-#>$")#+,)&-4&)1-.^)E#5%81D)
G$%&8=4&)8=1)E85=.)-.)8+)&8H)E-+#+5-#$),-.58=+%-+4)71",-5%.)&"#$%&)-2718:"2"+%.)E8$$8H-+4)
-+E812# %-8 + )1" : "$# %-8 + )%8 )H81^"1.()-%)-.)-2781%#+% )%8 )+ 8 %" )%& # %)H " )8 > ." 1: ")E "H),-EE"1"+5 ". )-+ )%& " )& "# $%& )
8E)58+%1->=%81.)#+,)+8+W58+%1->=%81.)#%)%&")-+-%-#$).51""+-+4D)G$%&8=4&)#)E"H)."$EW1"781%",)>"&#:-81.)#1")
.-4+-E-5#+%$'),-EE"1"+%)#518..)418=7.)O."");#>$")GQ)8E)B=7781%-+4)\#%"1-#$.R().=5&),-EE"1"+5".)58=$,)"#.-$')
>")1#+,82$')4"+"1#%",)4-:"+)%&")$#14")+=2>"1)8E)%".%.)71"."+%",D);&").-2-$#1-%')-+)%&".")-+-%-#$)1".=$%.)-.)
-2781%# + %)E 81 )." :" 1# $)1" # .8 + .D)b -1. %()-%). & 8 H .)% & #% )-2718:"2 " + %.)#518..)418=7.)5#++8%)>")"V7$#-+",)>')
&-4&"1))*+"0+.$/(%8)-2718:"()H&-5& )2-4&%).%"2)E182)"V-.%-+4)&"#$%& )718 >$" 2 . D)B" 58 + , ()-%).& 8H.)%&#%)
7"87$"),8)+8%)#77"#1)%8)>")1#%-8+#$$')2#%5&-+4)"V7"5%#%-8+.)8E)$-E")"V7"5%#+5')%8)1"%-1"2"+%).#:-+4.D)
;&-1,()-%).=44".%.)%&#%)7"87$")#1")+8%)-+%"+%-8+#$$')O81)#%)$"#.%).=55"..E=$$'R)=.-+4)1"%-1"2"+%).#:-+4.)#.)#)
71"W5822-%2"+%),":-5")%8)28%-:#%")>"%%"1)&"#$%&D)G+,)E-+#$$'()#+,)7"1&#7.)28.%)-2781%#+%$'()-%)-.)
58+.-.%"+%)H-%&)71-81)":-,"+5")8E)&"#$%&)#+,)28+"')>"-+4),82#-+)-+,"7"+,"+%)-+)58+%"2781#+"8=.)
>"&#:-81)OP&#72#+)[)6$.%"-+()QSSXRD);&-.)-.)51-%-5#$)>"5#=.")H")H-$$)"V#2-+"),82#-+)-+%"1,"7"+,"+5")-+)
1-0$5.&(>"&#:-81#$)5&#+4".D))
Results-
*")=.")1"41"..-8+)#+#$'.-.)%8)".%-2#%")&8H)58+%1->=%-+4)%8)#)YNQO^R)7$#+)71",-5%.)&"#$%&)
-2718: "2"+%)>"% H " "+ )> -8 2"%1-5).51"" + -+ 4. D)A "5 # = ." )> 8 %& )& "# $%& )-2718:"2"+%)#+, )Y NQ O ^R)
58+%1->=%-8+.)5#+),-EE"1)>'),"2841#7&-5.)#+,)584+-%-:")#>-$-%'()H")58+ %1 8 $)E81),-EE"1" + 5 " .)-+ )-+ -%-# $)
&"#$%&()7"1.8+#$)#+,)E#2-$')&"#$%&)&-.%81'()#++=#$).#$#1'()+=2>"1)8E)E","1#$)%#V)"V"27%-8+.)5$#-2",()
4"+,"1()#4"()2#1-%#$).%#%=.()H81^)$85#%-8+()#+,).7"5 -E -5 )h8 > D))*")".%-2#%")%&")#:"1#4")-27#5%)8E)
58+%1->=%-+4)8+)&"#$%&)-2718:"2"+%)=.-+4)81,-+#1')$"#.%).d=#1".)O@?BR)#+,).""2-+4$')=+1"$#%",)
1"41"..-8+.)OBC 0R()5 $= . %" 1 -+ 4 ).% # + , # 1,)"1181.)> ' )7 $# + %)-+)@?BD))!-4&)1-.^)E#5%81)@?B)1"41"..-8+.)1"E$"5%)=7)
%8)%H8)#++=#$)5&#+4".)7"1)7"1.8+()H&-$")#>+812#$)>$88,)58=+%)1"41"..-8+.)#+,)BC0)28,"$.)1"E$"5%)8+")
#++=#$)5&#+4")7"1)7"1.8+g%&")FNQNWFNQQ)5&#+4"D);8)58+%18$)E81),-EE"1"+%)7#1%-5-7#+%)58&81%.()H")
-+5$=,")' " #1), = 22-".)#+ , )# ),=22'):#1-#>$")-+,-5#%-+4)%&")."58+,)%-2")#+)-+,-:-,=#$)7#1%-5-7#%",D))
b-4=1")Q)#+,);#>$")Q),"%#-$)8=1)2#-+)1".=$%.D)b-4=1")Q).&8H.)%&#%()58+ %18$$-+4)E81),"2841#7&-5)1-.^)
E#5%81.()1"%-1"2" +%)58 +%1->=%81.)-2718:")%& " -1)& "# $%& )#E%"1)1"5"-:-+4 )&"# $%&)-+E8 12 #%-8 +()H &-$" )+8+W
58+%1->=%81.)58+%-+=")%8).=EE"1)&"#$%&),"5$-+".)#.)%&"')#4"D);#>$")Q).&8H.)%&#%)#>+812#$)%".%)5#%"481-".)
,"51"#.",)NDjY)=))m)DNQR)281")E81)58+%1->=%81.)%&#+)E81)+8+W58+%1->=%81.()#)FjM)-2718 : "2"+%)E182)%&")
L)
)
2"#+)8E)FDjFD)P8+%1->=%81.),"51"#.",)&-4&)1-.^)E#5%81.)>"%H""+)NDYQWNDLN)O))m)DNXR)281")%&#+)+8+W
58+%1->=%81.()#)QXWFFM)-2718:"2"+%)E182)%&")2"#+)8 E)FDjLD));&".")1".=$%.).&8H)%&#%()8+)#:"1#4"()%& 1"" )
8=%)8E)":"1')E8=1)58+%1->=%81.)#1")1"%= 1+-+ 4)8+")281")#>+812#$)>$88,)%".%)%8)+812#$()5827#1",)%8)
5827#1#>$")+8+W58 +%1->=%81.()#+,)8+")8=%)8E)":"1')%H8)-.),"51 "# . -+4 )# )& -4& )1-. ^)E #5 %8 1D))-
-
Figure-1:-Health-Improvement-by-Retirement-Contributor-Status-
) )
J8%"/) P8+,-%-8+#$)2"#+.)=.")%&")@?B)71",-5%",):#$=".)".%-2#%",)#%)%&")2"#+.)8E)%&") 58+%18$.)E81)"#5&)
418=7D))P8+%18$.)#1")$-.%",)-+)%&")1".=$%.)."5%-8+()H-%&),"%#-$.)71"."+%",)-+)%&" ).=77 81%-+4)2# %"1-#$.D)
-
-
-
-
-
-
-
-
-
-
-
j)
)
Table-1:-Health-Change-Regression-Results-
))
OQR)
OFR)
OKR)
OYR)
))
n)#>+812#$)
>$88,)
n)#>+812#$)
>$88,)
n)&-4&)1-.^)
E#5%81.)
n)&-4&)1-.^)
E#5%81.)
\8,"$)
@?B)
BC0o)
@?B)
BC0)
)
))
)
58+%1->=%81)
WNDjYQXppp)
WNDjYQTppp)
WNDYNLLpp)
WNDLNYKpp)
)
ONDQjNFR)
ONDFKQNR)
ONDQFTLR)
ONDFYYTR)
58+.%#+%)
KDKFFX)
FDTjSY)
XDNTTL)
YDLLQF)
)
OKDFTKLR)
OYDQQSKR)
OFDjNTLR)
OYDYTNYR)
)
))
)
58+%18$.)
9+5$=," , )
9+5$=," , )
9+5$=," , )
9+5$=," , )
7$#+%),=22-".)
9+5$=," , )
9+5$=," , )
9+5$=," , )
9+5$=," , )
h8>),=22-".)
9+5$=," , )
9+5$=," , )
9+5$=," , )
9+5$=," , )
J)
QXY)
QXY)
KFT)
QXY)
1F)
NDXQNN)
NDXQNN)
NDFSFN)
NDKSTS)
08>=.%).%#+,#1,)"1181.)-+)7#1"+%&".".()5$=.%"1",)>')7$#+%D)@>."1:#%-8+)+=2>"1.),-EE"1)>"%H""+)28,"$.),=")%8)8+$')8+")#++=#$)
5&#+4")>"-+4)#:#-$#>$")E81)28.%)>$88,)%".%.()H&-$")%H8)#++ =#$)5&#+4".)7"1)7" 1. 8 +)#1")#:#-$#>$")E81)& -4 & )1 -. ^)E # 5% 8 1. D))B-+5")
28,"$.)OFR)#+,)OYR)H"1")1=+)58+5=11"+%$')=.-+4).""2-+4$')=+1"$#%",)1"41"..-8+.()%&"')#1")1".%1-5%",)%8)%&")58228+),#%#)
.=7781%()H&-5&)-.)%&")8+"W'"#1)5&#+4")E182)%&")>$88,)%".%),#%#D)9+)58+%1#.%()28,"$)OKR)-+5$=,".)%H8)#++=#$)5&#+4".)8E)&"#$%&)
,#%#D))
p)7mNDQN))pp)7mNDNX))ppp)7mNDNQ)
)
) )
*")+"V%)%".%)H&"%&"1)-+,-:-,=#$.)#1")-2718:-+4)%&").#2")&"#$%&)E#5%81.()81)H&"%&" 1)%& ")
-2718: ", )E# 5 %8 1. ) #1").7"5-E-5)%8)"#5&)-+,-:-,=#$D));8),8).8()H")E-1.%)1"41"..)%&8.").7"5-E-5)>$88,)%".%.)H-%&)
%&")&-4&".%)#>+812#$-%')-+5-,"+ 5 " .)8+)58+%1->=%81/)5&8$".%"18$)OjSMR(),-#>"%".)OXKMR()#+,)^-,+"'.)
OKQMRD))b-4=1")F).&8H .)%&")7"15"+%#4")-2718:"2"+%)E81)"#5&)%".%D)P8+%1->=%81.)58228+$')-2718 :" )
&"284$8>-+)GQ5)#+,)4$=58."),-#>"%".).581".D)!"284$8>-+)GQ5)".%-2#%".)%&")#:"1#4")$":"$)8E)>$88,)
.=4#1)8:"1)#)%H8)%8)%&1"")28+%&)-+%" 1:# $()# + , )5 8 +.-.%"+%)1" # , - + 4 .)8 E )X Dj )8 1)&-4&"1)-+ , -5# %" )7 1" W,-#>"%".D))
<$=58 ." )1" # ,-+ 4 . )-+ , -5 #% ")> $8 8 , ). =4 # 1)# %)%& " )%-2")8E).#2 7 $" )5 8$$" 5 %-8 + ()#+ , ): #$= " . )#> 8:")QNN)-+51"#.")
1-.^)8E),-#>"%".D))*")E-+,)%&#%)58+%1->=%81.),"51"#.")&"284$8>-+)GQ5)QDXM)=))m)DNX R()E18 2 )# )2 " # + )8E)
XDXS()#+,)4$=58.")FDQM)O))m)DNXR()E182 )#)2 "# + )8E)STDjD)\",-5#$)1"."#15&).=44".%.).=5&)-2718:"2"+%.)
5#+).=>.%#+%-#$$')-27#5%)&"#$%&()H-%&)8=1)58"EE-5-"+%.).=44".%-+4)#)QDTM)1-.^)1",= 5%-8+ )E8 1),-#> "%" .)#+ ,)
,-#>"%".W1"$#%",),"#%&)#+,)# )KDQM )1-.^)1", =5 %-8+ )-+)2-518:#.5=$#1)5827$-5#%-8+.)OB%1#%%8+)"%)#$D()FNNNRD)))
*")#$.8)E-+,)%&#%)58+%1->=%81.).-4+-E-5#+%$')-2718:")%&"-1)5&8$".%"18$()H&-5& )& # .)5 8 + . -, " 1 # > $" )
-27$-5#% -8 +. )E8 1)&"#1%),-."#.")#+,)#558=+%.)E81)8+")-+)":"1')E8= 1),"# %&.)-+)%&")C + -%" , )B %# %" .)Oa85&#+"^()
q=()\=17&'()\-+-r8()[)a=+4()FNQQRD)*")E-+,)%&#%)?U?)#+,)c?U?),"51"#.")TM)O))m)DN QR)# + ,)Q F M )O))m)DQR)
1".7"5%-:"$'()E182 )2 "# +. )8E)QQX)#+,)FL)O5827#1",)%8)&"#$%&')$-2-%.)8E)?U?mSS)#+,)c?U?mYNR(). = 44 " . %-+4)
%&#%)58+%1->=%81.)H-%&)&-4&)5&8$".%"18$)#1"),"51"#.-+4)%&"-1)1-.^)8E)E=%=1")&"#1%)#+,):#.5=$#1),-."#."D
Q
)
J"#1$')#$$)8%&"1)%".%.)&#:")78.-%-:")58"EE-5-"+%)".%-2#%".()>=%)#1")+8%).-4+-E-5#+%)#%)%&")QNM)$":"$D))ACJ)
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Q
);&".")-2718:"2"+%.)1"71"."+%)#:"1#4")-2718:"2"+%.()#+,)#1")2=5&)$#14"1)E81)%&8.")H-%&)#>+812#$$')&-4&)-+-%-#$)
1".=$%.D))
T)
)
#+,)ACJl51"#%-+-+"()%&")%H8)2#h81)^-,+"')%".%.().&8H)58+.-,"1#>$")-2718:"2"+%()>=%)#1")+8%)d=-%")
.-4+-E-5#+%)#%)%&")QNM)$":"$D);&-.)-27 1" 5-. -8 +)-. )+ 8 %). = 17 1-.-+4)4-:"+)%&"):"1')E"H)-+,-:-,=#$. )H -%& )
#>+812#$-%-".)%&#%)-2718:")-+ )" # 5& )8E)%&".")%".%.D))
Figure-2:-Relationship-Between-Retirement-Contribution-and-Blood-Test-Improvements)
)
J8%"/) 0"41"..-8+) 58"EE-5-"+%) ".%-2#%".) E81) 58+%1->=%81.) #1") 41#7&",() H-%&) %&") >$88,) :#1-#>$".) #.) ,"7"+,"+%)
:#1-#>$".D)0"41"..-8+.)#1")".%-2#%",)>')@?B)=.-+4)%&")58+%18$.)$-.%",)-+)%&")1".=$%.)."5%-8+D)U#%#)#1")$-2-%",)%8)
8+") #++=#$) 5&#+4") E81) ACJ) #+,) ACJl51"#%-+-+"D) ;1-4$'5"1-,".) #+,) 4$=58.") #1") H-+.81-f",) #%) %H8) .%#+,#1,)
,":-#%-8+.) #>8:") %&") 2"#+) >"5#=.") 8E) "V%1"2") 8=%$-"1.) %&#%) 2 #') 1".=$%) E182) +8%) E#.%-+4 ) 71-81) %8) %".%-+4 ) 81)
1"5"+%)#$58&8$)58+.=27%-8+ D))
)
) *")#$.8)"V#2-+")-2718:"2"+%.)-+)&-4&)1-.^)E#5%81.()H&-5& )1":"#$).#E"%')>"&#:-81.()2"+%#$)
&"#$%&()$-E").#%-.E#5%-8+ ()#+ , )1-. ^' )$-E" .% '$" )5& 8 -5 ". D)b-4=1")K)71"."+%.)%&")1".=$%.)#+ , ).&8H . )58+ %1->= %81.)
-2718: " ,).-4+-E-5#+%$')281")%&#+)+8+W58+%1->=%81.)-+)2=$%-7$")&-4&)1-.^)E#5%81.D)b-1.%()1"$#%-:").'.%8$-5)
>$88,)71"..=1"),"51"#.",)KDQ)78-+%.)O))m)DQR)281")E81)58+%1->=%81.()#),-EE"1"+5")8E)FDXM)E182)#)2"#+)8E)
QFY()H&-5&)1",=5".)%&"-1)1-.^)8E)E=%=1")&"#1%),-."#." )81).%18^")OJ9!()QSS jRD))B"58+,().#E"%')>"&#:-81.)
-2718: ")281")E81)58+%1->=%81.()-+5$=,-+4) jM)281")-2718:"2"+%)-+)."#%)>"$%)=."()1",=5" ,).28^-+4()#+,)
1",=5",)=.#4")8E).$""7 )#+ , )1" $# V# %-8 + )2",-5#%-8 +. ()# $ %& 8 =4&)%&". " )# 1" )+ 8 % )d = -% " ).-4 + - E-5 # + % )# %)%&")QNM)
$":"$D))b-+#$$'()#+,)28.%).%1-^-+4$'()H")E-+, )%&#%)%&")+=2>"1)8E).-5^),#'.)1"781%",)>"582".),1#2#%-5#$$')
$8H"1)E8 1)58 + %1 -> =% 8 1.( )H-%&)#)1"$#%-:"),"51"#.")8E)8:"1)YNM)=))m)DNXRD));&-.).=44".%.)%&#%)-2 718 :-+4)
&"#$%&)&#.).-4+-E-5#+%).7-$$8:"1)"EE"5%.)8+).85-"%')#+,)>=.-+"..)>"'8+,)%&"),-1"5%)58.%)8E)7881)&"#$%&D)))
- -
triglycerides
hdl
cholesterol
hemoglobin A1c
glucose
BUN
BUN/Creatinine
ldl
vldl
10 0 10 20
Percent Improvement of Contributors Relative to Others
Coefficient Estimate 95% Confidence Interval
S)
)
Figure-3:-Relationship-Between-Retirement-Contribution-and-Risk-Factor-Improvements-
) )
J8%"/)0"41"..-8+)58"EE-5-"+%)".%-2#%".)E81)58+%1->=%81.)#1")41#7&",()H-%&)%&")&-4&)1-.^):#1-#>$".)#.),"7"+,"+%)
:#1-#>$".D)0"41"..-8+.)#1")".%-2#%",)>')@?B)=.-+4)%&")58+%18$.)$-.%",)-+)%&")1".=$%.)."5%-8+D)P&8$".%"18$)#+,)!U?)
#1")71"."+%",)-+)b-4=1")FD));H8)#++=#$)5&#+4".)8E)&"#$%&),#%#)#1")=.",D))
)
*")+8%")%&#%)%&")8E%"+)H"#^).%#%-.%-5#$).-4+-E-5#+5")8E)8=1)".%-2#%".)E81)-+,-:-,=#$)&"#$%&)
,-2"+.-8+.)-.)+8%).=171-.-+4()4-:"+)8=1)$-2-%",).#27$").-f")#+,)%&")-+E1"d="+5')8E)#>+812#$)E-+,-+4.)8+)
.82")>$88,),-2"+ .-8+.D);&")1"$#%-8+.&-7)>"%H""+)1"%-1"2"+%)58+%1->=%-8+.)#+,)&"#$%&)-2718:"2"+%.)-.)
281")"#.-$')8>."1:",)8+).7"5-E-5),-2"+.-8+.)H&"1")&"#$%&)718>$"2.)#1")58228+().=5&)#. )5 & 8 $" . %" 1 8 $)
#+,),-#>"%".()#+,)8+)281")58271"&"+.-:" )2 "# .=1" .).=5 &)#. )58= +%.)8 E)#>+ 8 12 #$)>$8 8, )E-+, -+4.)# +, ).-5^)
,#'.D);#^"+)%84"%&"1()8=1)1". = $% .). = 4 4 " .% )%& #%)8: "1#$$)&" #$%&)-.)-27 18: -+4)8+)2#+'),-2"+.-8+.)E81)
58+%1->=%81.D);&")8:"1#$$),-EE"1"+5")-+)&"#$%&)5&#+4".)>"%H""+)%&")%H8)418=7.)-.)5$"#1()#$%&8=4&)"#5&)
-+,-:-,=# $)-. )-2 7 1 8: -+ 4)O 8 1)H 8 1. "+ -+ 4 R)8 + )= + -d= " ), -2"+.-8+. D ))3"1&#7.)28.%)-+%"1".%-+4)-.)%&#%)%&")
$#14".%)-2 7 18 : " 2 " + %. )8 55 = 1)-+ )#1" # .)% & #% )7 1", -5 %)E= % =1 ")& " # $%& ()> = % )H &-5&),8)+8%).-4+-E-5#+%$')-27#5%)
-22" , -#% ")& " # $%& ().= 5 &)# . )7 1" W &'7"1%"+.-8+()71"W,-#>"%".()#+,)&-4&)5&8$".%"18$D));&-.)-.)58+.-.%"+%)H-%&)
&"#$%&)-2718:"2"+%.)1"E$"5%-+4)#)$8+4W%"12)7"1.7"5%-:")1#%& "1)%&# +).& 81%W%"12)>"+"E-%.D)
Mechanism-
G$%&8=4&)8=1)1".=$%.)#1")58+.-.%"+%)H-%&),82#-+)-+%"1,"7"+,"+%)%-2"),-.58=+%-+4 ()%&" 1")#1" )#)
+=2>"1)8E)78%"+%-#$)#$%"1+#%-:")"V7$#+#%-8+.D)b-1.%()%1#-%W$":"$)58+.5 -"+ % -8 =. + " .. ) 2#'),1-:")>8%&)
>"&#:-81.D));8)%".%)%&-.)#$%"1+#%-:"()H")".%-2#%")%&" )1 " $# %-8+.&-7)> " % H " " + )1 " %-1 " 2"+%)58 + %1- > = %- 8 + . )# + ,)
%H8)"27 $8'" ")>" &# :-81.)%&# %)-+,-5# %")58+.5-"+%-8=.+"..)-+)8%& "1), 8 2#-+./)7=+5%=#$-%')#+,)."#%>"$%)=.")
O."")B=7781%-+4)\#%"1-#$.)E81),"%#-$.RD))C.-+4)$84-.%-5)1"41"..-8+()H")E-+,)$-%%$")":-,"+5")%&#%)"2 7$8'"".)
c. risk factors
stress
bmi
perceived health
job satisfaction
drinks/week
blood pressure
smoking status
exercise days
sleep drugs
seat belts
sick days
50 0 50 100
Percent Improvement of Contributors Relative to Others
Coefficient Estimate 95% Confidence Interval
QN)
)
H&8)#1")"-%&"1)E1"d="+%$')$#%") O@ 0)s)NDTj()))s)NDjNR)81),8+e%)=.")."#%)>"$%.)O@0)s)NDSSG())s)NDSSR)"V&->-%)
,-EE"1"+%).#:-+4.)>"&#:-81)%&#+)8%&" 1.D);&".")1".=$%.)5#.%),8=>%)8+)%1#-%W$":"$)58 +. 5-" + %-8 = . + ". .), 1-: -+ 4)
%&")1".=$%.D)B"58+,()-+,-:-,= # $), -EE" 1" +5 " .)-+ )7 18 7 " +. -%' )%8 )%# ^ ")# , :-5 " )Oa8".%+"1)"%)#$D()QSSSR()".7"5-#$$' )
E182)#=%&8 1-%')E-4= 1".( )2#'),1-:")%&")%H8)>"&#:-81.D)9+)%&-.)"V7$#+ # %-8 + ()58+%1->=%81.)2#')-27 18:")
&"#$%&)>"5#=.")%&"')#1")281")$-^"$')%&#+)+8+W58+%1->=%81.)%8)%#^")>8%&)E-+#+5-#$)#+,)&"#$%&)#,:-5"D))*")
#,,1"..)%&-.)>')1"7"#%-+4)8=1)$-+"#1)1"41"..-8+)#+#$'.-.)-+);#>$")Q )8+)8+$')%&8.")-+,-:-,= #$. )H&8)-+-%-#$$')
%88^)#,:-5")E182 )! 0 )7"1. 8+ +" $)#%)%&")%-2" )8E)&-1-+4)>')H-%&&8$,-+4)LM)OjTM)8E)"27 $8'" ". R()H&-5&)
"$-2-+#%".)%&8.")"27$8'"".)28.%)$-^"$')%8)1"h"5%)#,:-5"D))@=1)1".=$%.)8+)%&-.).=>.#27$")#1")d=#$-%#%-:"$')
.-2-$#1)%8)8=1)2#-+ )1"41" ..-8+ )1".=$%.)O."")B=7781%-+ 4)\ # %"1-#$. R().=44".%-+ 4) %&# %)":" +)#2 8 + 4)%&8 .")H & 8)
-+-%-#$$')%88^ )#,:-5")>')5&88.-+4)%&"),"E#=$%)58+%1->=%-8+()$#%"1)58+%1->=%-8+)5&8-5")71",-5%.)&"#$%&)
-2718: "2"+%.D);&-.)1".=$%()-+)58+h=+5%-8+)H-%&)8=1)71":-8=.)1".=$%)8+)."#%>"$%)=."()5#.%.),8=>%)8+)
#,:-5"W%#^-+4),1-:-+4)%&")1".=$%.D)
;&-1,()-%)-.)78..->$")%&#%)-+,-:-,= #$. )5&8 8.")+8%)%8)58+%1->=%"),=")%8)#+)=14"+%)E-+#+5-#$)+"",()#+,)%& #%)
%&-.)+"",)#$.8)58+.%1#-+.)%&")#>-$-%')%8)-+:".%)-+)-2718:-+4)& "# $%&D)B=5&).":"1")-22",-#%")E-+# +5 -# $) +"",.)
2#')#1-.")"-%&"1)E182)#)71"."+%W81-"+%",)E85=.)$"#,-+4)%8)&-4&),">%)$":"$.()58+. -.% " +% )H -%& )-+ , -: -,= # $. )
,-.58=+%-+4)%&")E=%=1"()81)E182 )= + # + %- 5- 7 # %" , )" V 7 " + . " .).=5&)#.)2",-5#$)58.%.D));&"1")#1").":"1#$)1"#.8+.)
H")>"$-":")%&-.)#$%"1+#% -:" )" V7 $# + #% -8 + ),8".)+8%)"V7$#-+)8=1)1".=$%.D)b-1.%()-+-%-#$)8>."1:#>$")&"#$%&)$":"$.)
#1"):"1').-2-$#1)>"%H""+)58+%1->=%81.)#+,)+8+W58+%1->=%81.D)<-:"+)8=1)58271"&"+.-:")2",-5#$),#%#()-%)-.)
=+$-^"$')%&#%)%&"1")#1").'.%"2#%-5)=+ 8 >." 1:#> $")&" #$%&)718>$"2.)51"#%-+4).=5&)E-+#+5-#$)+"",.D))B"58+,()
%&")5827#+')-+. = 1# +5 " )7 $#+ )-. ) 1" $#%-:" $')-+"V 7" +.-: "()H -%&)$8H)71" 2-=2.) OZ QQ WZKY)28+%&$'R()8=%)8E)
785^"%)2#V-2=2.)OZQNNN)#++ =# $$'R()# +,)587# ' .)E 8 1)2",-5# %-8 +.)OZSWZQFR)#+,),85%81):-.-%.)OZFXRD);&-1,()
%&")&"#$%&)71841#2)718:-,",)#$$)7#1%-5-7#+%.)%&")87781%=+-%')%8)2" "%)H -%&)+= 1.". )#%)+8)58.%)%8)1"5"-:")
#,:-5")8+)&8H)%8)-2718:")&"#$%&D))b-+#$$'()#+')-+,-:-,=#$)"+58=+%"1-+4 ) =+#+%-5-7#%",)=14"+%)E-+#+5-#$)
+"",.)-.)#>$")%8)H-%&,1#H)28+"')E182)%&"-1)1"%-1"2"+%)7$#+D)0"$#%",)%8)%&-.)58+5"1+()#)H81^"1e.).78=.")
2#')#$.8).#:")E81)1"%-1"2"+%D)*")1"7"#%)8=1).""2-+4$')=+1"$#%",)1"41"..-8+)#+#$'.-.)H&-$")"V5$=,-+4)
2#11-",)-+,-:-,=#$.()#+,)E-+,):"1').-2-$#1)1".=$%.)%8)8=1)E=$$).#27$"D)OBC0/)t
#>+812#$)>$88,
sWNDTL()))mDNX`)t
&-4&)
1-.^)E#5%81.
sWNDYj()))mDQXRD)
) b-+#$$'()8+")2-4&%)#14=")%&#%)8=1)1"41"..-8+)1".=$%.)1"E$"5%)"27$8'"".).%1#%"4-5#$$')5&88.-+4)
%&"-1)1"%-1"2"+%)-+)1". 78 +." )%8)81)-+)5881,-+#%-8+)H-%&)&"#$%&D);&-.)#14=2"+%)58=$,)>")>#.",)8+).":"1#$)
2"5&#+-.2.D)b-1.%()"27$8'"".)58 = $, )= ." )1" %-1" 2"+%)#.)#)71"W5822 -%2" +%)2"5&#+ -.2)O"D4D()B5&H#1%f)"%)
#$D()FNQYR()H&"1")%&")-+ # >-$-%')%8)1"% 1-" : " )H"#$%&)= + %- $)$# %" 1 )-+ )$-E " )28%-:#%" . )%& " 2)%8)-27 1 8 : " )& " # $%&)#E%"1)
%&")&"#$%&)7184 1#2 e.)-+E8 12 #%-8 +)1":" $#%-8+ D)* ")E-+, )%&-.)"V7 $#+ #%-8+ )=+$-^"$')E81).":"1#$)1"#.8+.D)G.)H")
+8%",)"#1$-"1()H")."")$-%%$")":-,"+5")8E)-+-%-#$)&"#$%&),-EE"1"+5".)>"%H""+)58+%1->=%81.)#+,)+8+W
58+%1->=%81.)%&#%)H8=$,)>")"V7"5%",)-E)%&"')H"1").= 5 5" .. E= $$')= . -+ 4)1 "% -1" 2 " + %). #: -+ 4 )%8 )58 22-%)%8)
-2718: ", )& " # $%& D)\81"8:"1().-+5")YNQ O^ R)5 8 +%1->=%-8 + .)5 # + )>")H-%&, 1 # H +)H-%&8=%)7"+#$ %' )# %)# 4 " )X X )8 1)- + )
5#.")8E)&#1,.&-7)O.=5&)#.)71"2#%=1")-$$+"..R().=5&)#)5822-%2"+%),":-5")H8=$,)8+$')>")"EE"5%-:")E81)
%&8.")"V7"5 %-+4)%8)> "58 2 " )-$$)#+,),-")1#7 -,$')>" E81" )#4" )XX)O#+ ,)%& =.)+8%)>")#>$")%8)=.")#)&#1,.&-7)
H-%&,1#H#$RD))
;&")."58+,).%1#%"4-5)2"5&#+-.2)H8=$,)>")-E)"27$8'"".)1",=5")%&"-1)1"%-1"2" +%).#: -+4.)-+ )
1".78+.")%8)%& ")&" #$%&)7 184 1#2 )1", =5-+ 4 ) %& "-1)7" 15" 7%-8+ )8E) $-E ")" V 7" 5 %# + 5' D);8 )%".%)%&-.)#$%"1+#%-:")
QQ)
)
2"5&#+-.2()H")=.")&-.%81-5#$),#%#)8+)#$$)YNQO^R)58+%1->=%-8+)5&#+4".)E81)"27$8'"" .D))*")5827#1")
YNQO^R) 5& #+4".)-+)%&")'"#1 )#E% " 1)& "# $%& )1" : "$# %-8 + )%8)5&#+4".)-+)%&" )71":-8=.)'"#1D)b81)%&-.)#$%"1+#%-:")
"V7$#+#%-8+)%8)&8$,()H")H8=$,)"V7"5%)-+,-:-,=#$.)H&8)1"5"-:",)+"4#%-:")-+E812#%-8+)%8)1",= 5" )%& "-1)
H-%&&8$,-+4)#28=+%D))C.-+4)\#++W*&-%+"')%".%.()H")E-+,)$-%%$")":-,"+5"()&8 H":"1()%&#%)%&"),-.%1->=%-8+)
=))s)NDTKR)8E)YNQO^R)5&#+4".)#1").%#%-.%-5#$$'),-EE"1"+%)>"%H""+)%&")%H8)'"#1.D)\81"8:"1()H")E-+,)%&#%)
%&8.")H&8 ),8 +e%)-27 18 :")%& "-1)&"# $%&)#1" )+8)2 8 1")$-^"$')%8).H -%5& )=))s)NDSKR)E8$$8H-+4)%&")1":"$#%-8+)8E)
&"#$%&)-+E812#%-8+)O."")B=7781%-+4)\#%"1-#$.RD));&-.).=44".%.)%&#%)71"W5822-%2" +%)#+,).%1#%"4-5)
1"%-1"2"+%)," 5-.-8 +.)#1")=+$-^"$')%8)"V7$#-+)8=1)8>."1:",)E-+,-+4.D))
*&-$")%&".")#+#$'.".)5#.%),8=>%)8+)#$%"1+#%-:")"V7$#+#%-8+.()8=1)1"$#%-:"$').2#$$)E-12W>#.",)
.#27$")5#++8%)58+5$=.-:"$')1=$")%&"2 )8=%()+81),-,)H")&#:")%&")87781%=+-%')%8),-1"5%$')%".%)%-2")
,-.58=+%-+4)"V7"1-2"+%#$$'D))*")%&"1"E81")#5^+8H$",4")%&#%)%&")#$%"1+#%-:")"V7$#+#%-8+.)#>8:")2#')
7$#').82")18$")-+)%&")5811"$#%-8+)>"%H""+)1"%-1"2"+%).#:-+4.)#+,)&"#$%&)-2718:"2"+%D))*")#$.8)+8%")
%&#%)8%&"1)"V7$# +# %-8+. )2# ')"V -.%)H& -5&)H ")5# ++ 8%)%" .%().=5&)#.)-+, -: -, = #$. )E" "$ -+ 4)281")78.-%-:"$')
#>8=%)%&"-1)E=%=1")."$:".()#+,)%&"1" E8 1 ")-+:".%-+4)-+ )> 8 %& )E= % = 1")& " # $%& )# +, )E -+# + 5 -#$). %# > -$-%' ) O?":'()
B$#,"()a=+^$()[)a#.$()FNNN`)!"1.&E-"$,()FNQQRD))*")"+58=1#4")E=%=1")H81^)%8)>"%%"1),-."+%#+4$")%&".")
2"5&#+-.2.()78..->$')>')582>-+-+4)"V7"1-2"+%#$)," . -4+ . )H -%& )7 " 1. 8+ + " $)# + ,)2",-5#$),#%#)E182)#)2=5&)
$#14"1)"2 7 $8 ' "1 D))
Discussion-
@=1)#+#$'.-.).=44".%.)%&#%)%&").#2")=+,"1$'-+4)7.'5&8$84-5#$)E#5%81.)$-+^",)%8)1"%-1"2 " + %)
7$#++-+4)#$.8)71",-5%)&"#$%&)-2718:"2"+%)>"&#:-81.D)G$%&8=4&)H")5#++8%),-1"5%$')-,"+%-E')%& ").7" 5-E-5)
2"5&#+-.2),1-:-+4)%&-.)1"$#%-8+.&-7()8=1)1".=$%.)#1")58+.-.%"+%)H-%&),82#-+)-+%"1,"7"+,"+%)%-2")
,-.58=+%-+4)71"E"1"+5".D)@=1)1-5&)7#+"$),#%#)#+,)"V%"+.-:"),"2841#7&-5)58+%18$.)5#.%),8=>%)8+)
#$%"1+#%-:")2"5&#+-.2.).=5&)#.)#,:-5"W%#^-+4()58+.5-"+%-8=.+" ..()#+, )584+-%-:")#>-$-%'()#$%&8=4&)8%&"1.)
.=5&)#.)."$EW"EE-5#5')"V7"5%#%-8+.)#+,):-"H.)8E)%&")E=%=1")."$E)2#')-+E$="+5" ) 8=1)1".=$%.D)b=1%&"1281"()
H")5#++8%),-.5"1+)H&"%&"1)%&".")>"&#:-81.)1"E$"5%)1#%-8+# $)81)%-2 " W-+ 5 8 + .% #+ %)7 1" E"1" +5 ".).= 5&)#. )
71851#.%-+#%-8+)81)."$EW58+%18$)718>$"2.)Oc8&.)[)!"#%&"1%8+()FNNN`)G1-"$')[)*"1%"+>185&()FNNFRD);&-.)-.)
#+)-2781%#+%)E85=.)E81)E=%=1")1"."#15&()4-:"+)1"5"+%)":-,"+5")%&#%)"EE81%W1"$#%",),82 # -+.)O.= 5&)# .)
&"#$%&R)2#').&8H)281")71"."+%)>-#.)%&#+)28+"%#1'),82#-+.)OG=4"+>$-5^()J-","1$"()[)B71"+4"1()FNQKRD)
b-+#$$'()H")+8%")%&#%)5#1").&8=$,)>")=.",)-+)4"+"1#$-f-+4)8=1)1".=$%.()#.)%&"')#1")>#.",)8+)#)1"$#%-:"$')
.2#$$).#27$")8E)1"7"#%W 7#1%-5-7#+%)$8+4W%"12)"2 7 $8'" ".D)))
@=1).%=,')-.)=+-d=")-+)%&#%)%-2")71"E"1"+ 5".)8 +)8 +")&-4&W.%#^".),-2"+.-8+()1"%-1"2"+%()71",-5%)
%&")"EE-5#5')8E)>"& #: -81#$)-2 718 :"2 " +%)7 184 1#2 .)8 +)#+ 8%& "1)51-%-5#$),-2 " +.-8 +g&"#$%&D);&-.).=44".%.)
%&#%()#%)$"#.%)E81).82")-+,-:-,=#$.(),-.58=+%-+4)2#')+8%)>")#.),82#-+)-+,"7"+,"+%)#.)71":-8=.$')
%&8=4&%D)*&-$")%&-.).""2.)%8)58+%1#,-5%)"#1$-"1)E-+,-+4.)8E),82#-+)-+,"7"+,"+5")O"D4D()P&#72#+)[)
6$.%"-+()QSSXR()H")+8%").":"1#$),-EE"1"+5".)-+)8=1).%=,')%&#%)2-4&%)"V7$#-+)%&-.D)b-1.%()8=1).%=, ')= ." .)# )
d=#.-W"V84"+8=.).&85^)%8)&"#$%&)-+E812#%-8+)%&#%)$-+^.)E-+#+5-#$),-. 58= + %-+4)%8 )1-0$5 .&)&"#$%&)
1".78+.".G)1#%&"1)%&#+)%8)518..W ." 5%-8+#$)>"&#:-81D);&-.),-.%-+5%-8+)-.)-2781%# + %)> " 5# = ." ()$-^")71":-8 = .)
.%=,-".()H")#$.8)E-+,)$-%%$")":-,"+5")8E)518..W."5%-8+#$)5811"$#%-8+.)>"%H""+)&"#$%&)#+,)E-+#+5-#$)5&8-5".D))
B"58+,()8=1).%=,')$-+^.)&-4&W.%#^".)E-+#+5-#$),"5-.-8+.)H-%&)5&#+4".)-+)#)>18#,)#11#')8E)&"#$%&)>"&#:-81.)
QF)
)
#+,)2"%1-5.()"#5&)H-%&)78%"+%-#$$'),-EE"1"+%)$-+^.)%8)1"%-1"2"+%).#:-+4.D))B-+5")&"#$%&)-2718:"2 " + %.)8 + )
"#5&),-2"+.-8+)2#')1"d=-1"),-EE"1"+%)>"&#:-81#$)5822-%2"+%.)#+,)7"1.8+#$)%1#-%.()%&-.)-.)58+.-.% "+%)
H-%&)2=$%-7$")=+,"1$'-+4)E#5%81.)-27#5%-+4)-+%"1 %" 2 7 8 1# $)&"#$%&)5&8-5".D)
Author-Contribution:-
;D)<=>$"1)#+,)?D)3-"15")58$$"5%",)%&"),#%#)#+,),".-4+",)%&").%= ,' D);D)<=>$"1)7"1E812",)%&"),#%#)#+#$'.-.)
H-%&)%&")&"$7)8E)?D)3-"15"D))G$$)#=%&81.),1#E%",)%&")7#7"1()-+%"171"%" , )%& " )1". = $%. ()1": -.", )%&")2 # += .51-7 %()
#+,)#7718:",)%&")E-+#$):"1.-8+)8E)%&")7#7"1)E81).=>2-..-8+D))?D)3-"15").=>2-%%",)%&")7#7"1)E81)1":-"HD)
;&-.)718h"5%)1"5"-:",)90A )#7718:#$)E182)*#.&-+4 %8+ )C+ -:" 1.-%')-+)B%D)?8 =-. D))-
Declaration-of-Conflicting-Interests:-
;&")#=%&81.),"5$#1",)%&#%)%&"')&#,)+8)58+E$-5%.)8E)-+%"1".%)H-%&)1".7"5%)%8)%&"-1)#=%&81.&-7)81)%&")
7=>$-5#%-8+)8E)%&-.)#1%-5$"D)
-
References--
G1-"$'()UD()[)*"1%"+>185&)aD)OFNNFRD)31851#.%-+#%-8+(),"#,$-+".()#+,)7"1E812#+5"/)B"$EW58+%18$)>')
71"5822-%2"+%D)M#-&'*/*7.&$/(N&."0&"()QKOKR()FQ S WFFYD),8-/)QNDQQQQlQYLjWSFTNDNNYYQ)
G=4"+>$-5^()JD()J-","1$"()\D()[)B71"+4"1()PD)OFNQKRD)*81^-+4)8:"1)%-2"/)U'+#2-5)-+58+.-.%"+5')-+)1"#$)
"EE81%)%#.^.D))OPQ!)9*%>.07(M$)"%C)0"%1-":",)E182)&%%7/llHHHD+>"1D814l7#7"1.lHQTjKY)
Ob">1=#1')QT()FN QY RD)
A#1%"$.()UD)\D()[)0-7.()?D)]D)OFNQNRD)3.'5&8$84-5#$)58++"5%",+"..)#+,)-+%"1%"2781#$)5&8-5"D)R*6%0$/(*2(
QB)"%.5"0+$/(M#-&'*/*7-S(T"0"%$/()<UVOQR()YSuLSD),8-/QNDQNKjl#NNQTNLF)
P&#72#+()<D)AD)OQSSLRD);"2781#$),-.58=+%-+4)#+,)=%-$-%')E81)&"#$%&)#+,)28+"'D)R*6%0$/(*2(QB)"%.5"0 +$/(
M#-&'*/*7-S(W"$%0.07G(X"5*%-G($01(Y*70.+.*0()JJOKR()jjQujSQD),8-/)QNDQNKjlNFjTWjKSKDFFDKDjjQ)
P&#72#+()<DAD)OFNNXRD)B&81%W%"12)58.%)E81)$8+4W%"12)>"+"E-%/);-2" )71"E" 1"+ 5")# +, )5#+ 5"1)58 +%18 $D)
Z"$/+'(M#-&'*/*7-G(J:=:?()BYQWBYTD),8-/)QNDQNKjlNFjTWLQKKDFYDYDBYQ)
P&#72#+()<DAD()[)6$.%"-+()GDBD)OQSSXRD)c#$=-+4)%&")E=%=1"/);"2781#$),-.58=+%-+4)8E)&"#$%&)#+,)28+"'D)
X"1.&$/(["&.#.*0(X$>.07G(<\G(KjKWKTLD),8-/)QNDQQjjlNFjFSTSqSXNQXNNYNT)
QK)
)
P"+%"1)E81)U-."#.")P8+%18$)#+,)31":"+%-8+D)OFNQKRD)O654"%(=.0(X.//.*0#?(*2(Y.3./.$0G(O*0.0#+.+6+.*0$/.]"1(
M"%#*0#(@.+'([.$70*#"1([.$4"+"#G(D0.+"1(N+$+"#G(<V^;_J;<<C(0"%1-":",)E182)
&%%7/llHHHD5,5D48:l,-#>"%".l.%#%-.%-5.l71":l+#%-8+#$lE-47"1.8+.D&%2)O\#')FX()FNQKR)
U-V8+()\D)0D()\#1$"'()]D()[)]#58>.()6D)GD)OFNNKRD)U"$#'),-.58=+%-+4)>')7#%&8$84-5#$)4#2>$"1.D)R*6%0$/(*2(
,))/."1(P"'$3.*%(,0$/-#.#()U`OYR()YYSuYXTD),8-/QNDQSNQlh#>#DFNNKDKLWYYS)
U"$$#c-+4#()BD()[)\#$2"+,-"1()CD)OFNN L RD) 3#'-+4)%8)+8%)48)%8)%&")4'2D),5"%.&$0(Q&*0*5.&(!"3."@G(V`=U?()
LSYWjQSD),8-/)QNDQFXjl#"1DSLDKDLSY)
6-4.%-()9DW\D()i#'#.()cD()\-.5&"$()*D()B&8,#()vD()G',=^()@D()U#,$#+-()\D)AD()w)P#."'()AD)]D)OFNNLRD)31",-5%-+4)
584+-%-:")58+%18$)E182)71".5&88$)%8)$#%")#,8$".5"+5")#+,)'8=+4)#,=$%&88,D)M#-&'*/*7.&$/(
N&."0&"G(<K=`?()YjTuYTYD),8-/QNDFKNjlYNNLYKSj)
61.+"1W!"1.&E-"$,()!D()<#1%8+()\D);D()A#$$#1,()aD()B#2#+"fW?#1^-+()<D)0D()[)a+=%.8+()AD)OFNNSRD)U8+e%).%87)
%&-+^-+4)#>8= %)%82 8 118H /)9+, -:-,=# $),-EE"1"+ 5" .)-+)E=%= 1")."$EW 58 +%-+=-%')#558=+%)E81).#:-+4D)
R6175" 0+($ 01 ([" &.#.* 0(X $>.07(): OY R()FTN uFTLD)
b1","1-5^()BD()?8"H"+.%"-+()<D()[)@eU8+84&="();D)OFNNFRD);-2"),-.58=+%-+4)#+,)%-2")71"E"1"+5"/)G)51-%-5#$)
1":-"HD)R*6%0$/(*2(Q&*0 * 5 .&(W.+"%$ +6%" ():;OFR()KX Q uYNQD),8-/QNDFKNjlFLSTKTF)
!#11-.8+()<D)*D()?#=()\D)9D()[)0=%.%1_2()6D)6D)OFNQNRD)9+,-:-,=#$),-.58=+%)1#%".)#+,).28^-+4/)6:-,"+5")
E182)#)E-"$,)"V7 "1-2 " +%)-+)U "+ 2 # 1^D) R*6 %0$ /(*2(Z "$ /+'(Q& *0 *5.&#()JVOXR()jNTu jQjD)
,8-/QNDQNQLlhDh&"#$"58DFNQNDNLDNNL)
!=.%8+()BD)]D()[)b-+^"()\ D)BD)OF N NK RD)U -" %)5& 8 -5" )# +, )%& " )18$" )8 E)%-2")71"E"1"+5"D)R*6 %0$ /(*2(Y* 0# 65"%(
,22$.%#()UKOQR()QYKuQLND),8-/QNDQQQQlhDQjYXWLLNLDFNNKD%>NNYYYDV)
!"1.&E-"$,()!D6D)OFNQQRD)b=%=1")."$EW58+%-+=-%'/)&8H)58+5"7%-8+.)8E)%&")E=%=1")."$E)%1#+.E812)
-+%"1%"2 7 8 1# $)5 &8 -5 "D ) ,00$/#(*2(+'"(O"@(a*%>(,&$1"5-(*2(N&."0&"#()QFKX()K N WYKD),8-/)
QNDQQQQlhDQjYSWLLKFDFNQQDNLFNQDV))
QY)
)
]8.&-()3D)UD()[)b#.%()JD)]D)OFNQKRD)38H"1)#+,)1",=5",)%"2781#$),-.58=+ %-+ 4 D)M#-&'*/*7.&$/(N&."0&"()J:OYR()
YKFuYKTD),8-/QNDQQjjlNSXLjSjLQFYXjSXN)
a-1>'()aD)JD()3"%1'()JD)\D()[)A-5^"$()*D)aD)OQSSSRD)!"18-+)#,,-5%.)&#:")&-4&"1),-.58=+%)1#%".)E81),"$#'",)
1"H#1,.)%&#+ )+8 +W,1=4W=.-+4)58+%18$.D)R*6%0$/(*2(QB) "%.5 " 0+$ /(M#- &' */* 7- S(T" 0" %$/()<J^OQR()jT u
TjD),8-/QNDQNKjlNNSLWKYYXDQFTDQDjT)
a85&#+"^()aDUD()q=()]DxD()\=17&'()BD?D()\-+-r8()GD\D()[)a=+4()!DPD)OFNQQRD))U"#%&./)E-+#$),#%#)E81)FNNSD)))
O$+.*0$/(b.+$/(N+$+.#+.&#(!")*%+#G(LNOKRD)
a8".%+"1()0D()<-+41#.()9D()G>=%##()0D()?8.-"1()<D()U-,-8()?D()[)<#4+"()\D)OQSSSRD);8)E8$$8H)"V7"1%)#,:-5")
H&"+)2#^-+4)#),"5-.-8+/)G+)"V#2-+#%-8+)8E)1"#5%-:"):"1.=.)1"E$"5%-:")#=%8+82'D)R*6%0$/(*2(
M"%#*0$/.+-()LX()TXQWTjFD)
?#->.8+()UD)9D()0"7"%%8()GD();8>#52#+()]D()!#$$()0D)6D()<#$"()*D)<D()[)G^"1$8E()<D)GD)OQSSTRD)B"$EW58+%18$)#+,)
.#:-+4)E81)1"%-1"2"+%D)P%**>.07#(M$)"%#(*0(Q&*0*5.&(,&+.3.+-()<VV^OQR()SQuQSLD)
,8-/QNDFKNjlFXKYLjQ)
?":'()AD()B$#,"()\D()a=+^"$()BD()[)a#.$()BD)OFNNFRD)?8+4-%=,-+#$)>"+"E-%)8E)78.-%-:")."$EW7"15"7%-8+.)8E)#4-+4)
8+)E=+5%-8+-+4)&"#$%&D)R*6%0$/(*2(M"%#*0$ /.+-($0 1(N* &.$ /(M#-& '* /*7 -()T K O F R()F L Q WFjND)
\"-"1()BD()[)B71"+4"1()PD)UD)OFNQNRD)31"."+%W>-#.",)71"E"1"+5".)#+,)51",-%)5#1,)>8118H-+4D),5"%.&$0(
Q&*0*5.&(R*6%0$/S(,))/."1(Q&*0*5.&#()FOQR()Q S K WFQND),8-/)QNDQFXjl#77DFDQDQSK)
\"-"1()BD()[)B71"+4"1()PD)UD)OFNQFRD);-2"),-.58=+%-+4)71",-5%.)51",-%H81%&-+"..D)M#-&'*/*7.&$/(N&."0&"()
JUOQR()XLWXTD)),8-/)QNDQQjjlNSXLjSjLQQYFXSKQ)
J#%-8+#$)P"+%"1)E81)!"#$%&)B%#%-.%-5.D)OFNQFRD)Z"$/+'G(D0.+"1(N+$+"#G(J;<<S(9.+'(N)"&.$/(c"$+6%"(*0((
N*&.*"&*0*5.&(N+$+6#($01(Z"$/+'C)!'#%%.:-$$"()\#1'$#+,/)CB)U"7#1%2"+%)8E)!"#$%&)#+,)!=2#+))
B"1:-5".D)
J#%-8+#$)9+.%-%=%".)8E)!"#$%&D)OQSSjRD);&").-V%&)1"781%)8E)%&")]8-+%)J#%-8+#$)P822-%%"")8+)31":"+%-8+())
U"%"5%-8+()6:#$=#%-8+()#+,);1"#%2"+%)8E)!-4&)A$88 ,)31" ..= 1"(),%&'.3"#(*2(d0+"%0$/(X"1.&.0"))
QX)
)
QSSj()QXj()FYQKWFFYLD)
0"=>"+()6D()B#7-"+f#()3D()[)i-+4#$".()?D)OFNQNRD);-2"),-.58=+%-+4)E81)71-2#1')#+ , )28+"%#1' )1" H # 1, .D)
Q&*0*5.&#(W"++"%#()<;`OFR()QFXuQFjD),8-/QNDQNQLlhD"58+$"%DFNNSDQNDNFN)
0&""()JD)OFNQKRD);&")1"%-1"2"+%).#:-+4.)51-.-./)9.)-%)H81.")%&#+)H")%&-+^I)*#.&-+4%8+()UP/)J#%-8+#$)
9+.%-%=%" )8 + )0 " %-1" 2"+%)B"5=1-%'D)0"%1-":", )E18 2 )&%%7./llHHHD587"1#D814l7,El\-.5lJ90BLW
QKD7,E)
B5&H#1%f()]D()\85&8+()UD()*'7"1()?D()\#18>#()]D()3#%"$()UD()[)G1-"$'()UD)OFNQYRD)!"#$%&-"1)>')
71"5822-%2"+%D)M#-&'*/*7.&$/(N&."0&"G(J\=J?G)XKTWXYLD),8-/)QNDQQjjlNSXLjSjLQKXQNSXN)
B%1#%%8+()9D)\D()G,$"1()GD)9D()J"-$()!D)GD()\#%%&"H.()UD)0D()\#+$"'()BD)6D()P=$$()PD)GD()w)!8$2#+()0D)0D)OFNNNRD)
G..85-#%-8+)8E)4$'5#"2-#)H-%&)2#518:#.5=$#1)#+,)2-518:#.5=$#1)5827$-5#%-8+.)8E)%'7")F),-#>"%".)
OCa3UB)KX R/)718 .7" 5%-:" )8> ."1: #%-8 +# $).%=, 'D)PX R(=Y/.0.&$/(%"#"$%&'("1C?()UJ<OjFXTR()YNXuYQFD)
,8-/)&%%7/ll,VD,8-D814lQNDQQKLl>2hDKFQDjFXTDYNX)
c8&.()aD()[)!"#%&"1%8+();D)OFNNNRD)B"$EW1"4=$#%81')E#-$=1"/)G)1".8=15"W,"7$"%-8+)#7718#5&D)M#-&'*/*7.&$/(
N&."0&"G(<<=U?G(FYSWFXYD),8-/)QNDQQQQlQYLjWSFTNDNNFXN)
-
... A financial cushion in a form of savings protects against negative health and subjective well-being outcomes (Arber et al., 2014;Gupta et al., 2018). Based on experimental and observational longitudinal data, the positive impacts of savings were confirmed for emotional health and positive health behaviors (Białowolski et al., 2019;Gubler and Pierce, 2014), for improvements in the abnormal blood-test results (Gubler and Pierce, 2014), as well as for making favorable financial choices leading to increased lifelong well-being (Thaler and Benartzi, 2004). Exercising financial control was found to be favorably associated with emotional health outcomes, physical health outcomes, and social well-being outcomes . ...
... A financial cushion in a form of savings protects against negative health and subjective well-being outcomes (Arber et al., 2014;Gupta et al., 2018). Based on experimental and observational longitudinal data, the positive impacts of savings were confirmed for emotional health and positive health behaviors (Białowolski et al., 2019;Gubler and Pierce, 2014), for improvements in the abnormal blood-test results (Gubler and Pierce, 2014), as well as for making favorable financial choices leading to increased lifelong well-being (Thaler and Benartzi, 2004). Exercising financial control was found to be favorably associated with emotional health outcomes, physical health outcomes, and social well-being outcomes . ...
... Regarding these positive impacts, we corroborated findings previously reported by Gubler and Pierce (2014), Kim et al. (2003) and Bialowolski et al. (2019) that financial capability (i.e., exercising financial planning) and saving (i.e., feeling financially safe) are prospectively associated with self-reports of mental and physical health as well as the risk of diagnosed depression. ...
Article
Full-text available
Background Both theory and empirical evidence suggest that financial conditions are influential for mental health and might contribute to physical health outcomes. Methods Using longitudinal survey data and health claims data from 1,209 employees in a large U.S. health insurance company, we examined temporal associations between measures of financial safety, financial capability, financial distress, their summary index (financial security) and six subsequently measured mental and physical health outcomes. Results We found that financial safety and financial capability were positively associated, while financial distress was negatively associated, with subsequent self-reported measures of physical and mental health, even after controlling for these health measures at baseline and other confounders. Additionally, financial conditions were associated with reduced risk of depression based on medical claims data. Financial safety was also associated with anxiety. Conclusions Policy-makers might consider the introduction of more effective measures for ensuring favorable financial conditions as an important contributor to better population health. Furthermore, policy could encourage teaching adequate financial management techniques and the importance of understanding of long-term consequences of financial decisions, as those might be pivotal for health outcomes.
... Studies have been increasingly conducted in recent years linking personal health and financial behaviors (Finke & Huston, 2013;Gubler & Pierce, 2014;O'Neill, 2005). For example, in one study, preventive health behaviors were found to be a stronger predictor of the importance of saving for retirement than all other explanatory variables (Finke & Houston, 2013). ...
... For example, in one study, preventive health behaviors were found to be a stronger predictor of the importance of saving for retirement than all other explanatory variables (Finke & Houston, 2013). In another study, contributions to a 401(k) retirement savings plan and future health improvements (e.g., reduced smoking) were highly correlated (Gubler & Pierce, 2014). Several studies have focused specifically on associations between consumers' use of nutrition labels and financial planning practices, such as retirement planning (Carr et al., 2015;Chatterjee & Nielsen, 2010;Martin, Guillemete, & Browning, 2016). ...
Article
This study explored relationships between the practice of reading Nutrition Facts labels on food products and the frequency of performance of 19 positive health and financial practices. Data were collected using an online survey with 3,361 observations that provided a simultaneous assessment of the participating individuals’ health and financial practices. Few publicly-available instruments of this type exist. The reliability of the overall scale used in this study was .845. Support was found for three hypotheses: there are differences in demographic characteristics between those who read Nutrition Facts labels and others and respondents who reported reading nutrition labels had both higher health practice scores and higher financial practice scores than others. Those who were more likely to read nutrition labels were females, older respondents, and those with higher education and incomes. Findings of this study, which provide evidence of positive associations between two different aspects of people’s lives, imply that it might be useful for both health and financial practitioners to know if their clients/students read nutrition labels on a regular basis. Having this information can inform the content and duration of interventions to change health- and financial-related behaviors.
... Separately, research underlines the importance of financial planning for improving living standards in retirement (Lusardi, Michaud and Mitchell, 2017;Gubler and Pierce, 2014). ...
... Delaying labour supply decisions or not responding at all to future reforms without adjusting on other margins such as savings or consumption will lead to suboptimal outcomes from a lifecycle perspective. Evidence suggests engagement with retirement planning is correlated with certain characteristics such as financial literacy, those with higher measured levels are more likely to engage in financial planning for retirement, are less likely to experience a sharp fall in living standards later in life and have better health outcomes (Lusardi, Michaud and Mitchell, 2017;Gubler and Pierce, 2014). Whilst UKHLS does not contain measures of financial literacy recorded at the time ERA is measured, we allow for differential adjustment based on, e.g., income and our lack of support for differential adjustment is therefore concerning. ...
... Separately, research underlines the importance of financial planning for improving living standards in retirement (Lusardi, Michaud and Mitchell, 2017;Gubler and Pierce, 2014). ...
... Delaying labour supply decisions or not responding at all to future reforms without adjusting on other margins such as savings or consumption will lead to suboptimal outcomes from a lifecycle perspective. Evidence suggests engagement with retirement planning is correlated with certain characteristics such as financial literacy, those with higher measured levels are more likely to engage in financial planning for retirement, are less likely to experience a sharp fall in living standards later in life and have better health outcomes (Lusardi, Michaud and Mitchell, 2017;Gubler and Pierce, 2014). Whilst UKHLS does not contain measures of financial literacy recorded at the time ERA is measured, we allow for differential adjustment based on, e.g., income and our lack of support for differential adjustment is therefore concerning. ...
Preprint
Full-text available
We examine individuals' retirement behaviour in response to changes in the State Pension eligibility age introduced in various Pension Acts in the UK. The findings show the probability of retirement increases sharply once individuals become eligible for State Pension, by 40 pp and 34 pp for men and women respectively. We find no empirical support for men or women adjusting their expected retirement age upwards in response to an increase in the SP eligibility age. Our findings suggest that whilst changes in the State Pension eligibility age are important for individual's actual retirement, they do not induce individuals to revise their expected retirement age and this can result in suboptimal retirement planning. The latter can be problematic for those who rely disproportionately on State Pension as their main source of income and, arguably, targeted communication campaigns are needed to improve retirement planning.
... preventive health behaviors) share some similarities with retirement planning. Preventive behavioral engagement in health settings, such as cancer screenings, also have a long-term character (Gubler and Pierce, 2014), involve immediate costs but benefits that accrue only in the future, and great uncertainty. The perceived barriers to both types of behavior are also similar. ...
Article
Purpose The authors develop and validate a conceptual model, the retirement engagement model (REM), to understand the relationships between behavioral engagement (retirement information search), cognitive factors and engagement (e.g. beliefs and financial knowledge), emotional engagement (e.g. anxiety), and socio-demographic factors. Approach: The authors derive the REM through a three-step procedure: (1) an extensive literature review, (2) interactive feedback sessions with experts to confirm the model's academic and managerial relevance, and (3) an empirical test of the REM with field data ( N = 583). The authors use a partial least squares (PLS) structural equation model and examine heterogeneity through a finite mixture model. Design/methodology/approach Around the globe, people are insufficiently engaged with retirement planning. The customer engagement literature offers rich insights into antecedents, outcomes, and barriers to engagement. However, customer engagement literature lacks insights into cognitive, emotional and behavioral factors that drive engagement in retirement planning, a utilitarian service context, which is important for financial well-being. Findings Beliefs such as perceived susceptibility, severity, benefits, barriers, and self-efficacy, together with trust and retirement anxiety, explain people's search for pension information. These factors can be used to define three clear, actionable segments of consumers. Originality/value The findings advance the customer engagement and transformative service research literature by generating insights on engagement with retirement planning, a utilitarian rather than hedonic service context that is especially relevant for financial well-being. The findings inform managerial practice and emphasize the relevance of including cognitive and emotional engagement factors that trigger behavioral engagement. The REM can help to improve pension communication. For example, the results indicate that marketers should stress the benefits of, rather than the barriers to, acquiring information.
... Since then, Noone et al. (2009) used longitudinal data from the Health and Retirement Study (HRS) to show that general retirement planning is predictive of better health in retirement after controlling for income, reason for retirement, and demographic variables. Financial planning has also been linked to better psychological health (Irving, 2012) and general health improvements in a U.S. follow-up study (Gubler & Pierce, 2014). However, a small (n = 90) longitudinal study did show that psychosocial planning was unexpectedly associated with greater psychological distress (Yeung, 2013). ...
Article
Retirement planning is a widely promoted activity to enhance wellbeing for aging populations. However, there is limited follow-up data to understand the antecedents of multi-dimensional retirement planning activities, the resources such activities produce or the explanatory mechanisms. This research draws on recent theorizing, which suggests that retirement planning may play a mediating role in explaining how pre-retirement antecedents are transformed into retirement resources. Antecedents, planning and retirement resources were examined using 3 waves of follow-up data collected in 2006, 2008, and 2014. Four hundred thirty-five people originally employed in 2008 and retired by 2014 participated in the study. Health, income, and a positive retirement attitude (T1) were the strongest predictors of retirement planning (T2), but job satisfaction and occupation also played smaller predictive roles. Financial planning (T2) predicted health, psychosocial, and financial resources in retirement (T3). However, health, lifestyle, and psychosocial planning played a minimal role in explaining retirement resources, and only financial planning demonstrated noteworthy evidence of mediation. Findings can help to inform policy decisions by identifying those at greatest risk of not planning, and to isolate the factors most likely to explain the longer-term effects of planning. Understanding which resources are predicted by different domains of planning will also help inform the targeting of interventions.
... They found that the decision to contribute to a 401(k) retirement plan predicted whether an employee who had a basic health risk appraisal and 42 blood screening tests acted to correct their poor physical health risks in the following year. 25 In that study, participants received a financial incentive of an approximately 15% decrease in their health insurance premiums depending on their base salary ($1.75 to $11 per month) to complete a health risk appraisal. Furthermore, they found that employees who contributed to their 401(k) were 27% more likely to show improvements in their health risks and biometric abnormalities than noncontributors in the following year. ...
Article
Many people spend years dreaming about their retirement. Unfortunately, today’s workers will likely work longer, suffer greater economic uncertainty, and might have poorer health status compared with retirees in previous generations. Preserving good health during the working years is associated with a more consistent employment record, greater financial resources, and reduced risk of disease. Making smart financial decisions as a younger adult also translates to improved finances in retirement. While many people are aware of these relationships, many continue to make poor health choices. Employers and lifestyle medicine professionals can both work to improve financial well-being in retirement. Employers can offer effective worksite financial wellness programs and promote participation in retirement savings programs. Physicians and other health providers can foster healthy behaviors, encourage preventive services compliance, and help adults foster overall financial and health well-being. Adopting a healthy lifestyle as early as possible would increase the likelihood that today’s workers will enjoy financial security in retirement.
... Indeed, our findings may also be applicable to other low-involvement, but high-importance industries such as the health sector. Both health and pension communication face similar challenges as both require an individual to think in the long-term, accrue immediate costs but provide only delayed rewards, and positive outcomes are not guaranteed (i.e., one might still get cancer even if one lived a healthy life, or one might die before one gets to access retirement savings; Eberhardt et al., 2019;Gubler & Lamar, 2014;Hoffmann & Risse, 2020). ...
Article
Full-text available
Although planning for retirement is fundamental for consumers’ future well‐being, individuals often fail to engage with it. Retirement engagement refers to one’s initial interest in and active planning for one’s retirement. In this study, we focus on mobile technology‐enabled retirement engagement, operationalized as consumers’ perception of how a retirement app can help them plan for retirement. While rapid advances in digital platforms and mobile technology show promising use to the financial services sector, little is known about the adoption drivers of mobile technology in stimulating retirement engagement as a unique low‐involvement, yet high‐importance context. We address this gap in the existing literature by analyzing survey data from a representative sample of 440 Australian pension fund members. We find that consumers’ financial self‐efficacy, perceived financial security, consideration of future consequences, retirement planning involvement, and perceived usefulness have direct effects on their anticipated engagement with a mobile retirement app as well as indirect effects through their intention to adopt the app (financial self‐efficacy and consideration of future consequences only have direct effects). We also find that mobile computing self‐efficacy, prior finance app use, and perceived ease of use only have indirect effects through consumers’ intention to adopt the app. Notably, the association between adoption intentions and anticipated engagement is stronger for those closer to retirement.
... Because the current study contributes to existing research relationships between specific health and financial practices, it is helpful to review studies that have found relationships between these two key aspects of people's lives for insights to inform financial education and counseling. Gubler and Pierce (2014) found that contributing to a 401(k) retirement savings plan was associated with whether individuals acted to correct poor physical health indicators that were revealed during an employer-sponsored health examination. Plan contributors showed improvements in health behaviors about 27% more often than non-contributors did, despite having few health differences prior to program implementation. ...
Article
Full-text available
This study explored relationships between health-related practices and performance of 10 positive personal finance practices. Data came from a 20-question online quiz that provides a simultaneous assessment of individuals' health and financial practices. The sample included 8,128 persons who completed the survey instrument from July 2015 through June 2017. All three hypotheses were supported. Specifically, three independent variables (diet index, sleep, and physical activity) showed significant positive associations with an index comprised of 10 positive financial behaviors. Results suggest that diet behavior may be more closely associated with financial behavior than the other two health behaviors.
Book
Introduction to Industrial/Organizational Psychology provides a complete overview of the psychological study of the world of work. Written with the student in mind, the book presents classic theory and research in the field alongside examples from real-world work situations to provide deeper insight. This edition has been thoroughly updated to include the latest research on each key topic, and now features: A spotlight on diversity, equity, and inclusion throughout, including coverage of LGBTQIA+ inclusion and racial justice Expanded coverage of ethics in I/O psychology practice Increased emphasis on cross-cultural and international issues Coverage of the changing nature of work, post-pandemic, including remote working, worker stress, and burnout A new focus on technologies related to I/O such as virtual reality and computer adaptive testing New figures, illustrations, and charts to grab the reader's attention and facilitate learning Accompanied by extensive student and instructor resources, it is a must read for all students on I/O psychology courses and courses in work psychology and organizational behavior, and for practicing managers who want a comprehensive overview of the psychology of work. © 2022 Ronald E. Riggio & Stefanie K. Johnson. All rights reserved.
Article
Full-text available
THE PURPOSE of the "Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure" (JNC VI) is to provide guidance for primary care clinicians. The committee recognizes that the responsible clinician's judgment of the individual patient's needs remains paramount. Therefore, this national guideline should serve as a tool to be adapted and implemented in local and individual situations. Using evidence-based medicine and consensus, the report updates contemporary approaches to hypertension control. Among the issues covered are the important need for prevention of high blood pressure by improving lifestyles, the cost of health care, the use of self-measurement of blood pressure, the role of managed care in the treatment of high blood pressure, the introduction of new combination antihypertensive medications and angiotensin II receptor blockers, and strategies for improving adherence to treatment. The JNC VI report places more emphasis than earlier reports on absolute
Article
Full-text available
We tested a voluntary self-control commitment device to help grocery shoppers make healthier food purchases. Participants, who were already enrolled in a large-scale incentive program that discounts the price of eligible groceries by 25%, were offered the chance to put their discount on the line. Agreeing households pledged that they would increase their purchases of healthy food by 5 percentage points above their household baseline for each of 6 months. If they reached that goal, their discount was awarded as usual; otherwise, their discount was forfeited for that month. Thirty-six percent of households that were offered the binding commitment agreed; they subsequently showed an average 3.5-percentage-point increase in healthy grocery items purchased in each of the 6 months; households that declined the commitment and control-group households that were given a hypothetical option to precommit did not show such an increase. These results suggest that self-aware consumers will seize opportunities to create restrictive choice environments for themselves, even at some risk of financial loss.
Article
Full-text available
This report presents final 2008 data on U.S. deaths, death rates, life expectancy, infant mortality, and trends by selected characteristics such as age, sex, Hispanic origin, race, state of residence, and cause of death. Information reported on death certificates, which is completed by funeral directors, attending physicians, medical examiners, and coroners, is presented in descriptive tabulations. The original records are filed in state registration offices. Statistical information is compiled in a national database through the Vital Statistics Cooperative Program of the Centers for Disease Control and Prevention's National Center for Health Statistics. Causes of death are processed in accordance with the International Classification of Diseases, Tenth Revision. In 2008, a total of 2,471,984 deaths were reported in the United States. The age-adjusted death rate was 758.3 deaths per 100,000 standard population, a decrease of 0.2 percent from the 2007 rate and a record low figure. Life expectancy at birth rose 0.2 years, from 77.9 years in 2007 to a record high 78.1 years in 2008. The age-specific death rate increased for age group 85 years and over. Age-specific death rates decreased for age groups: less than 1 year, 5-14, 15-24, 25-34, 35-44, and 65-74 years. The age-specific death rates remained unchanged for age groups: 1-4, 45-54, 55-64, and 75-84 years. The 15 leading causes of death in 2008 remained the same as in 2007, but Chronic lower respiratory diseases and suicide increased in the ranking while stroke and septicemia decreased in the ranking. Stroke is the fourth leading cause of death in 2008 after more than five decades at number three in the ranking. Chronic lower respiratory diseases is the third leading cause of death for 2008. The infant mortality rate decreased 2.1 percent to a historically low value of 6.61 deaths per 1000 live births in 2008. The decline of the age-adjusted death rate to a record low value for the United States and the increase in life expectancy to a record high value of 78.1 years are consistent with long-term trends in mortality.
Article
Objective: This report presents final 2009 data on U.S. deaths, death rates, life expectancy, infant mortality, and trends by selected characteristics such as age, sex, Hispanic origin, race, state of residence, and cause of death. Methods: Information reported on death certificates, which is completed by funeral directors, attending physicians, medical examiners, and coroners, is presented in descriptive tabulations. The original records are filed in state registration offices. Statistical information is compiled in a national database through the Vital Statistics Cooperative Program of the Centers for Disease Control and Prevention's National Center for Health Statistics. Causes of death are processed in accordance with the International Classification of Diseases, Tenth Revision. Results: In 2009, a total of 2,437,163 deaths were reported in the United States. The age-adjusted death rate was 741.1 deaths per 100,000 standard population, a decrease of 2.3% from the 2008 rate and a record low figure. Life expectancy at birth rose 0.4 years, from 78.1 years in 2008 to a record-high 78.5 years in 2009. Age-specific death rates decreased for age groups: under 1 year, 1-4, 15-24, 55-64, 65-74, and 75-84. The age-specific death rates remained unchanged for age groups 5-14, 25-34, 35-44, 45-54, and 85 years and over. The 15 leading causes of death in 2009 remained the same as in 2008. The infant mortality rate decreased 3.3% to a historically low value of 6.39 deaths per 1,000 live births in 2009. Conclusion: The decline of the age-adjusted death rate to a record low value for the United States and the increase in life expectancy to a record high value of 78.5 years are consistent with long-term trends in mortality.
Article
Experimental tests of dynamically inconsistent time preferences have largely relied on choices over time-dated monetary rewards. Several recent studies have failed to find the standard patterns of present bias. However, such monetary studies contain often-discussed confounds. In this paper, we sidestep these confounds and investigate choices over consumption (real effort) in a longitudinal experiment. We pair this effort study with a companion monetary discounting study. We confirm very limited time inconsistency in monetary choices. However, subjects show considerably more present bias in effort. Furthermore, present bias in the allocation of work has predictive power for demand of a meaningfully binding commitment device. Therefore our findings validate a key implication of models of dynamic inconsistency, with corresponding policy implications.
Article
Decision makers generally feel disconnected from their future selves, an experience that leads them to prefer smaller immediate gains to larger future gains. This pervasive tendency is known as temporal discounting, and researchers across disciplines are interested in understanding how to overcome it. Following recent advances in the power literature, we suggest that the experience of power enhances one's connection with the future self, which in turn results in reduced temporal discounting. In Study 1, we found that participants assigned to high-power roles were less likely than participants assigned to low-power roles to display temporal discounting. In Studies 2 and 3, priming power reduced temporal discounting in monetary and nonmonetary tasks, and, further, connection with the future self mediated the relation between power and reduced discounting. In Study 4, experiencing a general sense of power in the workplace predicted actual lifetime savings. These results have important implications for future research.
Article
Economic theory related to time preference and health may be useful as a means of understanding the predictors of diet choice. The willingness to subvert present for future utility is hypothesized to influence the process of sacrificing time, flavor, convenience, and price in order to choose a healthful diet. Empirical results confirm the unique importance of variables related to rate of future discounting versus variables associated with market or cultural factors.
Article
The present study examined whether reactive and reflective autonomy moderated individuals’ responses to expert influence. Participants were given the opportunity to win money at a racetrack betting task for which they were provided with objective information about horses’ previous performances along with specific expert recommendations. The experts were made to look either credible or noncredible by manipulating information on the success rate of their previous predictions. The results showed that the two forms of autonomy led to exactly opposite behaviors in response to the advice of credible experts. Reflective autonomy was significantly positively associated with following the recommendations of credible experts whereas reactive autonomy was significantly negatively associated with following the recommendations. The results also showed that it was particularly after losing their first race that reactive autonomy was related to rejecting the advice of experts. These findings indicate that reactive and reflective forms of autonomy may yield opposite patterns of behavior in certain situations.
Article
This paper reports a positive and statistically significant relation between short-term discount rates elicited with a monetary and a primary reward (chocolate). This finding suggests that high short-term discount rates are related to an underlying individual trait.