Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats

Article (PDF Available)inPharmacology Biochemistry and Behavior 92(3):474-9 · June 2009with28 Reads
DOI: 10.1016/j.pbb.2009.01.017 · Source: PubMed
Recent studies have shown that deep brain stimulation (DBS) of the nucleus accumbens (NAcc) has an inhibitory effect on drug-seeking behaviors including reinstatement responding for cocaine. The objective of the present study was to expand on these findings by assessing the effects of DBS on behaviors related to alcohol consumption. The specific aim of this study was to determine whether DBS delivered to either the shell or core of the NAcc would reduce ETOH intake in rats using a two-bottle choice limited access procedure. Long Evans rats were induced to drink a 10% ethanol solution using a saccharin fading procedure. Bipolar electrodes were implanted bilaterally into either the core or shell of the NAcc. During testing animals received DBS 5 min prior to and during a 30-minute test session in which both ETOH and water bottles were accessible. Current was delivered at amplitudes ranging from 0 to 150 microA. ETOH consumption was significantly reduced from baseline levels at the 150 microA current for both shell and core electrode placements. A significant current effect was not found for water consumption for either site. These results provide evidence that DBS delivered either to the nucleus accumbens core or shell subregions can significantly reduce ethanol intake in the rat.