Available via license: CC BY-NC 4.0
Content may be subject to copyright.
16 Hortic. bras., v. 29, n. 1, jan.- mar. 2011
Certain crops, such as yams, are
associated with low-income
communities, being a subsistence food
source for many Brazilians. Despite the
many contributions to human health
from the active compounds found in
several species, yams continue to be
marginalized, hence have joined one
of the many “orphan” crops. The yam
is an underutilized crop, somewhat
forgotten by society and not considered
priority in political agendas (Siqueira
& Veasey, 2009). Yams are not even
included in agricultural, government,
or economic policies, which act as
of resources, especially exportable
monocultures. Additionally, the species
Colocasia esculenta is also called “yam”
SIQUEIRA MVBM. 2011. Yam: a neglected and underutilized crop in Brazil. Horticultura Brasileira 29: 16-20.
Yam: a neglected and underutilized crop in Brazil
Marcos VBM Siqueira
USP-ESALQ, Lab. Ecologia Evolutiva e Genética Aplicada, C. Postal 83, 13400-900 Piracicaba-SP; marcos.morruga@gmail.com
ABSTRACT
In Brazil current studies and investments on yams are incipient.
Similarly, the literature in recent decades lacks adequate information
on this group of plants. The existing literature, on its turn, requires
more than ever to be revised and organized. Yams have joined
the so-called “neglected” group of crops for several reasons, but
particularly because they are associated with poor and traditional
communities. Many vegetables introduced in Brazil during the
colonization period have adapted to different cropping systems, yams
being an excellent example. This diversity resulted very widespread,
yet poorly recognized in the country. In turn, the gardens using
traditional farming systems continue to maintain and enhance yam
local varieties. Studies from other countries, with an emphasis on
characterization and genetic breeding, brought to light an urgent
need for Brazil to invest in yams as a food rich in carbohydrates,
even to the point of alterations in food public policy. Reversal of the
and to the population as a whole. This paper aims to raise pertinent
questions about Dioscorea species, an important key group for
many communities in tropical countries, yet still unrecognized as
so in Brazil.
Keywords: Dioscorea spp., tubers, traditional agriculture,
agrobiodiversity, molecular markers.
RESUMO
Inhame: uma cultura negligenciada e subutilizada no
Brasil
No Brasil, estudos e investimentos ao inhame são incipientes.
Similarmente, a literatura nas últimas décadas apresenta informações
vez, exige mais que nunca ser revisada e organizada. O inhame tem-se
unido ao grupo de culturas ditas “negligenciadas” por diversas razões,
mas particularmente devido ao fato de estar associado às comunidades
pobres e tradicionais. Muitos vegetais introduzidos no Brasil durante
o período da colonização têm-se adaptado a diferentes sistemas de
cultivo, sendo o inhame um excelente exemplo. Esta diversidade é
resultado de uma ampla dispersão, ainda pouco conhecida no país.
Por sua vez, as roças usam o sistema de agricultura tradicional de
forma a manter e aumentar as variedades locais de inhame. Estudos
de outros países, com ênfase na caracterização e melhoramento
genético, trouxeram à luz uma necessidade urgente de o Brasil
investir em inhame como uma rica fonte de carboidratos, mesmo
apesar das mudanças na política alimentar pública. Reverter o atual
e população como um todo. Este artigo objetiva-se a trazer questões
pertinentes sobre as espécies do gênero Dioscorea, um importante
grupo para muitas comunidades em países tropicais, contudo ainda
pouco conhecido no Brasil.
Palavras-chave: Dioscorea spp., tubérculos, agricultura tradicional,
agrobiodiversidade, marcadores moleculares.
(Recebido para publicação em 1 de setembro de 2010 ; aceito em 2 de fevereiro de 2011)
(Received on September1, 2010; accepted on February 2, 2011)
in some regions of Brazil, making it
two different crops.
This neglected species is increasingly
“forgotten” on the table of the rural
population and still utterly unrecognized
in large cities, hence the need for
resurgence of its popularity. The spread
of monocultures, the disappearance
of traditional communities, changes
in nutritional habits among younger
generations, and lack of incentives for
public and private institutions to focus
on yam cultivation research, have made
the following questions difficult to
over the years in tropical countries, (ii)
if there is wide biodiversity in these
regions, as the question of genetic
erosion risk rises, and (iii) how genetics
can manifest itself in favor of yams.
Through advances in molecular
importance of cultivars beyond the
perimeters of food. Other research,
with reinforcement from new fields,
such as ethnobotany, involves local
communities that have genetic resources
of inestimable value as local varieties
(Peroni & Hanazaki, 2002; Bressan
et al., 2005; Zannou et al., 2006).
However, how long will this gene
pool exist in backyards and gardens
throughout the tropics? The stimulus
of applied studies (such as in vitro
cultivation and genetic breeding), the
strengthening of the entire supply chain
17Hortic. bras., v. 29, n. 1, jan.- mar. 2011
(surely that would help marketing in
an increasingly competitive market),
and an effective conservation policy
(a set of measures that focus on the
maintain local varieties), are the main
premises that can bring value back to
yams. This resolution and other parallel
issues would certainly put yams back
in the spotlight, both domestically and
internationally.
Thus, the goal of the present study
was to review concepts regarding
Dioscorea spp., focusing on how
particular emphasis on issues related to
in situ and ex situ conservation.
The yam today - Yam is currently
the fourth most important tuber-root
crop in the world, after potato (Solanum
tuberosum L.), cassava (Manihot
esculenta Crantz), and sweet potato
(Ipomoea batatas L.). In 2008, the
estimated world production of yams
was 51.7 million tons, with Africa
leading the production. The Brazilian
production, in 2008, was 250,000 tons
within a cultivated area of 27,000 ha
(FAOSTAT, 2010). Thriving well in
tropical and subtropical environmental
conditions, varied yam species are
satisfactorily developed in the Brazilian
ecosystems, especially in the Northeast
region of the country, where agriculture
presents great economic potential
(Santos, 1996). The highest production
of yams in Brazil occurs mainly in the
States of Paraíba, Pernambuco, Alagoas,
Bahia, and Piauí, followed by others at
a lesser scale (Mesquita, 2002).
The Dioscorea species has long
been cultivated for their medicinal
properties (sapogenin steroids, used in
production of cortisone and synthetic
hormones) in the following order of
importance: D. bulbifera, D. cayenensis,
D. dumentorum, D. alata, D. trida, D.
laxiora, and D. microbotrya (Karnick,
1969; Pedralli, 2002). Wu et al. (2005)
analyzed the consumption of D. alata by
post-menopausal women and concluded
that although the mechanisms are not
yet fully understood, its consumption
reduces the risk of breast cancer and
cardiovascular disease. Among many
of the yam medicinal properties, the
prevention of diseases like malaria,
yellow fever, and dengue is mentioned.
Bhandari & Kawabata (2004) have
presented interesting information about
the nutritional composition of several wild
species and their possible application in
modern medicine. Traditional medicine
uses yams to cleanse skin impurities, for
example, rashes. Nutritionists stress the
importance of yams in treating anemic
patients given their wealth of nutrients,
vitamins, and minerals (Okwu & Ndu,
2006). In Africa, it was found that the
tuber is responsible for increased fertility
in women who habitually consume it
(Balbach & Boarim, 1993).
Yam species, considered somewhat
irrelevant on a commercial scale,
began to receive recognition for their
importance, as exemplified in D.
bulbifera, from which diosgenin can be
extracted (Narula et al., 2007) or even
in its use as an anti-tumor agent (Gao et
al., 2007). Among many other species of
the same genus, is D. balkan, endemic
to the Balkans and currently protected,
however, sustainably extracted to
obtain high concentrations of diosgenin
(Fodulovicé et al., 1998). This example
serves to illustrate the rich and untapped
genetic resources found within the genus
Dioscorea.
Even with all the economic and
cultural significance that this crop
entails for tropical countries, few
studies using biochemical approaches or
molecular markers have been conducted
to understand the relationships and
extent of genetic similarity between
cultivated and wild yams (Tamiru
et al., 2008). Consequently, farmers
in some countries have reported the
disappearance of many cultivars due
specially to pests and diseases, which
(Mignouna & Dansi, 2003).
Despite the minor effects of pests
on yam cultivars in comparison to other
crops, phytosanitary problems represent
the main difficulties for producers.
The virus [Yam mosaic virus (YMV)],
anthracnose (caused by the fungus
Glomerella cingulata), nematodes
(Meloidogyne spp., Pratylenchus spp.,
and Scutellonema bradys), and tuber
rot (Penicillium sclerotigenum and
Rhizopus oryzae) are the main diseases
storage losses in susceptible cultivars
(Abang et al., 2003; Amusa et al.,
2003). Anthracnose stands out as the
principal phytosanitary problem in
several areas of yam cultivation and
production. Nematodes, which interact
with fungi and bacteria, attack the
damage in post harvest. The dry rot
disease is also a limiting factor in yam
market value of the product, especially
when found in conjunction with the
nematode Scutellonema bradys, which
acts as its etiologic agent. This disease
is a serious problem because it still
lacks effective countermeasures, hence
remains lethal. Yam meloidogynoses
are diseases caused by nematodes of the
genus Meloidogyne, which show high
incidence and severity in production,
causing heavy losses in yam production
and marketing (Abang et al., 2002;
Mignouna et al., 2003b).
Micropropagation and organogenesis
are two of many biotechnological
techniques that could be adopted to
obtain healthy seedlings, increasing
the potential of cultivation (Alizadeh et
al., 1998; Chen et al., 2003; Royero et
al., 2007), especially in commercially
valuable species, such as D. alata
(Balogun et al., 2006).
Although of great importance,
especially to subsistence communities,
for its high nutritional quality and
medicinal properties, there are
unfortunately few institutions involved
in research related to yam in Brazil. For
this reason, as previously mentioned,
further study is necessary to improve
the knowledge on this species.
Origin, dispersal of species,
and genetic contribution - With
approximately 600 yam species, only
few are known for their use in human
consumption (D. alata, D.cayenensis, D.
mummularia, D. opposita, D. rotundata,
D. transverse, D. esculenta, D. bulbifera,
D.trifida, and D. pentaphylla). The
genus is quite dispersed and can be
found throughout tropical, sub-tropical,
and temperate regions (Lebot, 2009).
Different yam cultivation practices,
similar to historical and socio-cultural
the creation and maintenance of genetic
Yam: a neglected and underutilized crop in Brazil
18 Hortic. bras., v. 29, n. 1, jan.- mar. 2011
diversity between each group in several
areas of Africa (Baco et al., 2007). It is
believed that a similar chain of events
has also occurred in Brazil.
According to Lebot (2009), the
genus dispersed worldwide at the end
of the Cretaceous period, evolved in
different directions throughout the New
and Old World, and resulted in distinct
species. The main dispersal regions
for many of these species included
the Americas, Africa, Madagascar,
South and Southeast Asia, Melanesia,
and Australia. According to Coursey
(1967), separation of the Asian and
African species occurred later, during
the Miocene period. Furthermore,
according to Coursey (1967), the
species, D. alata and D. esculenta,
originated from Burma and Assam,
localities of Southeast Asia. Degras
(1993) noted that D. cayenensis is of
African origin, given that wild species
can be found on the continent. The
origins of other yam cultivated species
are African and Asian, except for D.
trida, whose origin is South American
(Lebot, 2009). In these regions, the yam
has been cultivated by humans since
the beginning of civilization, where
diet has always been valued. Although
cultivated since antiquity by native
Indian communities, the yam cultivars
only entered Western civilization when
most likely that yams were introduced
to Europe by merchants, especially
by black slave traders. In Brazil, a
similar history ensued, however native
Indians blended with introduced slaves
in various states of the country during
colonization (Madeira et al., 2008).
According to Silva (1971), in the
early twentieth century, the Rondon
Commission found isolated tribes in
the northwest of Mato Grosso, Brazil,
cultivating the species D. trida where
they named it “cará mimoso”.
Dioscorea spp. is commonly known
as ”cará” or yam in Brazil. Due to the
ethnic richness in tropical countries,
there is a wide diversity of vernacular
names assigned to species (Pedralli et
al., 2002; Bressan et al., 2005; Tamiru
et al., 2008). The name “igname” or
“yam” seems to have an African origin.
Thus, it appears that the word “inhame”
is a translation of the terms, “yam” or
“igname”, used originally in English
and French colonies in Africa. As for
the word “cará”, based on historical
Brazilian documents, it seems to be of
native Indian origin (Cascudo, 1983). In
Portuguese, especially in the Northeast
region of Brazil, there is a tendency to
apply the name “yam” to large tubers of
D. cayenensis and the name “cará” to
the smaller tubers of D. alata (Peixoto
Neto et al., 2000).
One aspect that makes yams well
known in Brazil is the strong African
Despite being increasingly abandoned,
communities still maintain their dietary
value and use yam in cultural dishes.
Recently, it is notable that there is a
presence of yams in some supermarket
chains, small retail markets, and farmers
markets, which has encouraged some
agriculturists to increase cultivation of
the explanation for this may be related to
the diet of the Northeastern population.
However, in recent years, the media has
explored several issues related to health
and nutrition, which may be stimulating
yam consumption in the pursuit of
alternative starch sources (Hsu et al.,
2004; Ukpabi, 2010).
In Brazil, no data exists yet about the
diversity of the yam based on molecular
markers. The most relevant studies
came from Africa, the main origin and
dispersal centers of some yam species.
Studies of genetic diversity in 269
cultivars of D. alata from the South
Pacific, Asia, Africa, the Caribbean,
and South America (Lebot et al., 1998),
concluded that many yams exhibited
diverse variations, most likely due to
human selection. In Brazil, isozymes
were used to study the genetic diversity
among local varieties of D. alata, D.
bulbifera, D. cayenensis, and D. trida
in the Ribeira Valley, on the coast of
São Paulo State. The results of this
study showed a high genetic diversity
maintained by farmers in this region, and
that this variability was not structured in
space (Bressan, 2005). RAPD markers
were used to evaluate intraspecific
variation in accessions of D. alata
from Jamaica (Asemota et al., 1996),
to compare Dioscorea species from
Africa, Asia and Polynesia (Ramser et
al., 1996), and to characterize accessions
in the D. cayenensis-rotundata complex
(Hamon & Toure, 1990; Dansi et al.,
2000b). AFLP markers were used to
assess the genetic diversity of D. alata
in relation with nine other species of
edible yams (Malapa et al., 2005) and to
study domestication of genus Dioscorea
(Scarcelli et al., 2006). Egesi et al.
(2006), using these markers, were able
to show, from 53 accessions of D. alata
in west and central Africa, that each
group formed was a mixture of different
geographical origins, indicating that
geography has played a central role in
species differentiation.
Isozymes, RAPD and microsatellites
have contributed to the determination of
the D. cayenensis-rotundata complex,
which some have considered not to be
two separate species, but as a species
complex (Dansi et al.
et al., 2005; Obidiegwu et al., 2009a).
Fundamentally, microsatellite markers
have been used to study the segregation
patterns and characterization of several
Dioscorea species (Mignouna et
al., 2003a; Mignouna et al., 2003b;
Scarcelli et al., 2005; Hochu et al., 2006;
Obidiegwu et al., 2009b).
Part of the complexity in genetic
studies of the yam is due to its ploidy.
The basic chromosome number of
Dioscorea species is considered to be x
= 10 and x = 9, with a high frequency
of polyploid species (Abraham, 1998).
Tetraploid species are most frequent,
followed by types 2x, 6x, and 8x in
similar proportions. The basic number of
chromosomes (x = 10) is found in 52%
of African species and 13% of American
species. The remaining African and
American species have the basic number
x = 9. However, recent studies show
two new basic chromosome numbers,
x = 6 (Segarra-Moragues et al., 2004)
and x = 20 for D. rotundata (Scarcelli
et al., 2005) and D. trida (Bousalem
et al., 2006). If these basic numbers
species, the basic chromosome number
of the genera may be reconsidered,
leading to a decrease in the ploidy level
in some species (Bousalem et al., 2006;
Arnau et al., 2009).
MVBM Siqueira
19Hortic. bras., v. 29, n. 1, jan.- mar. 2011
Accurate information on genetic
diversity is critical to the success
of breeding programs, since genetic
divergence produces high heterotic
effects and, therefore, desirable
segregants for the purposes of each
program. In this sense, molecular
markers have contributed to the
advancement of measures not only for
protection, but improvement, which
from. The literature shows actions and
consequences of the replacement of
local varieties by other more productive
by gene banks and research centers,
bringing losses to yam ethnovarieties
(Tamiru et al., 2008). As a consequence
of stress agents, the issue of genetic
erosion of local varieties generates a
heated debate, demanding effective
measures by government and more
interaction among the few gene banks
of the genera.
Final Considerations - Based on
what has been reported, it becomes clear
that studies involving yam cultivation,
whether for conservation or breeding,
especially in Brazil, are still incomplete.
Urgent government intervention with a
number of measures to aid researchers,
extension workers, and farmers is
necessary for several reasons, and the
risk of genetic erosion is one of the main
issues. In this context, it is hoped that the
Yam and Taro Symposium will return to
Brazil, where the second, and last, took
place in 2002. This would be an excellent
opportunity to share problematic yam
insights; helping traditional, local, and
large-scale farmers.
The unknown diversity of Dioscorea
in Brazil, with a wide range of local
varieties and agroecosystems, is an
information blank for breeding and
conservation programs. Thus, coupled
with an urgency to reinforce to the
new generations how important is
the yam as a healthy food source,
multidisciplinary analysis is crucial for
future progresses.
ACKNOWLEDGEMENTS
The author would like to thank
Elizabeth Ann Veasey, Paulo César
Tavares de Melo and Josh Halsey for
contributions to the manuscript. The
author is also grateful to The São
Paulo Research Foundation (process
2007/07222-8).
REFERENCES
ABANG MM; WINTER S; GREEN KR;
HOFFMANN P; MIGNOUNA HD; WOLF
GA. 2002. Molecular identification of
Colletotrichum gloeosporioides causing
anthracnose of yam in Nigeria. Plant Pathology
51: 63-71.
ABANG MM; WINTER S; MIGNOUNA HD;
GREEN KR; ASIEDU R. 2003. Molecular
taxonomic, epidemiological and population
genetic approaches to understanding yam
anthracnose disease. African Journal of
Biotechnology 2: 486-496.
ABRAHAM K. 1998. Occurrence of hexaploid
males in Dioscorea alata L. Euphytica 99:
5–7.
ALIZADEH S; MANTELL SH; VIANA AM
1998. In vitro shoot culture and microtuber
induction in the steroid yam Dioscorea
composita Hemsl. Plant Cell Tissue and Organ
Culture 26:147–152.
AMUSA NA; ADEGBITE AA; MUHAMMED
S; BAIYEWU RA. 2003. Yam diseases and
its management in Nigeria. African Journal
of Biotechnology 2: 497-502.
ARNAU G; NEMORIN A; MALEDON E;
ABRAHAM K. 2009. Revision of ploidy
status of Dioscorea alata L. (Dioscoreaceae)
by cytogenetic and microsatellite segregation
analysis. Theoretical and Applied Genetics
118:1239–1249.
ASEMOTA HN; RAMSER J; LOPÉZ-PERALTA
C; WEISING K; KAHL G. 1996. Genetic
variation and cultivar identification of
polymorphic DNA analysis. Euphytica 92:
341-351.
BACO MN; BIAOU G; JEAN-PAUL L. 2007.
Complementarity between Geographical and
Social Patterns in the Preservation of Yam
(Dioscorea sp.) Diversity in Northern Benin.
Economic Botany 61: 385–393.
BALBACH A; BOARIM DFS. 1993. As hortaliças
na medicina natural. São Paulo: Missionária.
436p.
BALOGUN MO; FAWOLE I; NG SYC; NG NQ;
SHIWACHI H; KIKUNO H. 2006. Interaction
among cultural factors in microtuberization of
white yam (Dioscorea rotundata). Tropical
Science 46:55–59.
BHANDARI MR; KAWABATA J. 2004. Organic
acid, phenolic content and antioxidant activity
of wild yam (Dioscorea spp.) tubers of Nepal.
Food Chemistry 88:163–168.
BO US AL EM M; ARNAU G; HO CHU I;
ARNOLIN R; VIADER V; SANTONI S;
DAVID J. 2006. Microsatellite segregation
analysis and cytogenetic evidence for
tetrasomic inheritance in the American yam
Dioscorea trida and a new basic chromosome
number in the Dioscorea. Theoretical and
Applied Genetics 113: 439–451.
BRESSAN EA; VEASEY EA; PERONI N;
FELIPIM AP; SANTOS KMP. 2005.
Collecting yam (Dioscorea spp.) and sweet
potato (Ipomoea batatas) germplasm in
traditional agriculture small-holdings in the
Vale do Ribeira, São Paulo, Brazil. Plant
Genetic Resources Newsletter 144: 8-13.
BRESSAN EA. 2005. Diversidade isoenzimática
e morfológica de inhame (Dioscorea spp.)
coletados em roças de agricultura tradicional
do Vale do Ribeira-SP. Piracicaba: USP-
ESALQ. 172p. (Master thesis).
CASCUDO LC. 1983. História da alimentação
no Brasil. Belo Horizonte: Itatiaia; São Paulo:
EDUSP; v.1-2. 926p.
CHAÏR H; PERRIER X; AGBANGLA C;
MARCHAND JL; DAINOU O; NOYER JL.
2005. Use of cpSSRs for the characterisation
of yam phylogeny in Benin. Genome 48:
674–684.
CHEN YQ; FAN JY; YI F; LUO ZX; FU YS.
2003. Rapid clonal propagation of Dioscorea
zingiberensis. Plant Cell Tissue Organ Culture
73: 75-80.
COURSEY DG. 1967. Yams. An account oh the
nature, origins, cultivation and utilization of
the useful members of discoreaceae. Tropical
Agricultural Series. Longmans, Green and Co.
Ltd. Londres, UK., 230p.
DANSI A; MIGNOUNA HD; ZOUNDJIHEKPON
J; SANGARE A; ASIEDU R; AHOUSSOU
N. 2000a. Using isozyme polymorphism to
assess genetic variation within cultivated yams
(Dioscorea cayenensis/Dioscorea rotundata
complex) of the Republic of Benin. Genetic
Resources and Crop Evolution 47: 371–383.
DANSI A; MIGNOUNA HD; ZOUNDJIHEKPON
J; SANGARE A; AHOUSSOU N; ASIEDU R.
Guinea yam (Dioscorea cayenensis/rotundata
Polymorphic DNA. Genetic Resources and
Crop Evolution 47: 619-625.
DEGRAS L. 1993. The Yam: a Tropical Root
Crop. The Macmillan Press Ltd, London,
UK, 408p.
EGESI CN; ASIEDU R; UDE G; OGUNYEMI S;
EGUNJOBI JK. 2006. AFLP marker diversity
in water yam (Dioscorea alata L.). Plant
Genetic Resources 4:181-187.
FAOSTAT - Food and Agriculture Organization
of the United Nations. 2010. Avalailable at
http://www.fao.org
FODULOVICÉ KS; GRUBISIÉ D; CÚLAFIÉ L;
MENKOVIÉ N; RISTICÉ M. 1998. Diosgenin
of Dioscorea balcanica. Plant Science 135:
63–67.
GAO H; HOU B; KUROYANAGI M; WU L.
2007. Constituents from anti-tumor-promoting
active part of Dioscorea bulbifera L. Asian
Journal of Traditional Medicines 2: 104-
109.
HAMON JR; TOURE B. 1990. Characterization
of traditional yam varieties belonging to
the Dioscorea cayensis-rotundata complex
by their isozymic patterns. Euphytica 46:
101-107.
HOCHU I; SANTONI S; BOUSALEM M. 2006.
Isolation, characterization and cross-species
Yam: a neglected and underutilized crop in Brazil
20 Hortic. bras., v. 29, n. 1, jan.- mar. 2011
the tropical American yam Dioscorea trida.
Molecular Ecology Notes 6: 137–140.
HSU CL; HURANG SL; CHEN W; WENG YM;
TSENG CY. 2004. Qualities and antioxidant
propert ies of bread as aff ected by the
International Journal of Food Science and
Technology 39: 231-238.
LEBOT V. 2009. Tropical root and tuber crops
Cassava, sweet potato, yams and aroids. Publ.
CABI. 413p.
LEBOT V; TRILLES B; NOYER JL; MODESTO
J. 1998. Genetic relationships between
Dioscorea alata L. cultivars. Genetic Resources
and Crop Evolution 45: 499-509.
KARNICK CR. 1969. Dioscorea (YAMS) - The
Food of the Slaves, with Potentials for Newer
Drugs: A review, Pharmaceutical Biology 9:
1372-1391.
MADEIRA NR; REIFSCHNEIDER FJB;
GIORDANO LB. 2008. Contribuição
portuguesa à produção e ao consumo de
hortaliças no Brasil: uma revisão histórica.
Horticultura Brasileira 26: 428-432.
MALAPA R; ARNAU G; NOYER JL; LEBOT
V. 2005. Genetic diversity of the greater
yam (Dioscorea alata L.) and relatedness
to D. nummularia Lam. and D. transversa
Br. as revealed with AFLP markers. Genetic
Resources and Crop Evolution 52: 919-929.
MESQUITA AS. 2002. Inhame e taro: cenários dos
mercados internacional, brasileiro e baiano.
Bahia Agrícola 5: 54-64.
MIGNOUNA HD; ABANG MM; FAGBEMI SA.
2003a. A comparative assessment of molecular
marker assays (AFLP, RAPD and SSR) for
white yam (Dioscorea rotundata) germplasm
characterization. Annals of Applied Biology
142: 269-276.
MIGNOUNA HD; ABANG MM; ASIEDU R.
2003b. Harnessing modern biotechnology
for tropical tuber crop improvement: Yam
(Dioscorea spp.) molecular breeding. African
Journal of Biotechnology 2: 478-485
MIGNOUNA HD; DANSI A. 2003. Yam
(Dioscorea ssp.) domestication by the Nago
and Fon ethnic groups in Benin. Genetic
Resources and Crop Evolution 50: 519–528.
NARULA A; KUMAR S; SRIVASTAVA PS.
2007.
encapsulation of shoot tips and high diosgenin
content in Dioscorea bulbifera L., a potential
alternative source of diosgenin. Biotechnology
Letter 29: 623–629
OBIDIEGWU JE; KOLESNIKOVA-ALLEN M;
ENE-OBONG EE; MUONEKE CO; ASIEDU
R. 2009a. SSR markers reveal diversity
in Guinea yam (Dioscorea cayenensis/D.
rotundata) core set. African Journal of
Biotechnology 8: 2730-2739.
OBIDIEGWU JE; ASIEDU R; ENE-OBONG EE;
MUONEKE CO; KOLESNIKOVA-ALLEN
M. 2009b. Genetic characterization of some
water yam (Dioscorea alata L.) in West Africa
with simple sequence repeats. Journal of Food,
Agriculture & Environment 7: 3-4.
OKWU DE; NDU CU. 2006. Evaluation of the
phytonutrients, mineral and vitamin contents
of some varieties of yam (Dioscorea sp.).
International Journal of Molecular Medicine
and Advance Science 2: 199-203.
PEDRALLI G; CARMO CAS; CEREDA M;
PUIATTI M. 2002. Uso de nomes populares
para as espécies de Araceae e Dioscoreaceae
no Brasil. Horticultura Brasileira 20: 530-
532.
PEIXOTO NETO PAS; LOPES FILHO J;
CAETANO LC; ALENCAR LMC; LEMOS
EEP. 2000. Inhame: O Nordeste Fértil.
Maceió: EDUFAL, 88 p.
PERONI N; HANAZAKI N. 2002. Current and
lost diversity of cultivated varieties, especially
cassava, under swidden cultivation systems
in the Brazilian Atlantic Forest. Agriculture,
Ecosystems and Environment 92:171-183.
RAMSER J; LÓPEZ-PERALTA C; WETZEL
R; WEISING K; KAHL G. 1996. Genomic
variation and relationships in aerial yam
(Dioscorea bulbifera L.) detected by random
Genome 39:
17-25.
ROYERO M; VARGAS TE; OROPEZA M.
2007. Micropropagación y organogénesis
de Dioscorea alata (Ñame). Interciencia 32:
247-252.
SANTOS ES. 1996. Aspectos básicos da cultura
do inhame (Dioscorea spp.). João Pessoa-PB:
EMEPA-PB, SEBRAE, 158 p.
SCARCELLI N; DAÏNOU O; AGBANGLA C;
TOSTAIN S; PHAM JL. 2005. Segregation
patterns of isozyme loci and microsatellite
markers show the diploidy of African yam
Dioscorea rotundata (2n=40). Theoretical and
Applied Genetics 111: 226-232.
SCARCELLI N; TOSTAIN S; MARIAC C;
AGBANGLA C; DA O; BERTHAUD J;
PHAM JL. 2006. Genetic nature of yams
(Dioscorea sp.) domesticated by farmers in
Benin (West Africa). Genetic Resources and
Crop Evolution 53:121-130.
SEGARRA-MORAGUES JG; PALOP-ESTEBAN
M; GONZÁLEZ-CANDELAS F; CATALÁN
P. 2004. Characterization of seven (CTT)n
microsatellite loci in the Pyrenean endemic
Borderea pyrenaica (Dioscoreaceae). Remarks
on ploidy level and hybrid origin assessed
through allozymes and microsatellite analyses.
Journal of Heredity 95: 177–183.
SILVA AA. 1971. Cultura do cará da costa.
Fortaleza: Banco do Nordeste do Brasil. 65p.
SIQUEIRA MVBM; VEASEY EA. 2009. Raíces y
tubérculos tropicales olvidados o subutilizados
en Brasil. Revista Colombiana de Ciencias
Hortícolas 3: 110-125.
TAMIRU M; BECKER HC; MAASS BL. 2008.
Diversity, distribution and management of
yam landraces (Dioscorea spp.) in Southern
Ethiopia. Genetic Resources and Crop
Evolution 55: 115–131.
UKPABI UJ. 2010. Farmstead bread making
potential of lesser yam (Dioscorea esculenta)
Australian Journal of Crop
Science 4:68-73.
WU WH; LIU LY; CHUNG CJ; JOU HJ; WANG
TA. 2005. Estrogenic effect of yam ingestion
in healthy postmenopausal women. Journal
of the American College of Nutrition 24:
235-243.
ZANNOU A; RICHARDS P; STRUIK PC. 2006.
Knowledge on yam variety development:
practices. Knowledge Management for
Development Journal 2: 30-39.
MVBM Siqueira
21
Pesquisa / Research
Hortic. bras., v. 29, n. 1, jan. - mar. 2011
As abóboras, do ponto de vista sócio
econômico, são importantes por
fazerem parte da alimentação básica
das populações de várias regiões do
nosso país, tendo alcançado em 2002
o volume comercializado de 30.300 t
(CEAGESP–SP) (Agrianual, 2004).
Embora diversos híbridos nacionais de
abóbora tipo tetsukabuto já tenham sido
desenvolvidos, a produção de sementes
-
ciente, impossibilitando o atendimento
de toda a demanda interna. Para tanto,
é importada a quase totalidade das
sementes utilizadas para a produção de
abóbora do tipo tetsukabuto, em uma
estimativa de 10 t/ano, com um custo
de US$ 1 milhão (Embrapa, 2003). Este
valor pode chegar a US$ 2,4 milhões,
a nível de produtor. Produtividades
Hor-
ticultura Brasileira 29: 21-25.
Inuência da quantidade de pólen na produção e qualidade de sementes
híbridas de abóbora
Warley Marcos Nascimento1; Graziele P Lima2; Ricardo Carmona3
1Embrapa Hortaliças, C. Postal 218, 70351-970 Brasília-DF; 2Coordenação de Sementes e Mudas, Ministério da Agricultura, Pecuária e
Abastecimento, Brasília-DF; 3UnB, C. Postal 4508, 70910-970 Brasília-DF; wmn@cnph.embrapa.br; grazi.lima@bol.com.br; rcar-
mona@unb.br
RESUMO
A baixa produção de sementes híbridas de abóbora obtida em
nossas condições deve-se provavelmente aos métodos de produção
também a qualidade das sementes híbridas. Neste estudo, utilizou-se a
polinização manual, a qual constou de cinco tratamentos relacionados
com a quantidade de pólen do progenitor masculino para polinizar
adotado foi em blocos ao acaso, com três repetições e dezoito plantas
por parcela. O aumento da quantidade de pólen aplicada aumentou a
produção de sementes por fruto e consequentemente a produção de
não foi afetada entre os tratamentos, embora foi observada uma menor
polinizadas com 1/4 de pólen.
Palavras-chave: C. maxima, C. moschata,
ABSTRACT
Inuence of pollen amount on production and quality of
squash hybrid seeds
The low production of squash hybrid seeds obtained in our
the two parents may affect not only the hybrid seed production but
with three replications and eighteen plants per plot. The increasing
Keywords: C. maxima, C. moschata
(Recebido para publicação em 3 de novembro de 2008; aceito em 12 de janeiro de 2011)
(Received on November 3, 2008; accepted on January 12, 2011)
variando de 50 a 100 kg/ha de sementes
híbridas têm sido obtidas em nosso país.
Diferentes causas para esta baixa produ-
ção de sementes em nossas condições
podem estar ocorrendo, incluindo uma
Para a obtenção de sementes híbridas
de abóbora do tipo tetsukabuto é reali-
zado o cruzamento de uma linhagem
de moranga (Cucurbita maxima), como
parental feminino, com uma linhagem
de abóbora (Cucurbita moschata), sendo
o parental masculino. Quando a produ-
ção de sementes híbridas é realizada em
cultivos protegidos, os grãos de pólen de
C. moschata são transferidos
de C. maxima-
ninas de abóbora possui muitos óvulos,
podendo formar várias sementes. Como
cada grão de pólen tem a capacidade de
fecundar apenas um óvulo, e a semente
é originada de um óvulo fecundado, uma
se torna necessária, para que nenhum
óvulo deixe de ser fecundado. Segundo
for o processo de polinização, ou seja,
quanto maior for o número de grãos de
pólen viáveis e compatíveis no estigma,
maior será a competição entre eles para
fecundar os óvulos e maior será a per-
centagem de sementes formadas.
No caso da produção atual de semen-
tes de Cucurbita, é importante salientar
que o uso de polinização manual, com
tem sido utilizado e sementes mais
vigorosas são obtidas quando utilizada
22 Hortic. bras., v. 29, n. 1, jan.- mar. 2011
et al.,
2000). Um estudo mais detalhado de
práticas de polinização se faz necessário
para um possível aumento da quantidade
de sementes híbridas de abóbora produ-
zidas e, consequentemente, uma oferta
acessíveis. Este trabalho teve como ob-
-
tidade de pólen na produção e qualidade
de sementes híbridas de abóbora.
MATERIAL E MÉTODOS
Este estudo foi conduzido na Em-
brapa Hortaliças, de novembro de
2002 a junho de 2003. O delineamento
experimental foi em blocos ao acaso,
utilizando cinco tratamentos, referentes
à quantidade de pólen para polinizar
cada flor: 11 mg (1/4 da quantidade
94 mg (a quantidade de pólen de duas
repetições e dezoito plantas por parcela.
Linhagens femininas e masculinas de
na Embrapa Hortaliças foram utilizadas
neste estudo. As sementes de abóbora
do progenitor masculino (Cucurbita
moschata) foram semeadas em bandejas
de poliestireno expandido (isopor) de 72
células, utilizando duas sementes por
célula, em 18 de novembro de 2002.
A semeadura do progenitor feminino
(Cucurbita maxima) foi realizada dire-
tamente no solo da casa de vegetação.
Foram semeadas duas sementes por
cova, em 04 de dezembro. Nesta mesma
data também foi realizado o transplantio
do progenitor masculino para a mesma
casa de vegetação, na proporção de uma
planta do progenitor masculino para
quatro plantas do progenitor feminino.
Essa diferença de 16 dias na semea-
dura teve como objetivo sincronizar o
-
nitores. As plantas foram desbastadas
posteriormente, permanecendo apenas
uma planta por cova. O espaçamento
utilizado, para as duas espécies, foi de
1,0 m entre linha e 0,5 m entre plantas.
A irrigação foi realizada sempre pela
manhã, utilizando o sistema de gote-
realizado sempre que necessário.
-
culinas do progenitor feminino eram
retiradas antes da sua abertura, para
evitar uma possível autofecundação.
Iniciou-se a polinização 41 dias após o
plantio da linhagem feminina, utilizando
cinco diferentes quantidades de pólen
um quarto da quantidade de pólen de
do progenitor masculino e com um
estilete foram cortadas as suas pétalas
e os estames foram raspados levemente
para a retirada apenas do pólen. O pólen
coletado foi depositado em um papel
alumínio e pesado para a obtenção do
peso total. A partir do valor obtido foi
calculado o peso médio de pólen de uma
-
linizações foram realizadas no período
da manhã. O pólen, após pesado, foi
colocado em um recipiente cilíndrico,
utilizando um medidor de sal para o
preparo de soro caseiro, para facilitar a
polinização. A polinização foi realizada
-
-
res por planta foram polinizadas. Todas
A colheita dos frutos foi realizada após
50 a 60 dias da polinização e permane-
ceram em repouso por mais 15 dias em
local arejado e seco, antes da extração
de sementes.
As sementes foram extraídas e lava-
das em água corrente, com a utilização
camada de mucilagem que as recobria.
Após a extração, as sementes foram
postas em uma sala de pré-secagem
por 48 horas a uma temperatura de
32°C e, posteriormente, em uma estufa
elétrica por 24 horas a uma temperatura
de 40°C.
Foram avaliados os parâmetros: a)
peso de frutos (PF): os frutos foram
pesados em balança de precisão após
15 dias de repouso; b) estimativa
da produtividade de frutos (PRF):
estimou-se a produtividade de frutos por
hectare, a partir do peso total de frutos
obtido na parcela de 9 m2; c) peso de
sementes total por fruto (PSTF): as
sementes de cada fruto foram pesadas
em balança de precisão, antes de serem
passadas pelo soprador; d) peso de se-
mentes por fruto (PSF): as sementes de
cada fruto foram pesadas em balança de
precisão, depois de serem passadas por
um soprador pneumático (eliminação de
sementes chochas, mal formadas, leves,
etc.); e) estimativa da produção de
sementes por área (PRS): foi calculada
a partir do valor obtido na parcela de
9m2; f) número de sementes por fruto
(NSF): as sementes de cada fruto foram
contadas manualmente; g) pegamento
(PEG): obtido pela porcentagem de
polinizadas na parcela; h) peso de 100
sementes (P100): quatro repetições de
100 sementes, por tratamento, foram
tomadas aleatoriamente e pesadas em
balança de precisão; i) teste de germi-
nação (GER) e vigor (1a contagem):
foram utilizadas quatro repetições de
50 sementes por tratamento, em um
delineamento inteiramente casualizado.
As sementes foram semeadas em rolo
de papel (RP), contendo três folhas de
com água destilada, e incubadas na
temperatura alternada de 20ºC (16 h)
e 30ºC (8 h), de acordo com as Regras
para Análise de Sementes (Brasil, 1992).
A primeira contagem, aos 4 dias após a
instalação do teste foi considerada como
após 8 dias, foi considerada como a
germinação das sementes; j) emergên-
cia das plântulas em substrato (ES):
foram utilizadas quatro repetições de 50
sementes por tratamento, em um deli-
neamento inteiramente casualizado. As
sementes foram colocadas em caixas de
poliestireno expandido (isopor) conten-
do 200 células em substrato tipo Plant-
max Hortaliças (Eucatex). As bandejas
permaneceram durante todo o período
em casa de vegetação e o substrato foi
de dar à semente a quantidade de água
necessária para a germinação. Efetuou-
se a contagem das plântulas aos 10 dias
após a semeadura.
Os dados obtidos neste estudo fo-
WM Nascimento et al.
23Hortic. bras., v. 29, n. 1, jan.- mar. 2011
ram submetidos à análise de variância,
comparando as médias dos tratamentos
através do teste Tukey a 5% de probabi-
lidade para a análise dos parâmetros de
qualidade de sementes (P100, Primeira
contagem, Germinação e Emergência
em substrato). Os outros dados de
produção de frutos e sementes foram
avaliados pela análise de regressão.
RESULTADOS E DISCUSSÃO
O cruzamento entre C. maxima e C.
moschata resultou em pegamento máxi-
mo de frutos de 50% quando se utilizou
o mínimo de 22% quando se utilizou um
quarto da quantidade de pólen de uma
pegamento dos frutos com a quantidade
-
res onde, quanto maior a quantidade de
de C. maxima, maior foi o pegamento de
frutos (Figura 1A). Segundo Whitaker
& Davis (1962), no cruzamento de C.
maxima x C. moschata cerca de 30 a
40% de polinizações originaram frutos.
Valores aproximados também foram ci-
tados por Takashima (1954) que obteve
42% de pegamento ao polinizar 750
C. maxima. Yamane (1952), ao
oito frutos, ou seja, aproximadamente
14% de pegamento. As causas destes
diferentes valores de pegamento são
discutíveis, podendo-se levantar a hi-
pótese da utilização de linhagens com
diferentes graus de compatibilidades
ou o cultivo em diferentes condições
edafoclimáticas. Condições adversas de
fertilização usualmente resultam em um
pequeno ou anormal desenvolvimento
do fruto (Zitter et al., 1996).
Não foi observada diferença signi-
polinização com diferentes quantidades
de pólen, porém existiu uma tendência
dos frutos obtidos da polinização com
maiores e, consequentemente, mais
pesados (Figura 1B). O maior tamanho
dos frutos pode ser explicado pela maior
quantidade de sementes no fruto e tam-
bém pela presença de maior quantidade
de auxina no grão de pólen. A germi-
nação do grão de pólen é muitas vezes
o estimulante para o desenvolvimento
do ovário quando há uma polinização
alta taxa de auxina que tem como função
garantir a manutenção e o crescimento
grande quantidade de pólen geralmente
resulta em uma explosão no crescimento
do ovário e aumento do pegamento.
Desde a polinização, a auxina age na
formação do ovário (Kessel, 1976). Sem
a fecundação, o ovário se desprende e
cai. Embora o pólen tenha poucas horas
para alcançar os óvulos, se a taxa de
elongação do fruto exceder a taxa de
crescimento do tubo polínico, os óvulos
nunca serão fertilizados devido à maior
distância dos óvulos nos frutos longos
(Robinson & Decker-Walters, 1996).
Assim, a auxina presente, até mesmo
quando foi utilizada a quantidade de
-
sionado este crescimento exagerado do
fruto, antes da fecundação dos óvulos,
pois não se observou redução no número
de sementes por fruto ao se aumentar a
quantidade de pólen (Figura 1C).
As plantas polinizadas com a quan-
tidade de pólen de duas (94 mg) a
maior percentagem de pegamento de
frutos (Figura 1A). Soma-se a isto uma
percentagem maior de plantas com dois
frutos nestes tratamentos, contribuindo
para a obtenção de valores crescentes
de produção de frutos com o aumento
da quantidade de pólen utilizada (Figura
1D).
A maior produção de frutos ocorreu
quando a polinização foi realizada com
188 mg de pólen, alcançando aproxi-
madamente 30 t/ha (Figura 1D). Existe
uma tendência dos frutos mais pesados
apresentarem maior número de semen-
tes por fruto (Figura 1C), maior peso de
sementes por área (Figura 1F) e maior
produção de sementes/fruto (Figura
1E). Hayase (1953), Stephenson et al.
(1988) e Zitter et al. (1996) observaram
o mesmo, onde o tamanho do fruto e
conseqüentemente o seu peso aumentam
com o número de sementes no fruto.
Lima et al. (1999) trabalhando com duas
quantidades de pólen (50% de uma an-
tera e uma antera inteira) para polinizar
-
ram que o uso da metade da quantidade
de pólen de uma antera propiciou menor
peso de sementes (por fruto, planta e
área), e originou frutos com menor pro-
dução de sementes e consequentemente
de menor peso; o peso médio de fruto
de pólen. Cardoso (2003), utilizando
três quantidades de pólen (meia, uma e
-
nha (Cucurbita pepo), não encontrou
peso médio de frutos e número e peso
de sementes por fruto.
O maior número de sementes encon-
trado por fruto foi de aproximadamente
117 quando utilizada a quantidade de
pólen de quatro flores. Quanto mais
ou seja, quanto maior for o número de
grãos de pólen viáveis e compatíveis
no estigma, maior será a fecundação
dos óvulos e consequentemente a
quantidade de sementes formadas. A
quantidade de sementes obtida, usando-
foi um pouco menor, aproximadamente
87 sementes por fruto (Figura 1C).
O baixo pegamento de frutos (22%)
(Figura 1A) obtido quando houve a
polinização com 1/4 de pólen de uma
com a quantidade de pólen utilizada e o
número de sementes formadas no fruto.
Lee & Bazzaz (1982) têm sugerido que,
através do abortamento de frutos com
poucas sementes, a planta pode elimi-
nar todos os frutos na qual teve pouca
competição pelo acesso aos óvulos e,
um aborto seletivo de frutos com poucas
sementes pode ser visto como um meio
de aumentar a qualidade das sementes
produzidas. Finalmente, verificou-se
utilizada na polinização e produção de
sementes. Quanto maior a quantidade
de pólen utilizada, maior a quantidade
de sementes produzida (Figura 1F). A
maior produção de sementes alcançada
foi de 520 kg/ha utilizando-se 188 mg
de pólen, e a menor foi de 160 kg/ha
utilizando-se 11 mg de pólen.
Não foi observada diferença signi-
de pólen utilizadas na polinização para
a maioria dos parâmetros de qualidade
das sementes (P100, vigor, emergência
24 Hortic. bras., v. 29, n. 1, jan.- mar. 2011
1150
1200
1250
1300
1350
1400
1450
050 100 150 200
Quantidade de pólen (mg)
Peso de fruto (g)
Valores obtidos
PF:
0
20
40
60
80
100
120
140
050 100 150 200
Quantidade de pólen (mg)
Número de sementes por fruto
Valores Obtidos
NSF:
0
5
10
15
20
25
30
35
050 100 150 200
Quantidade de pólen (mg)
Produção de frutos (Kg/ha)
Valores obtidos
PRF:
0
5
10
15
20
25
30
050 100 150 200
Quantidade de pólen (mg)
Peso de sementes por fruto (g)
Valores obtidos
PSF:
0
100
200
300
400
500
600
050 100 150 200
Quant idade de pól en (mg)
Produção de sementes (Kg/ha)
Val ores Obtidos
PRS:
Figura 1. A) Pegamento de frutos de abóbora híbrida procedentes de polinização com diferentes quantidades de pólen (squash fruit setting
from pollination using different pollen amounts); B) Peso de frutos de abóbora em função de diferentes quantidades de pólen (squash fruit
weight from pollination using different pollen amounts); C) Número de sementes por fruto de abóbora híbrida procedentes da polinização
com diferentes quantidades de pólen (squash seed number per fruit from pollination using different pollen amounts); D) Produção de frutos
de abóbora híbrida procedentes da polinização com diferentes quantidades de pólen (squash fruit yield from pollination using different
pollen amounts); E) Peso de sementes por fruto de abóbora híbrida procedentes da polinização utilizando diferentes quantidades de pólen
(weight of seeds per hybrid squash fruit from pollination using different pollen amounts); F) Produção de sementes de abóbora híbrida
procedentes da polinização com diferentes quantidades de pólen (squash seed production from pollination using different pollen amounts).
Brasília, Embrapa Hortaliças, 2003.
em substrato) (dados não apresentados),
corroborando os dados obtidos por Car-
doso (2003) em abobrinha (C. pepo).
A geminação das sementes tendeu a
aumentar com o aumento da quantidade
de pólen depositado no estigma (Jen-
nings & Tophan, 1971). Lima (2000),
trabalhando com abobrinha (C. pepo),
-
gor quando utilizou a maior quantidade
de pólen (100% da antera). No presente
estudo, a germinação das sementes foi
menor (75%) quando foi utilizada a
menor quantidade de pólen e foi maior
(94%) quando se utilizou a quantidade
Davis et al. (1987) e Winsor et al.
(1987) também trabalhando com abobri-
nha e Quesada et al. (1996) trabalhando
C. pepo
x C. texana), observaram que sementes
produzidas com elevada quantidade de
pólen possuíam maior vigor do que as
produzidas com baixa quantidade de
Y= -0,000014570P2+0,004348P+0,196768 (R2 = 0,63)
AB
CD
EF
Y= -0,002171P2+1,446709P+1209,092418 (R2= 0,12)
Y= -0,002425P2+0,730807P+65,045604 (R2=0,51)
Y= -0,000741P2+0,247441P+9,134344 (R2=0,45)
Y=17,6050=0,0509P (R2=0,52)
Y= -0,000016386P2+0,005262P+0,113465 (R2=0,64)
WM Nascimento et al.
25Hortic. bras., v. 29, n. 1, jan.- mar. 2011
pólen. Embora não significativo, os
dados numéricos de vigor (emergência
em solo) no presente estudo mostram a
superioridade da emergência em solo
nos tratamentos onde utilizaram-se
maiores quantidades de pólen (dados
não apresentados). A explicação para
tal acontecimento deve-se a uma relação
de quanto maior a quantidade de pólen
no estigma, maior é a possibilidade de
se ter grãos de pólen mais vigorosos.
Estes, por sua vez, são mais compe-
titivos, aumentando a capacidade de
fertilizar os óvulos e gerar sementes
mais vigorosas.
Finalmente, a quantidade de pólen
pode interferir na produção e na quali-
dade de sementes híbridas de abóbora
onde a utilização de pólen de quatro
C. moschata na polinização de
C. maxima ocasionou uma
maior produção de sementes.
REFERÊNCIAS
BRASIL. MINISTÉRIO DA AGRICULTURA E
REFORMA AGRÁRIA. 1992. Regras para
análise de sementes. Brasília: SNDA: DNVD:
CLAV, 220p.
CARDOSO AII. 2003. Produção e qualidade de
à quantidade de pólen. Bragantia 62: 47-52.
DAVIS LE; STEPHENSON AG; WINSOR
JA. 1987. Pollen competition improves
performance and reproductive output of
the common zucchini squash under field
conditions. Journal of the American Society
for Horticultural Science 112: 712-716.
EMBRAPA. 2003, 30 de novembro. Abóbora.
Disponível em http://www.cnph.embrapa.br/
noticias/ hortinforme_ed_13/pric_not1.htm
FNP CONSULTORIA & AGROINFORMATIVOS
(São Paulo, SP). 2003. Agrianual 2004:
anuário da agricultura brasileira. São Paulo,
496p.
FREITAS BM. 1997. Changes with time in
the germinability of cashew (Anacardium
occidentale) pollen grains found on different
body areas of its pollinator bees. Review of
Brasilian Biology 57: 289-294.
HAYASE H. 1953. Cucurbita-crosses. IV. The
development of squash fruit as affected by
placement of pollen on stigma. Hokkaido
National Agricultural Experiment Station,
Research B 64: 22-25 [In Japanese, English
summary].
QUESADA M; WINSOR JA; STEPHENSON
AG. 1996. Effects of pollen selection on
progeny vigor in Cucurbita pepo x C. texana
hybrid. Theoretical and Applied Genetics 92:
885-890.
KESSEL RG; SHIH CY. 1976. Scanning electron
microscopy in biology. New York: Springer-
Verlag, 345p.
JENNINGS DL; TOPHAM PB. 1971. Some
consequences of raspberry pollen dilution for
its germination and or fruit development. New
Phytology 70: 371-380.
LEE TD; BAZZAZ FA. 1982. Regulation of fruit
maturation pattern in an annual legume, Cassia
fasciculata. Ecology 63: 1374-1388.
LIMA MS; CARDOSO AII; VERDIAL MF. 1999.
Efeito da competição entre plantas e pólen na
produtividade de sementes de abobrinha cv.
Caserta. Horticultura Brasileira 17: 163.
LIMA MS. 2000. Espaçamento entre plantas e
quantidade de pólen na produção e qualidade
de sementes de abobrinha (Cucurbita
pepo). Botucatu: UNESP-FCA. 75p (Tese
mestrado).
ROBINSON R. W; DECKER-WALTERS DS.
1996. Cucurbits. CAB International: New
York, 226 p.
STEPHENSON AG; DEVLIN B; HORTON
JB. 1988. The effects of seed number and
prior fruit dominance on the pattern of fruit
production in Cucurbita pepo (zucchini
squash). Annals of Botany 62: 653-661.
TAKASHIMA S. 1954. The growth rate of pollen
Cucurbita.
II: The growth rate of pollen tubes in intra-
Japanese Journal of Genetics
29: 36-39 (In Japanese, English summary).
WINSOR JA; DAVIS LE; STEPHENSON AG.
1987. The relationships between pollen load
and fruit maturation and its effect on offspring
vigor in Cucurbita pepo. American Naturalist
112: 712-716.
WHITAKER TW; DAVIS GN. 1962. Cucurbits:
botany, cultivation and utilization. Leonard
Hill: New York, 250p.
YAMANE Y. 1952. Studies on species hybrids
in genus Cucurbita. I: C. maxima and C.
moschata and its reciprocal cross. Republic
Kihara Institute for Biological Research 5:
94-99.
ZITTER TA; HOPKINS DL; THOMAS CE. (eds).
1996. Compendium of cucurbit diseases St.
Paul: APS Press, 87p.