Content uploaded by Tamer Abu-Alam
Author content
All content in this area was uploaded by Tamer Abu-Alam on Nov 24, 2017
Content may be subject to copyright.
A strike-slip core complex from the Najd fault system,
Arabian shield
Sven Erik Meyer,
1
Cees Passchier,
1
Tamer Abu-Alam
2,3,4,5
and Kurt St€
uwe
2
1
Institute of Earth Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany;
2
Institut f€
ur Geowissenschaften, Karl-
Franzens-Universit€
at Graz, Universit€
atsplatz 2, Graz A-8010, Austria;
3
Norwegian Polar Institute, Hjalmar Johansens gt. 14, Tromsø NO-
9296, Norway;
4
Geology Department, Faculty of Science, Tanta University, Tanta, Egypt;
5
Egyptian Institute of Geodynamics, Cairo, Egypt
ABSTRACT
Metamorphic core complexes are usually thought to be asso-
ciated with regional crustal extension and crustal thinning,
where deep crustal material is exhumed along gently dipping
normal shear zones oblique to the regional extension direc-
tion. We present a new mechanism whereby metamorphic
core complexes can be exhumed along crustal-scale strike-slip
fault systems that accommodated crustal shortening. The
Qazaz metamorphic dome in Saudi Arabia was exhumed along
a gently dipping jog in a crustal-scale vertical strike-slip fault
zone that caused more than 25 km of exhumation of lower
crustal rocks by 30 km of lateral motion. Subsequently, the
complex was transected by a branch of the strike-slip fault
zone, and the segments were separated by another 30 km of
lateral motion. Strike-slip core complexes like the Qazaz
Dome may be common and may have an important local
effect on crustal strength.
Terra Nova, 26, 387–394, 2014
Introduction
Metamorphic domes surrounded by
low-grade metamorphic rocks are
commonly formed by the exhuma-
tion of medium- to high-grade meta-
morphic rocks from lower crustal
levels (Davis and Coney, 1979; Crit-
tenden et al., 1980). The most com-
mon mechanism of exhumation is
thought to be regional-scale exten-
sion (Wernicke, 1981; Davis et al.,
1986) and crustal thinning, where
higher grade rocks are brought up in
the footwalls of gently dipping shear-
zone systems oblique to the regional
extension direction (often termed
‘low-angle detachments’) forming so-
called core complexes (Lister et al.,
1984; Tirel et al., 2008; Huet et al.,
2010; Fig. 1a). Here, we present evi-
dence that core complexes can also
be locally exhumed along major ver-
tical strike-slip shear zones in areas
of crustal shortening without regio-
nal-scale crustal thinning, using an
example from the Najd shear-zone
system in Saudi Arabia (Abdelsalam
and Stern, 1996; Fig. 1b).
The Najd shear-zone system
The Arabian-Nubian shield (ANS) in
Egypt, Saudi Arabia and Sudan is
composed of ~870–630 Ma Neopro-
terozoic juvenile arc terranes and
remains of ophiolite belts which
amalgamated during the closing of
the Mozambique Ocean and the
associated assembly of Gondwana-
land (Stern, 1994; Johnson et al.,
2004; Stern and Johnson, 2010).
Most of the ANS consists of
low-grade metavolcanics and metase-
diments with scattered intrusive arc-
type and a few A-type granitoids. All
units are affected by the Najd fault
system (NFS), a network of crustal-
scale sinistral strike-slip zones
2000 km long and 400 km wide,
which cut and partly reactivate older
tectonic elements in the shield (Stern,
1994; Fig. 2). Development of this
shear-zone network during and fol-
lowing the collision of West and East
Gondwana resulted in E–W shorten-
ing with a northwards trend of
escape tectonics (Burke and Seng€
or,
1986; Stern, 1994; Abdelsalam and
Stern, 1996). This was accompanied
by the exhumation of metamorphic
domes (e.g. Blasband et al., 2000;
Fritz et al., 2002; Brooijmans et al.,
2003; Abd El-Naby et al., 2008;
Abu-Alam and St€
uwe, 2009). We
studied one of these domes in NW
Saudi Arabia: the Qazaz Dome,
which is associated with the sinistral
Qazaz strike-slip shear zone, one of
the largest Najd structures with a
length of at least 140 km (Stern and
Johnson, 2010; Genna et al., 2002;
Figs 2 and 3).
Qazaz metamorphic complex
The Qazaz Dome developed in a
low-relief area with nearly continu-
ous exposure in the desert of Saudi
Arabia. It is a triangular dome of
medium- to high-grade gneisses sur-
rounded by low-grade mylonite zones
and very low-grade metapelite, con-
glomerate and volcanic rocks of the
Neoproterozoic Thalbah and Bayda
Groups (Fig. 3a). The Thalbah
group sediments have been deposited
unconformably on the Imdan plu-
tonic complex (660 4 Ma) and
were intruded by the Liban complex
(621 7 Ma), which appears to
bracket deposition between 660 and
620 Ma (Johnson et al., 2011). How-
ever, the age of the group is debated:
new U-Pb dates of detrital zircons
from two of the three formations
that make up the Thalbah group
(Bezenjani et al., 2014) suggest depo-
sitional ages of ≤596 10 Ma (Ha-
shim Formation) and ≤612 7Ma
(Zhufar Formation). The Qazaz
shear zone is locally 3–4 km wide
with a dominance of vertical folia-
tions and gently plunging stretching
lineations. It is an anastomosing
complex of high-strain branches with
Correspondence: Mr. Sven Erik Meyer,
Tectonophysics, Institute of Earth Sci-
ences, Becherweg 21, Johannes Gutenberg
University Mainz, Mainz 55099, Rhein-
land Pfalz, Germany. Tel.:
+49 6131 3920293; e-mail: meyersv@
uni-mainz.de
©2014 John Wiley & Sons Ltd 387
doi: 10.1111/ter.12111
high-grade mylonitized rocks in the
core (Fig. 3a). Adjacent to the Qazaz
Dome, the shear zone splits into two
strike-slip zones with similar sinistral
shear sense, which flank the dome as
described below. The activity of the
Qazaz shear branches is bracketed
between ~630 and 580 Ma (Calvez
et al., 1984; Kennedy et al., 2009)
based on displacement of dated
granitoids.
The Qazaz Dome is characterized
by a dominant gently SW–NE-dip-
ping mylonitic foliation with NW–SE
or NS trending gently plunging
stretching lineations developed in
granitic gneisses (Fig. 3c). The age of
the gneisses (protolith) in the dome
itself is given by SHRIMP zircon
dating as 725–696 Ma (Johnson and
Woldehaimanot, 2003). Towards the
southern detachment, the gentle
southern dip of the mylonitic folia-
tion increases to a maximum of 40°
(Figs 3c and 4). The detachment
includes parts of the Qazaz gneisses
and metasediments of the Thalbah
group with a strong south-dipping
mylonitic shape fabric (Fig. 3c). The
footwall contains high-strain migma-
tites and high-metamorphic-grade
mylonites with r-type feldspar clasts
and garnet clasts with strain shad-
ows, giving a dominant top to the
south shear sense (Fig. 5). These
high-grade shear sense markers and
shape fabrics are overprinted by
lower grade S-C shear bands and
chlorite veins indicating the same
movement direction and shear sense,
suggesting synkinematic exhumation
of the dome. The hanging wall of the
Qazaz Dome to the south and west
is composed of rocks of the Thalbah
Group. These are weakly to moder-
ately deformed with open upright
folds south of and alongside the
dome and the Qazaz shear zone, but
undeformed further away (Fig. 3c).
To the SE, the Thalbah group is
invaded by small, mostly undeformed
monzogranite bodies that are not
affected by the main strike-slip or
detachment mylonitization, although
some minor shear zones occur at the
contact of the granite and the
metasediments. The gently dipping
mylonitic foliation in the Qazaz
Dome is affected by km-scale folds
with NNW–SSE trending steep axial
planes, which are open in the SE but
become increasingly tight to the NW
(Figs 3c and 6c–e). In the NW apex
of the Dome, a single tight to isocli-
nal antiform dominates the mylonite
zone and grades into the Qazaz shear
zone. Up to 20 km north of the
Qazaz Dome, this fold is still recog-
nizable because the strike-slip Qazaz
shear zone has gently plunging linea-
tions throughout, but a foliation that
changes from subvertical in the
shear-zone limbs to horizontal in the
centre (Figs 3d, 6e and 7 inset). Fur-
ther NW, only vertical foliations are
present in the Qazaz shear zone.
The west side of the Qazaz Dome
is flanked by a sinistral strike-slip
shear zone, which overprints the
high-grade mylonitic fabrics in the
upper/middle crust
lower crust
upper/middle crust
lower crust
(a)
(b)
Fig. 1 (a) Typical metamorphic core complex formed during regional extension; (b)
strike-slip core complex, formed during regional shortening by local extension asso-
ciated with a jog in a strike-slip shear zone.
Fig. 2 Overview map of the Najd shear zones and the gneiss complexes in the Ara-
bian-Nubian Shield; modified after Abu-Alam and St€
uwe (2009).
388 ©2014 John Wiley & Sons Ltd
Strike-slip core complex •S. E. Meyer et al. Terra Nova, Vol 26, No. 5, 387–394
.............................................................................................................................................................
Road
Lithostratigraphy of the Qazaz Complex
Legend
Gneiss
Monzogranite
Litharenite and Conglomerate, Thalbah Group
Syenogranite
Litharenite and Siltstone, Bayda Group
Amphibolite Facies
Amphibolite F. overprinted by Greenschist F.
Greenschist Facies
Metamorphic grade of deformation zone
10 km
E36.60°E36.40° E36.80°
N26.90°
N26.70°
N26.50°
Very low grade Facies
N
N
E36.38°
E36.09°
N27.11°
N26.92°
Qazaz Dome
14 km
Red Sea
N
Equal-area
Lower hemi spher e
[L] Qazaz-West-ShearZone-Lineation.txt (poles to lines) n=40
[L] Qazaz-East-ShearZone-Lineation.txt (poles to lines) n=30
[L] Qazaz-Decollement-Lineation.txt (poles to lines) n=29
N
Lower hemisphere
[P(dd)] Qazaz-West-ShearZone-Foliation.txt (poles to planes) n=44
[P(dd)] Qazaz-East-ShearZone-Foliation.txt (poles to planes) n=29
[P(dd)] Qazaz-Decollement-Foliation.txt (poles to planes) n=30
73
30
70
50
82
35 70
55
80
55
80
80
42
80
79
82
85
5
10
15
N
Equal-area
Lower hemi spher e
[P(dd)] Qazaz_foliation_granite.txt (poles to planes) n=79
[L] qazaz_lineation granite.txt (poles to lines) n=70
N
N
E36.38°
E36.09°
N27.11°
N26.92°
Qazaz Dome
14 km
20
30
49
80
78
85
Red Sea
6
Legend
Grade of Deformation
Strongly deformed - Mylonized
Medium strain
Low strain
Undeformed rocks
Structural Symbols
10 km
Syncline
Anticline
Foliation S1 / Dip
Lineation L1, / Plunge
Qazaz - Eastern shear zone
Qazaz - Western shear zone
Qazaz - Detachment
N
N
Shear zones
pole of foliation
Shear Zones
Lineation
Qazaz dome gneiss - Foliation
Qazaz dome gneiss - Lineation
Pole of foliation / Lineation
Brittle Fault
Sense of movement - Strike Slip
E36.60°E36.40° E36.80°
N26.90°
N26.70°
N26.50°
Road
Detachment
75
85
53
47
35
30
78
38
37
40
51
8
10
25
10
35
15
20
15
10
45
6
68
75
70
25
10
15
9
3
60
34
76
80
9
N
Sample P1
7.5 ± 0.5 kbar
560-640 °C
Sample P3
4.7 ± 0.3 kbar
400-600 °C
Sample P2
7.0 ± 0.5 kbar
570-630 °C
Sample P4
0.7 ± 0.2 kbar
430-450 °C
Geothermobarometry
Gneiss Dome
Geothermobarometry, Sample location
P1
Thalbah Group
Dome
Mylonite zones
n = 103
n = 99
n = 149
39
70
6
21
20
10
P2
P4 P3
P1
(a)
(b)
(c)
(d)
Fig. 3 (a) Lithological and metamorphic map of the Qazaz complex; (b, d) inset maps showing the shear zone northwest of the
Qazaz Dome; (c) structural map of the Qazaz complex.
©2014 John Wiley & Sons Ltd 389
Terra Nova, Vol 26, No. 5, 387–394 S. E. Meyer et al. •Strike-slip core complex
............................................................................................................................................................
western part of the gneiss dome with
a lower grade shear band cleavage.
The western shear zone shows a
steep mylonitic foliation with a west-
wards dip and stretching lineations
that gently plunge with a NW–SE to
N–S trend (Fig. 3c). In the SW cor-
ner of the Dome, the strike-slip shear
zone changes direction and grades
into the extensional detachment
described above; the stretching linea-
tions in both segments have the same
orientation with a plunge of 10–35
degrees (Fig. 3c). There is no indica-
tion of any overprint, suggesting that
the strike-slip and detachment seg-
ments operated simultaneously as
one continuous shear zone. The
gently dipping mylonitic fabric in the
central parts of the dome gradually
steepens and grades into the western
shear zone and southern detachment
without overprint and without a sig-
nificant change in orientation of the
main lineations (Figs 3c and 7).
The eastern branch of the Qazaz
shear zone is a sinistral shear zone
with steep foliations and gently
plunging stretching lineations similar
to the western branch; it likewise has
a greenschist facies mylonitic fabric
with prominent shear band cleavage
that overprints the gently south-dip-
ping amphibolite-grade mylonites of
the central dome. Locally, the older
mylonitic foliation is folded, and two
parallel stretching lineations of dif-
ferent age can be found. The eastern
branch is therefore younger than the
detachment and formed later than
the other structures. The eastern
branch also transects the contact of
the dome with the Bayda group in
the south, interrupted by a sinistral
brittle fault in the wadi (Fig. 3c).
Depth of emplacement
Mineral exchange thermobarometers
(i.e. garnet-biotite of Hodges and
Crowley, 1985; muscovite-plagioclase
of Green and Usdansky, 1986 and
hornblende-plagioclase of Holland
and Bundy, 1994) and the Al-in-horn-
blende barometer of Johnson and
Rutherford (1989) were used to calcu-
late peak metamorphic conditions for
several samples across the shear zone
to determine the maximum depth of
burial. The hornblende-plagioclase
thermometer and the Al-in-horn-
blende barometer are based on cali-
brations of igneous systems, but can
be used for the metamorphic system
(e.g. Mancini et al., 1996; Sch€
arer and
Labrousse, 2003). The calculated
pressure and temperature conditions
based on hornblende-bearing assem-
blages agree with the conditions that
were calculated using the garnet-bio-
tite and the muscovite-plagioclase
thermobarometers. A sample from
the core of the Dome (Fig. 3a, P1:
26.6956°N, 36.6996°E) attained peak
metamorphic conditions of 560–
640 °C and 7.5 0.5 kbar (crustal
depth of 24–28 km; for an overbur-
den density 2850 kg m
3
and
assuming lithostatic conditions). A
high-grade gneiss sample near the
WE
NS
Qazaz dome Detachment
Thalbah group
metasediments Foliation
Shear zone
mylonite
Bayda group
metasediments Strike-slip shear zone
Gneiss
250 m
2 km
250 m
Shear zone Shear zone
Qazaz dome
–125 m
A A′
B B′
Fig. 4 Profiles through the Qazaz Dome, marked in Fig. 3c.
qtz
100 μm qtz
300 μm
ep
qtz+fsp
300 μm
100 μm
qtz
grt
qtz+fsp
pl
(a) (b)
(c) (d)
Fig. 5 (a) Quartz (qtz) with irregular grain boundaries with lobate structures, devel-
oped by grain boundary migration (GBM) recrystallization. Amphibolite facies,
centre of the Qazaz Dome. (b) feldspar (fsp) porphyroclast replaced by epidote
(ep). Quartz shows a typical dynamic recrystallization fabric of subgrain rotation
(SGR). Upper greenschist facies, Western shear zone. (c) Quartz with subgrain
rotation (SGR) recrystallization and garnet crystals with irregular rims of plagio-
clase. Lower amphibolites facies, Western shear zone. (d) Relicts of GBM recrystal-
lization, overprinted by lower temperature bulging recrystallization (BLG). Gneiss,
detachment, S-side Qazaz Dome.
390 ©2014 John Wiley & Sons Ltd
Strike-slip core complex •S. E. Meyer et al. Terra Nova, Vol 26, No. 5, 387–394
.............................................................................................................................................................
periphery of the Dome (P2: 26.7455°
N, 36.6193°E) gave a pressure–tem-
perature range of 570–630 °C and
7.0 0.5 kbar (crustal depth of 22–
26 km). A schist sample from the wes-
tern Qazaz shear-zone branch (P3:
26.7347°N, 36.6034°E) reached peak
conditions of 400–460 °C and 4.4–
5.0 kbar (crustal depth of 15.5–
17.5 km). A sample from the base of
the Thalbah group at a distance of
~120 m from P3, SW of the western
Qazaz shear-zone branch (P4:
26.7331°N, 36.6004°E), shows
greenschist facies conditions of 430–
450 °C and 0.7 0.2 kbar (crustal
depth of 1.5–3.5 km). Clearly, the
local metamorphic gradient is tele-
scoped with significant uplift of the
dome with respect to the Thalbah
group due to movement on the shear
zones.
The metamorphic grade of myloni-
tization in the Qazaz Dome and the
shear zones was assessed from the
microstructure using recrystallization
characteristics of quartz and feldspar
as an indicator (Stipp et al., 2002;
Passchier and Trouw, 2005). The
microstructure varies consistently
with the barometry (Fig. 3a). The
highest grade fabrics are found in
the central and southern parts of the
dome, with typical high-temperature
grain boundary migration (GBM)
recrystallization of quartz with lobate
grain boundaries, coarse-grained
(>350 lm) recrystallization of feld-
spars, and bulbous feldspar-quartz
boundaries (Stipp et al., 2002;
Fig. 5a). These fabrics grade to the
south and west into greenschist facies
mylonitic fabrics, with subgrain
boundary rotation or even bulging
recrystallization of quartz, recrystalli-
zation to fine grain-size and brittle
deformation of feldspar, and abun-
dant development of shear band cleav-
age (Stipp et al., 2002; Fig. 5b–d).
The greenschist facies mylonites along
the western, eastern and southern
sides of the core complex show
remains of an earlier high-temperature
fabric (Fig. 5d). The overprinting of
coarse-grained quartz bands with
lobate grain boundaries by shear band
cleavage and bulging recrystallization
indicate exhumation and cooling dur-
ing ongoing mylonitization (Fig. 5d).
Garnet crystals in samples from close
to P3 in the western shear zone show
irregular rims of plagioclase (Fig. 5c)
in a primary volcanic rock, an indica-
tor of decompression during the
growth of the crystals. The calculated
peak metamorphic conditions of P3
classify this part as a middle crustal
segment, which could be the deeper
part of the Thalbah group. The kine-
matics of the shear zone and a steep
metamorphic gradient of over 200 °C
and 4.0 kbar in an E–W profile
between the gneiss and the metase-
diments of the Thalbah group show
that the southern Qazaz complex is
a typical extensional detachment
structure.
Discussion
Field and microstructural evidence
shows that the Qazaz Dome is a
high-grade metamorphic dome that
has been brought into contact with
Jog forms
Exhumation of
lower crust during
strike-slip
New shear zone
transects the
complex
Present state
20 km
(a)
(b)
(c)
(d)
(e)
Fig. 6 (a–e) Proposed sequence in the development of the Qazaz complex along the
Qazaz strike-slip shear zone.
©2014 John Wiley & Sons Ltd 391
Terra Nova, Vol 26, No. 5, 387–394 S. E. Meyer et al. •Strike-slip core complex
............................................................................................................................................................
adjacent low-grade metasediments by
movement on ductile shear zones.
The emplacement of the footwall
high-grade dome by exhumation
along a gently S-dipping detachment,
and emplacement against low-grade
hanging wall metasediments are typi-
cal of a metamorphic core complex
(Tirel et al., 2008; Huet et al., 2010).
However, the relationship with
strike-slip shear zones is different
from other core complexes (Fig. 1).
From field and microstructural data,
we envisage the following scenario
for the development of the Qazaz
Dome (Fig. 6). During development
of the crustal-scale vertical strike-slip
Qazaz shear zone between ~630 and
580 Ma, a 10 km size jog formed as
a gently south-dipping detachment,
probably in response to a local pre-
existing fabric (Fig. 6a). Progressive
strike-slip after the jog formed led to
exhumation of the middle and lower
crust underlying the jog zone
(Fig. 6b), which in turn considerably
changed the local strength profile of
the crust. The developing core com-
plex was affected by regional short-
ening oblique to the strike-slip
shear-zone segments. The uplifted
high-temperature dome underwent
ductile E–W internal shortening lead-
ing to folding of the previously
gently dipping planar fabric of folia-
tion in the dome, at some distance
from the detachment (Fig. 6c). Since
the earlier exhumed part underwent
lateral constriction for a longer time,
folding is tightest furthest away
from the detachment zone, leading to
the triangular shape of the dome
(Figs 6e and 7). This process created
an unusual strike-slip shear-zone seg-
ment with an internal antiformal
folded foliation in its core (Figs 3c
and 7 inset).
If the detachment shear zone has a
dip of 40°throughout, as observed
at the surface, 25 km of vertical
exhumation may have been accom-
modated by 30 km of horizontal slip
on the Qazaz shear zone. The trian-
gular core complex that formed in
this way alongside the strike-slip
zone was subsequently transected by
a newly developing eastern branch of
the Qazaz shear zone, which sepa-
rated and displaced its NE side
(Fig. 6d,e). This may have happened
in response to cooling and strength-
ening of the distal side after slip on
the western shear zone ceased. Sinis-
tral displacement on the eastern
branch is estimated to be at least
30 km, based on strain intensity in
the shear zone and displacement of
marker horizons in satellite images
(Fig. 6d). The accumulated displace-
ment along the Qazaz shear zone is
therefore at least 60 km including
the estimated 30 km of strike-slip
displacement associated with exhu-
mation of the central Qazaz Dome.
Finally, a brittle sinistral strike-slip
fault offset the eastern branch itself
in a late stage of Najd shear-zone
activity (Figs 3c and 6e). The defor-
mation pattern in the low-grade
Thalbah and Bayda Group metasedi-
ments surrounding the Qazaz Dome
(Fig. 3c) also supports a model
where the Qazaz Dome formed in a
regime of strike-slip linked detach-
ment, accommodating regional E-W
crustal shortening (Figs 2 and 3c). It
is even conceivable that deposition of
part of these metasediments was con-
nected with development of the
extensional jog.
The most likely candidates that
may show a similar development to
the Qazaz Dome are other gneiss
domes in the Najd Fault system such
as the Hafafit complex (Fowler and
Osman, 2009) and the Kirsh gneiss
Dome (Al-Saleh, 2012; Fig. 2). The
Sha’it-Nugrus shear zone of the Ha-
fafit dome shows an identical transi-
tion from a strike-slip to a
detachment fault as does the Qazaz
Dome (Fowler and Osman, 2009).
Gneiss domes superficially similar
to the Qazaz Dome also occur in a
number of other tectonic settings. A-
type domes in the Aegean (Jolivet
et al., 2004b, 2010; Le Pourhiet
et al., 2012) and the gneiss domes in
the central Pyrenees (van den Eeckh-
out and Zwart, 1988; Den
ele et al.,
2007) superficially resemble the
Qazaz Dome, but have a more com-
plex history and no permanent link
to crustal-scale strike-slip shear
zones. Core complexes along the
Lewis and Clark fault zone in the
Rocky Mountains (Foster et al.,
2007) differ from the Qazaz Dome,
in that the core complexes are the
dominant structure, with strike-slip
faults playing an accommodating
role. The Ni
gde massif along the
Central Anatolian fault zone in Tur-
key (Whitney et al., 2007) and
domes along the Red River Shear
Zones in Southern China and Indo-
china may have formed in a similar
way to the Qazaz Dome, but are
reported to have formed with a
more complex history including a
transtension phase (Jolivet et al.,
2001). Further research on these
structures, and along major strike-
slip fault systems, will show whether
10 km
N
E36.80°E36.40°
°09.62N °
0
5.
6
2N
Fig. 7 Annotated satellite image and 3-D cartoon of the present structure of the
Qazaz complex. Black dashes indicate the orientation of the stretching lineation in
the mylonites. Folding in the internal part of the dome is highlighted by an EW
section.
392 ©2014 John Wiley & Sons Ltd
Strike-slip core complex •S. E. Meyer et al. Terra Nova, Vol 26, No. 5, 387–394
.............................................................................................................................................................
other isolated metamorphic domes
formed in a similar way to the
Qazaz Dome.
Conclusions
The development of metamorphic
core complexes is generally thought
to involve crustal-scale extensional
processes of crustal thinning with
exhumation of the lower crust. The
Qazaz Dome shows that core
complexes can form along crustal-
scale strike-slip shear zones which
accommodated crustal shortening.
The synchronous activity of strike-
slip shear zones and a detachment
jog is an extremely effective way to
exhume deeper crustal rocks under
constrictional conditions. Strike-slip
core complexes similar to the Qazaz
Dome may therefore be present,
unrecognized, along many other
crustal-scale strike-slip shear zones
where they have been transposed by
ongoing strike-slip deformation.
Development of a strike-slip core
complex will locally change the ther-
mal profile of the crust and can have
far reaching effects on local crustal
strength and the functioning of crus-
tal-scale strike-slip shear zones.
Acknowledgements
This project was financed by the Geocy-
cles and SRFN programs at the Univer-
sity of Mainz. We thank the Saudi
Geological Survey (SGS) for logistic sup-
port in the field and further cooperation.
Special thanks to the President of the
SGS, Dr Zohair Nawab and to the direc-
tor, Dr Khalid Kadi. We thank Saad M.
S. Al-Garni, Mubarak M. M. Al-Nahdi
and Wiesiek Kozdr
oj for their support.
This project is part of and was supported
by the Swedish JEBEL research initiative.
We gratefully acknowledge support by
FWF Project P22351-N22 and by the
Sch€
urmann Foundation.
References
Abd El-Naby, H., Frisch, W. and Siebel,
W., 2008. Tectonometamorphic
evolution of the Wadi Hafafit
Culmination (central Eastern Desert,
Egypt). Implication for Neoproterozoic
core complex exhumation in NE
Africa. Geol. Acta,6, 293–312.
Abdelsalam, M.G. and Stern, R.J., 1996.
Sutures and shear zones in the
Arabian-Nubian Shield. J. Afr. Earth
Sci.,23, 289–310.
Abu-Alam, T.S. and St€
uwe, K., 2009.
Exhumation during oblique
transpression: the Feiran-Solaf region,
Egypt. J. Metamorph. Geol.,27, 439–
459.
Al-Saleh, A.M., 2012. The Kirsh gneiss
dome: an extensional metamorphic
complex from the SE Arabian shield.
Arabian J. Geosci.,5, 335–344.
Bezenjani, R.N., Pease, V., Whitehouse,
M.J., Shalaby, M.H., Kadi, K.A. and
Kozdroj, W., 2014. Detrital zircon
geochronology and provenance of the
Neoproterozoic Hammamat Group
(Igla Basin), Egypt and the Thalbah
Group, NW Saudi Arabia: implications
for regional collision tectonics.
Precambr. Res.,245, 225–243.
Blasband, B., White, S., Brooijmans, P.,
De Boorder, H. and Visser, W., 2000.
Late Proterozoic extensional collapse in
Arabian-Nubian Shield. J. Geol. Soc.
London,157, 615–628.
Brooijmans, P., Blasband, B., White,
S.H., Visser, W.J. and Dirks, P., 2003.
Geothermobarometric evidence for a
metamorphic core complex in Sinai,
Egypt. Precambrian Res,123, 249–268.
Burke, K. and Seng€
or, C., 1986. Tectonic
escape in the evolution of the
continental crust. In: Reflection
Seismology: The Continental Crust (M.
Barazangi and L. Brown, eds), Geodyn.
Ser.,14,41–53. Washington, DC:
American Geophysical Union.
Calvez, J.-Y., Alsac, C., Delfour, J.,
Kemp, J. and Pellaton, C., 1984.
Geologic evolution of western, central,
and eastern parts of the northern
Precambrian Shield, Kingdom of Saudi
Arabia. Fac. Earth Sci. Bull.,6,24–48.
Crittenden, M.D., Coney, P.J. and Davis,
G.H. (Eds.), 1980. Cordilleran
Metamorphic Core Complexes. Mem.
Geol. Soc. Am.,153, 490.
Davis, G.A. and Coney, P.J., 1979.
Geological development of
metamorphic core complexes. Geology,
7, 120–124.
Davis, G.A., Lister, G.S. and Reynolds,
S.J., 1986. Structural evolution of the
Whipple and South Mountains shear
zones, southwestern United States.
Geology,14,7–10.
Den
ele, Y., Olivier, P., Gleizes, G. and
Barbey, P., 2007. The Hospitalet gneiss
dome (Pyrenees) revisited: lateral flow
during Variscan transpression in the
middle crust. Terra Nova,19, 445–453.
van den Eeckhout, B. and Zwart, H.J.,
1988. Hercynian crustal-scale
extensional shear zone in the Pyrenees.
Geology,16, 135–138.
Foster, D.A., Doughty, P.T., Kalakay,
T.J., Fanning, C.M., Coyner, S., Grice,
W.C. and Vogle, J., 2007. Kinematics
and timing of exhumation of
metamorphic core complexes along the
Lewis and Clark fault zone, northern
Rocky Mountains, USA. Geol. Soc.
Am. Spec. Pap.,434, 207–232.
Fowler, A. and Osman, A.F., 2009. The
Sha’it-Nugrus shear zone separating
Central and South Eastern Deserts,
Egypt: a post-arc collision low-angle
normal ductile shear zone. J. Afr. Earth
Sc.,53,16–32.
Fritz, H., Dallmeyer, D.R., Wallbrecher,
E., Loizenbauer, J., Hoinkes, G.,
Neumayr, P. and Khudeir, A.A., 2002.
Neoproterozoic tectonothermal
evolution of the Central Eastern
Desert, Egypt: a slow velocity tectonic
process of core complex exhumation.
J. Afr. Earth Sc.,34, 137–155.
Genna, A., Nehlig, P., Le Goff, E.,
Guerrot, C. and Shanti, M., 2002.
Proterozoic tectonism of the Arabian
Shield. Precambr. Res.,117,21–40.
Green, N. and Usdansky, S., 1986.
Ternary-feldspar mixing relations and
thermobarometry. Am. Mineral.,71,
1109–1117.
Hodges, K. and Crowley, P., 1985. Error
estimation and empirical
geothermobarometry for pelitic
systems. Am. Mineral.,70, 702–709.
Holland, T. and Bundy, J., 1994. Non-
ideal interactions in calcic amphiboles
and their bearing on amphibole-
plagioclase thermometry. Contrib.
Miner. Petrol.,116, 433–447.
Huet, B., Le Pourhiet, L., Labrousse, L.,
Burov, E. and Jolivet, L., 2010. Post-
orogenic extension and metamorphic
core complexes in a heterogeneous
crust: the role of crustal layering
inherited from collision, Application to
the Cyclades (Aegean domain).
Geophys. J. Int.,184, 611–625.
Johnson, M. and Rutherford, M., 1989.
Experimental calibration of the
aluminum-in-hornblende geobarometer
with application to Long Valley caldera
(California) volcanic rocks. Geology,
17, 837–841.
Johnson, P.R. and Woldehaimanot, B.,
2003. Development of the Arabian –
Nubian Shield: perspectives on
accretion and deformation in the
northern East African Orogen and the
assembly of Gondwana. Geol. Soc.
London Spec. Publ.,206, 289–325.
Johnson, P.R., Kattan, F.H. and Al-
Saleh, A.M., 2004. Neoproterozoic
ophiolites in the Arabian Shield: field
relations and structure. In: Precambrian
Ophiolites and related rocks (T.M.
Kusky, ed.). Dev. Precambrian Geol.,
13, 129–162. (K.C. Condie, Series
Editor), Elsevier.
Johnson, P.R., Andresen, A., Collins,
A.S., Fowler, A.R., Fritz, H.,
Ghebreab, W., Kusky, T. and Stern,
R.J., 2011. Late Cryogenian-Ediacaran
history of the Arabian-Nubian Shield: a
©2014 John Wiley & Sons Ltd 393
Terra Nova, Vol 26, No. 5, 387–394 S. E. Meyer et al. •Strike-slip core complex
............................................................................................................................................................
review of depositional, plutonic,
structural, and tectonic events in the
losing stages of the northern East
African Orogen. J. Afr. Earth Sc.,61,
167–232.
Jolivet, L., Beyssac, O., Goff
e, B.,
Avigad, D., Lepvrier, C., Maluski, H.
and Thang, T.T., 2001. Oligo-Miocene
midcrustal subhorizontal shear zone in
Indochina. Tectonics,20,46–57.
Jolivet, L., Famin, V., Mehl, C., Parra,
T., Aubourg, C., H
ebert, R. and
Philippot, P., 2004b. Progressive strain
localisation, boudinage and extensional
metamorphic complexes, the Aegean
Sea case. In: Gneiss Domes in Orogeny,
Geological Society of America Special
Paper (D.L. Whitney, C. Teyssier and
C.S. Siddoway, eds). pp. 185–210.
Geological Society of America,
Boulder, Colorado.
Jolivet, L., Lecomte, L., Huet, B., Den
ele,
Y., Lacombe, O., Labrousse, L., Le
Pourhiet, L. and Mehl, C., 2010. The
North Cycladic Detachment System.
Earth Planet. Sci. Lett.,289,87–104.
Kennedy, A., Johnson, P.R. and Kattan,
F.H., 2009. SHRIMP geochronology in
the northern Arabian Shield: part III
data acquisition, 2006, Saudi Geological
Survey Open File Report, Jeddah.
Le Pourhiet, L., Huet, B., May, D.A.,
Labrousse, L. and Jolivet, L., 2012.
Kinematic interpretation of the 3D
shapes of metamorphic core complexes.
Geochem. Geophys. Geosyst.,13,1–17.
Lister, G.S., Banga, G. and Feenstra, A.,
1984. Metamorphic core complexes of
Cordilleran type in the Cyclades,
Aegean Sea, Greece. Geology,12, 221–
225.
Mancini, F., Sillanp€
a€
a, R., Marshall, B.
and Papunen, H., 1996. Magnesian
hornblende from a metamorphosed
ultramafic body in southwestern
Finland: crystal chemistry and
petrological implications. Can.
Mineral.,34, 835–844.
Passchier, C.W. and Trouw, R.A.J., 2005.
Microtectonics. Springer Verlag,
Heidelberg 366 pp.
Sch€
arer, U. and Labrousse, L., 2003.
Dating the exhumation of UHP rocks
and associated crustal melting in the
Norwegian Caledonides. Contrib.
Miner. Petrol.,144, 758–770.
Stern, R.J., 1994. Arc assembly and
continental collision in the
Neoproterozoic East African orogen:
implications for the consolidation of
Gondwana. Annu Rev of Earth and
Planet Sci,22, 319–351.
Stern, R.J. and Johnson, P., 2010.
Continental lithosphere of the Arabian
Plate: a geologic, petrologic, and
geophysical synthesis. Earth-Sci. Rev.,
101,29–67.
Stipp, M., Holger, S., Heilbronner, R.
and Schmid, S.F., 2002. Dynamic
recrystallization of quartz: correlation
between natural and experimental
conditions. Geol. Soc. London Spec.
Publ.,200, 171–190.
Tirel, C., Brun, J.-P. and Burov, E., 2008.
Dynamics and structural development
of metamorphic core complexes.
J. Geophys. Res.,113, B04403.
Wernicke, B., 1981. Low-angle normal
faults in the Basin and Range Province:
Nappe tectonics in an extending
orogen. Nature,291, 645–648.
Whitney, D.L., Teyssier, C. and Heizler,
M.T., 2007. Gneiss domes,
metamorphic core complexes, and
wrench zones: thermal and structural
evolution of the Nigde Massif, central
Anatolia. Tectonics,26, TC5002.
Received 24 January 2014; revised version
accepted 14 May 2014
394 ©2014 John Wiley & Sons Ltd
Strike-slip core complex •S. E. Meyer et al. Terra Nova, Vol 26, No. 5, 387–394
.............................................................................................................................................................