Article

Crowding Activates CIpB and Enhances Its Association with DnaK for Efficient Protein Aggregate Reactivation

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Reactivation of intracellular protein aggregates after a severe stress is mandatory for cell survival. In bacteria, this activity depends on the collaboration between the DnaK system and ClpB, which in vivo occurs in a highly crowded environment. The reactivation reaction includes two steps: extraction of unfolded monomers from the aggregate and their subsequent refolding into the native conformation. Both steps might be compromised by excluded volume conditions that would favor aggregation of unstable protein folding intermediates. Here, we have investigated whether ClpB and the DnaK system are able to compensate this unproductive effect and efficiently reactivate aggregates of three different substrate proteins under crowding conditions. To this aim, we have compared the association equilibrium, biochemical properties, stability, and chaperone activity of the disaggregase ClpB in the absence and presence of an inert macromolecular crowding agent. Our data show that crowding i), increases three to four orders of magnitude the association constant of the functional hexamer; ii), shifts the conformational equilibrium of the protein monomer toward a compact state; iii), stimulates its ATPase activity; and iv), favors association of the chaperone with substrate proteins and with aggregate-bound DnaK. These effects strongly enhance protein aggregate reactivation by the DnaK-ClpB network, highlighting the importance of volume exclusion in complex processes in which several proteins have to work in a sequential manner.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Volume exclusion is also predicted to result in the acceleration of slow, transition-state-limited association reactions and the deceleration of fast, diffusion-limited association reactions (Zhou et al., 2008). It is furthermore anticipated that crowding will also lead to phase separation phenomena that can affect significantly the spatial arrangement and local distribution of ClpB complexes (Martin et al., 2014). Finally, crowding can contribute to the maintenance of functional activity of essential protein–nucleic acid and protein–protein complexes in Escherichia coli against large changes in the osmolarity of its environment (Cayley & Record, 2004). ...
... A detailed description of the production of wild-type ClpB and deletion mutants ClpB Δ(410–455) and ClpB Δ(410–520) in which the M domain was partially or totally deleted, respectively, and ClpB Δ(1–142) , which lacks the N-terminal domain, has already been described (del Castillo et al., 2011; Martin et al., 2014). All the experiments were done in 50 mM Tris–HCl, pH 7.5, 5 mM MgCl 2 buffer, containing different KCl concentrations (20–500 mM), in the absence or in the presence of 1 mM nucleotide (ADP or ATP). ...
Chapter
ClpB belongs to the Hsp100 family of ring-forming heat-shock proteins involved in degradation of unfolded/misfolded proteins and in reactivation of protein aggregates. ClpB monomers reversibly associate to form the hexameric molecular chaperone that, together with the DnaK system, has the ability to disaggregate stress-denatured proteins. Here, we summarize the use of sedimentation equilibrium approaches, complemented with sedimentation velocity and composition-gradient static light scattering measurements, to study the self-association properties of ClpB in dilute and crowded solutions. As the functional unit of ClpB is the hexamer, we study the effect of environmental factors, i.e., ionic strength and natural ligands, in the association equilibrium of ClpB as well as the role of the flexible N-terminal and M domains of the protein in the self-association process. The application of the nonideal sedimentation equilibrium technique to measure the effects of volume exclusion, reproducing in part the natural crowded conditions inside a cell, on the self-association and on the stability of the oligomeric species of the disaggregase will be described. Finally, the biochemical and physiological implications of these studies and future experimental challenges to eventually reconstitute minimal disaggregating machineries will be discussed.
... To understand the molecular mechanisms defining the collaboration between the DnaK system and ClpB, the association equilibrium, biochemical properties, stability, and chaperone activity of the disaggregase ClpB in the absence and presence of an inert macromolecular crowding agent have been recently analyzed [64]. This analysis revealed that macromolecular crowding has a multidirectional effect on the functional activity of this important hexameric chaperone. ...
... This analysis revealed that macromolecular crowding has a multidirectional effect on the functional activity of this important hexameric chaperone. In fact, the crowded environment shifted the conformational equilibrium of the protein monomer toward a more compact state, dramatically enhanced the association constant of the functional hexamer, stimulated the ATPase activity of ClpB and promoted interaction of this chaperone with substrate proteins and with aggregate-bound DnaK [64]. ...
Article
Full-text available
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the "real life" situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model "crowding agents". Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
... Drug/metabolite transporters (DME and RND family), as well as heavy metals exporters (CopA) endow the strain Hal317 T with the ability of extruding antibiotic or other toxic substances into the external environment. Stress-related denaturation of proteins might be combated by chaperones like the DnaKand the ClpB-system, which assist the proper protein folding during or after synthesis, and after partial denaturation (Martin et al. 2014). Since excess heme is cytotoxic to cells, strain Hal317 T showed a heme exporter system consisting of protein CcmABC. ...
Preprint
Full-text available
A new strain (named Hal317T) of the family Iamiaceae within the class Acidimicrobiia was isolated from the marine breadcrumb sponge Halichondria panicea sampled in the Kiel Fjord (Baltic Sea, Germany). This strain is one of the few isolates of the class Acidimicrobiia, which is under-represented in cultivation efforts and comprises only 16 validly described species. Because strain Hal317T showed a small translucent colony morphology, it can easily be overlooked on agar plates. Phylogenetic analysis of the full-length 16S rRNA gene sequence revealed similarities from 84.86 - 91.54% to all known type strains of the class Acidimicrobiia. The phylogenetic analysis of the 16S rRNA gene sequences depicted a cluster of strain Hal317T with its closest relative Aquihabitans daechungensis CH22-21T (90.94%) which was also observed by genome phylogeny. Genome comparisons of strain Hal317T with type strains of the family Iamiaceae exhibited average nucleotide identities <71.49% and digital DNA-DNA hybridization values <70%. Strain Hal317T exhibited features of a sponge-associated life-style based on genome predictions, e.g. metabolisation of diverse carbohydrates derived from sponge, transport of glutamate, participation of sulfur, nitrogen and phosphorus cycle in sponge environments, as well as synthesis of vitamins. Moreover, stress response-related genes involved in ectoine synthesis, defense mechanisms against reactive oxygen species (ROS), chaperones, and toxin antitoxin systems were shown in the genome of strain Hal317T. Within the family Iamiaceae strain Hal317T revealed unique genomic features such as a substrate-specific phosphonate pathway, a glutamate-uptake system, a non-phosphorylated L-fucose pathway, and extracellular proteases. Strain Hal317T was determined to be microaerophilic and sea salt-dependent. Optimal growth occurred at 30 - 35 °C, within a salinity range of 1 - 2% sea salt, and a pH range between 6 - 7. The major fatty acids identified were C18:1 ω7c, C16:1 ω7c, C17:1 ω8c, and C16:0. Whole-cell sugar analysis revealed rhamnose, ribose, mannose, and galactose. Meso-diaminopimelic acid was observed in the whole-cell hydrolysate. The major respiratory menaquinone was MK-9(H8) with minor amounts of MK-9(H6) and MK-9(H10). The polar lipid profile comprised diphosphatidylglycerol, a glycophospholipid, two glycolipids, four phospholipids, and an unknown lipid. The DNA G+C content of strain Hal317T was 68.70 mol%. Based on the polyphasic approach, strain Hal317T could be distinguished from known genera of the family Iamiaceae, and we propose the name Actinospongicola halichondriae gen. nov., sp. nov. The type strain is Hal317T (= DSM 114536T = LMG 32795T). Our study sheds light on the Acidimicrobiia which is typical of few representatives and difficult to isolate. Additionally, the new sponge-derived isolate offers valuable insights into the host-bacteria association.
... These two processes are physiologically connected because DnaK, the rate-limiting factor for disaggregation by DnaK-ClpB, is proteolyzed during prolonged starvation (70). That is, ClpB cannot disaggregate proteins in the absence of DnaK (71)(72)(73). and ATP amounts do not impact ClpB function in the absence of DnaK under physiological conditions (74). ...
Article
When cells run out of nutrients, the growth rate greatly decreases. Here, we report that microorganisms, such as the bacterium Salmonella enterica serovar Typhimurium, speed up the return to a rapid growth state by preventing the proteolysis of functional proteins by ATP-dependent proteases while in the slow-growth state or stationary phase. This reduction in functional protein degradation resulted from a decrease in the intracellular concentration of ATP that was nonetheless sufficient to allow the continued degradation of nonfunctional proteins by the same proteases. Protein preservation occurred under limiting magnesium, carbon, or nitrogen conditions, indicating that this response was not specific to low availability of a particular nutrient. Nevertheless, the return to rapid growth required proteins that mediate responses to the specific nutrient limitation conditions, because the transcriptional regulator PhoP was necessary for rapid recovery only after magnesium starvation. Reductions in intracellular ATP and in ATP-dependent proteolysis also enabled the yeast Saccharomyces cerevisiae to recover faster from stationary phase. Our findings suggest that protein preservation during a slow-growth state is a conserved microbial strategy that facilitates the return to a growth state once nutrients become available.
... We have observed that, in general, both the isoforms of M. tb ClpB have a tendency to self-associate which is further enhanced under crowded conditions. This finding correlates with previous studies with homologs of ClpB of other organisms [49,50]. ...
Article
Full-text available
Mycobacterium tuberculosis (M. tb) is known to persist in extremely hostile environments within host macrophages. The ability to withstand such proteotoxic stress comes from its highly conserved molecular chaperone machinery. ClpB, a unique member of the AAA+ family of chaperones, is responsible for resolving aggregates in M. tb and many other bacterial pathogens. M. tb produces two isoforms of ClpB, a full length and an N‐terminally truncated form (ClpB∆N), with the latter arising from an internal translation initiation site. It is not clear why this internal start site is conserved and what role the N‐terminal domain (NTD) of M. tb ClpB plays in its function. In the current study, we functionally characterized and compared the two isoforms of M. tb ClpB. We found the NTD to be dispensable for oligomerization, ATPase activity and prevention of aggregation activity of ClpB. Both ClpB and ClpB∆N were found to be capable of resolubilizing protein aggregates. However, the efficiency of ClpB∆N at resolubilizing higher order aggregates was significantly lower than that of ClpB. Further, ClpB∆N exhibited reduced affinity for substrates as compared to ClpB. We also demonstrated that the surface of the NTD of M. tb ClpB has a hydrophobic groove which contains four hydrophobic residues: L97, L101, F140, and V141. These residues act as initial contacts for the substrate and are crucial for stable interaction between ClpB and highly aggregated substrates.
... Mutation of the conserved lysine residues at the Walker A motif (K212 and K611 in NBD1 and NBD2, respectively) by alanine impairs nucleotide binding at the mutated NBD (null -N-mutation), whereas substitution of the conserved glutamic residues at the Walker B motif (E274 and E678 at the NBD1 and NBD2) by alanine renders NBDs that bind but not hydrolyse ATP (trap -T-susbtitution 35 ). Full length (wt, ClpB TT -ClpB E279A/E678A -, ClpB T1 -ClpB E279A -, ClpB T2 -ClpB E678A -, ClpB N1 -ClpB K212A -and ClpB N2 -ClpB K611A -) and deletion mutants (ΔN-ClpB -ClpB Δ(1-142) , ΔM-ClpB -ClpB Δ(410-520), and ΔN/ΔM-ClpB -ClpB Δ(1-142;410-520) ) of ClpB were obtained as previously reported 12,41,61 . Wt DnaK, DnaK T199A , DnaK D526A , Δlid (DnaK 1-507 ), NBD (DnaK 1-385 ), DnaJ and GrpE were obtained as reported 39,62 . ...
Article
Full-text available
The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.
... We suggest that the solvent properties measured here by Protein aggregation is very sensitive to environmental conditions. It was suggested that high concentrations of inert polymers, that are used to mimic macromolecular crowding in in vitro experiments, may have a large influence on the behavior of biological macromolecules (Bismuto et al., 2002;Eggers & Valentine, 2001a, 2001bMinton, 2000b), affecting protein-protein interactions in general (Martin et al., 2014;Minton, 2000a;Morar, Olteanu, Young, & Pielak, 2001), and could modulate both the rate and the extent of amyloid formation in vivo (Lansbury, 1999;Minton, 2000a). ...
Article
Here, we hypothesize that intrinsically disordered proteins (IDPs) serve as important drivers of the intracellular liquid-liquid phase separations that generate various membrane-less organelles. This hypothesis is supported by the overwhelming abundance of IDPs in these organelles. Assembly and disassembly of these organelles are controlled by changes in the concentrations of IDPs, their posttranslational modifications, binding of specific partners, and changes in the pH and/or temperature of the solution. Each resulting phase provides a distinct solvent environment for other solutes leading to their unequal distribution within phases. The specificity and efficiency of such partitioning is determined by the nature of the IDP(s) and defines "targeted" enrichment of specific molecules in the resulting membrane-less organelles that determines their specific activities. Copyright © 2014. Published by Elsevier B.V.
Preprint
The cell membrane is a fundamental component of cellular architecture. Beyond serving as a physical barrier that encloses the cytosol, it also provides a crucial platform for numerous biochemical reactions. Due to the unique two-dimensional and fluidic environment of the membrane, reactions that occur on its surface are subject to specific physical constraints. However, the advantages and disadvantages of membrane-mediated reactions have yet to be thoroughly explored. In this study, we reconstitute a classic proteolytic cleavage reaction at the membrane interface, designed for the real-time, single-molecule kinetic analysis. The interactions between the enzyme and substrate near the membrane are examined under different classic scenarios. Our findings reveal that while the membrane environment significantly enhances enzymatic activity, it also imposes diffusion limitations that reduce this activity over time. By adjusting the enzyme's membrane affinity to an intermediate level, we enable the enzyme to "hop" on the membrane surface, overcoming these diffusion constraints and sustaining high enzymatic activity with faster kinetics. These results provide critical insights into the role of the cell membrane in regulating biochemical reactions and can be broadly applied to other membrane-associated interactions.
Article
Macromolecular crowding, manifested by high concentrations of proteins and nucleic acids in living cells, significantly influences biological processes such as enzymatic reactions. Studying these reactions in vitro, using agents such as polyetthylene glycols (PEGs) and polyvinyl alcohols (PVAs) to mimic intracellular crowding conditions, is essential due to the notable differences from enzyme behaviors observed in diluted aqueous solutions. In this article, we studied Mycobacterium tuberculosis (Mtb) DNA gyrase under macromolecular crowding conditions by incorporating PEGs and PVAs into the DNA supercoiling reactions. We discovered that high concentrations of potassium glutamate, glycine betaine, PEGs, and PVA substantially stimulated the DNA supercoiling activity of Mtb DNA gyrase. Steady-state kinetic studies showed that glycine betaine and PEG400 significantly reduced the KM of Mtb DNA gyrase and simultaneously increased the Vmax or kcat of Mtb DNA gyrase for ATP and the plasmid DNA molecule. Molecular dynamics simulation studies demonstrated that PEG molecules kept the ATP lid of DNA gyrase subunit B in a closed or semiclosed conformation, which prevented ATP molecules from leaving the ATP-binding pocket of DNA gyrase subunit B. The stimulation of the DNA supercoiling activity of Mtb DNA gyrase by these molecular crowding agents likely results from a decrease in water activity and an increase in excluded volume.
Article
Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.
Preprint
Full-text available
Heat shock triggers formation of intracellular protein aggregates and induction of a molecular disaggregation system. Although this system (Hsp100/Hsp70/Hsp40 in most cellular life) can disperse aggregates of model misfolded proteins, its activity on these model substrates is puzzlingly weak, and its endogenous heat-induced substrates have largely eluded biochemical study. Recent work has revealed that several cases of apparent heat-induced aggregation instead reflect evolved, adaptive biomolecular condensation. In budding yeast Saccharomyces cerevisiae , the resulting condensates depend on molecular chaperones for timely dispersal in vivo, hinting that condensates may be major endogenous substrates of the disaggregation system. Here, we show that the yeast disaggregation system disperses heat-induced biomolecular condensates of poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used model substrate, firefly luciferase. Pab1 condensate dispersal also differs from aggregate dispersal in its molecular requirements, showing no dependence on small heat-shock proteins and a strict requirement for type II Hsp40. Unlike luciferase, Pab1 is not fully threaded (and thus not fully unfolded) by the disaggregase Hsp104 during dispersal, which we show can contribute to the extreme differences in dispersal efficiency. The Hsp70-related disaggregase Hsp110 shows some Pab1 dispersal activity, a potentially important link to animal systems, which lack cytosolic Hsp104. Finally, we show that the long-observed dependence of the disaggregation system on excess Hsp70 stems from the precise mechanism of the disaggregation system, which depends on the presence of multiple, closely spaced Hsp70s for Hsp104 recruitment and activation. Our results establish heat-induced biomolecular condensates of Pab1 as a direct endogenous substrate of the disaggregation machinery which differs markedly from previously studied foreign substrates, opening a crucial new window into the native mechanistic behavior and biological roles of this ancient system.
Article
Protein aggregate reactivation in metazoans is accomplished by the combined activity of Hsp70, Hsp40 and Hsp110 chaperones. Hsp110s support the refolding of aggregated polypeptides acting as specialized nucleotide exchange factors of Hsp70. We have studied how Apg2, one of the three human Hsp110s, regulates the activity of Hsc70 (HspA8), the constitutive Hsp70 in our cells. Apg2 shows a biphasic behavior: at low concentration, it stimulates the ATPase cycle of Hsc70, binding of the chaperone to protein aggregates and the refolding activity of the system, while it inhibits these three processes at high concentration. When the acidic subdomain of Apg2, a characteristic sequence present in the substrate binding domain of all Hsp110s, is deleted, the detrimental effects occur at lower concentration and are more pronounced, which concurs with an increase in the affinity of the Apg2 mutant for Hsc70. Our data support a mechanism in which Apg2 arrests the chaperone cycle through an interaction with Hsc70(ATP) that might lead to premature ATP dissociation before hydrolysis. In this line, the acidic subdomain might serve as a conformational switch to support dissociation of the Hsc70:Apg2 complex.
Article
ClpB and DnaKJE provide protection to Escherichia coli cells during extreme environmental stress. Together, this co-chaperone system can resolve protein aggregates, restoring misfolded proteins to their native form and function or solubilizing damaged proteins for removal by the cell’s proteolytic systems. DnaK is the component of the KJE system that directly interacts with ClpB. There are many hypotheses for how DnaK affects ClpB catalyzed disaggregation, each with some experimental support. Here, we build on our recent work characterizing the molecular mechanism of ClpB catalyzed polypeptide translocation by developing a stopped-flow FRET assay that allows us to detect ClpB’s movement on model polypeptide substrates in the absence or presence of DnaK. We find that DnaK induces ClpB to dissociate from the polypeptide substrate. We propose that DnaK acts as a peptide release factor, binding ClpB and causing the ClpB conformation to change to a low peptide-affinity state. Such a role for DnaK would allow ClpB to rebind to another portion of an aggregate and continue nonprocessive translocation to disrupt the aggregate.
Article
Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, cIpB, and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger) and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species in response to environmental stress conditions, such as carvacrol.
Article
Full-text available
Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, clpB, and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger) and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species in response to environmental stress conditions, such as carvacrol.
Article
Chaperone-mediated protein aggregate reactivation is a complex reaction that depends on the sequential association of molecular chaperones on their interaction with protein aggregates and on substrate refolding. This process could be modulated by the highly crowded intracellular environment, which is known to affect protein conformational change, enzymatic activity, and protein-protein interactions. Here, we report that molecular crowding shapes the chaperone activity of bacterial disaggregase composed of the DnaK system (DnaK, DnaJ, and GrpE) and the molecular motor ClpB. A combination of biophysical and biochemical methods shows that the excluded volume conditions modify the conformation of DnaK and DnaJ without affecting that of GrpE. These crowding-induced conformational rearrangements activate DnaK, enhance the affinity of DnaK for DnaJ, but not for GrpE, and increase the sensitivity of the chaperone activity to cochaperone concentration, explaining the tight control of their relative intracellular amounts. Furthermore, crowding-mediated disordering of the G/F domain of DnaJ facilitates the reversible formation of intermolecular DnaJ conglomerates. These assemblies could drive the formation of Hsp70 clusters at the aggregate surface with the consequent enhancement of the disaggregation efficiency through their coordinated action via entropic pulling. Finally, crowding helps ClpB to outcompete GrpE for DnaK binding, a key aspect of DnaK/ClpB cooperation given the low affinity of the disaggregase for DnaK. Excluded volume conditions promote the formation of the bichaperone complex that disentangles aggregates, enhancing the efficiency of the disaggregation reaction.
Article
The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologues of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed. Copyright © 2015. Published by Elsevier Inc.
Article
Full-text available
Abstract Analysis of the macromolecular crowding effects in polymer solutions show that the excluded volume effect is not the only factor affecting the behavior of biomolecules in a crowded environment. The observed inconsistencies are commonly explained by the so-called "soft" interactions, such as electrostatic, hydrophobic, and van der Waals interactions, between the crowding agent and the protein, in addition to the hard non-specific steric interactions. We suggest that the changes in the solvent properties of aqueous media induced by the crowding agents may be the root of these "soft" interactions. To check this hypothesis, the solvatochromic comparison method was used to determine the solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity of aqueous solutions of different polymers (Dextran, poly(ethylene glycol), Ficoll, Ucon, and polyvinylpyrrolidone) with the polymer concentration up to 40% typically used as crowding agents. Polymer-induced changes in these features were found to be polymer type and concentration specific, and, in case of polyethylene glycol, molecular mass specific. Similarly sized polymers PEG and Ucon producing different changes in the solvent properties of water in their solutions induced morphologically different α-synuclein aggregates. It is shown that the crowding effects of some polymers on protein refolding and stability reported in the literature can be quantitatively described in terms of the established solvent features of the media in these polymers solutions. These results indicate that the crowding agents do induce changes in solvent properties of aqueous media in crowded environment. Therefore, these changes should be taken into account for crowding effect analysis.
Article
Hexameric AAA+ chaperone ClpB reactivates protein aggregates in collaboration with the DnaK system. An intriguing aspect of ClpB function is that the active hexamer is unstable and therefore questions how this chaperone uses multiple rounds of ATP hydrolysis to translocate substrates through its central channel. Here we report the use of biochemical and fluorescence tools to explore ClpB dynamics under different experimental conditions. The analysis of the chaperone activity and the kinetics of subunit exchange between protein hexamers labelled at different protein domains indicates, in contrast to the current view, that i) ATP favors assembly and ADP dissociation of the hexameric assembly; ii) subunit exchange kinetics is at least one order of magnitude slower that the ATP hydrolysis rate; iii) ClpB dynamics and activity are related proccesses; and iv) DnaK and substrate proteins regulate the ATPase activity and dynamics of ClpB. These data suggest that ClpB hexamers remain associated during several ATP hydrolysis events required to partially or completely translocate substrates through the protein central channel, and that ClpB dynamics is tuned by DnaK and substrate proteins.
Article
Full-text available
Significance The cell cytoplasm contains a complex array of macromolecules at concentrations exceeding 300 g/L. The natural, most relevant state of a biological macromolecule is thus a “crowded” one. Moving quantitative protein chemistry from dilute solution to the inside of living cells represents a major frontier that will affect not only our fundamental biological knowledge, but also efforts to produce and stabilize protein-based pharmaceuticals. We show that the bacterial cytosol actually destabilizes our test protein, contradicting most theoretical predictions, but in agreement with a novel Escherichia coli model.
Article
Full-text available
Expected and observed effects of volume exclusion on the free en- ergy of rigid and flexible macromolecules in crowded and confined systems, and consequent effects of crowding and confinement on macromolecular reaction rates and equilibria are summarized. Find- ings from relevant theoretical/simulation and experimental literature published from 2004 onward are reviewed. Additional complexity arising from the heterogeneity of local environments in biological media, and the presence of nonspecific interactions between macro- molecules over and above steric repulsion, are discussed. Theoretical and experimental approaches to the characterization of crowding- and confinement-induced effects in systems approaching the com- plexity of living organisms are suggested.
Article
Full-text available
The term "macromolecular crowding" denotes the combined effects of high volume fractions of nominally unrelated macromolecules upon the equilibrium and transport properties of all macrosolutes, dilute as well as concentrated, in the crowded medium. We present a formal partitioning of the total crowding effect into contributions from steric exclusion (excluded volume) and weak, nonspecific attractive interactions between a concentrated "crowding agent" and reactant and product species present at trace concentration. A numerical example of the combined effect of both steric and chemical interactions between crowder and tracer upon the reversible dimerization of tracer is presented, based upon reasonable estimates of the magnitude of both repulsive and attractive interactions between tracer and crowder species. © 2012Wiley Periodicals, Inc. Biopolymers 99: 239-244, 2013.
Article
Full-text available
ClpB is a ring-forming, ATP-dependent protein disaggregase that cooperates with the cognate Hsp70 system to recover functional protein from aggregates. How ClpB harnesses the energy of ATP binding and hydrolysis to facilitate the mechanical unfolding of previously aggregated, stress-damaged proteins remains unclear. Here, we present crystal structures of the ClpB D2 domain in the nucleotide-bound and -free states, and the fitted cryoEM structure of the D2 hexamer ring, which provide a structural understanding of the ATP power stroke that drives protein translocation through the ClpB hexamer. We demonstrate that the conformation of the substrate-translocating pore loop is coupled to the nucleotide state of the cis subunit, which is transmitted to the neighboring subunit via a conserved but structurally distinct intersubunit-signaling pathway common to diverse AAA+ machines. Furthermore, we found that an engineered, disulfide cross-linked ClpB hexamer is fully functional biochemically, suggesting that ClpB deoligomerization is not required for protein disaggregation.
Article
Full-text available
The general theory of sedimentation equilibrium (SE), applicable to mixtures of interacting sedimentable solutes at arbitrary concentration, is summarized. Practical techniques for the acquisition of SE data suitable for analysis are described. Experimental measurements and analyses of SE in concentrated protein solutions are reviewed. The method of non-ideal tracer sedimentation equilibrium (NITSE) is described. Experimental studies using NITSE to detect and quantitatively characterize intermolecular interactions in mixtures of dilute tracer species and concentrated proteins or polymers are reviewed.
Article
Full-text available
We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function, and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal), and Sph (spherical compact). With an adjustment for viscosity, crowded wild-type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a previously undescribed solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: Rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates. We also examine T-jump unfolding of PGK as a function of crowding experimentally. We uncover a nonmonotonic folding relaxation time vs. Ficoll concentration. Theory and modeling explain why an optimum concentration exists for fastest folding. Below the optimum, folding slows down because the unfolded state is stabilized relative to the transition state. Above the optimum, folding slows down because of increased viscosity.
Article
Full-text available
Quantitative analysis of the composition dependence of the concentration gradient of each species of macromolecule within a solution mixture at sedimentation equilibrium permits the quantitative characterization of self- and heterointeractions between sedimenting solutes. Sedimentation equilibrium experiments were conducted on solutions containing a trace concentration of FITC-labeled BSA in varying concentrations of Ficoll 70 and on solutions containing a trace concentration of FITC-labeled Ficoll 70 in varying concentrations of BSA. The equilibrium gradient of each solute component in each mixture was measured independently. Analysis of the resulting gradients resulted in evaluation of the dependence of the activity coefficient of Ficoll upon the concentrations of Ficoll and BSA at concentrations of up to 100 g/L and the dependence of the activity coefficient of BSA upon the concentrations of Ficoll and BSA at concentrations of up to 100 g/L. The activity coefficients of both species increase significantly with increasing Ficoll and BSA concentration and do not vary with temperature, to within the precision of measurement, over the temperature range of 5-37 degrees C, indicating that the dominant interaction between Ficoll molecules and between BSA and Ficoll molecules is repulsive and probably due to steric volume exclusion. The measured dependences may be accounted for quantitatively by a simple model in which BSA and Ficoll 70 are represented by equivalent rigid particles.
Article
Full-text available
ClpB and Hsp104 are members of the AAA+ (ATPases associated with various cellular activities) family of proteins and are molecular machines involved in thermotolerance. They are hexameric proteins containing 12 ATP binding sites with two sites per protomer. ClpB and Hsp104 possess some innate protein remodeling activities; however, they require the collaboration of the DnaK/Hsp70 chaperone system to disaggregate and reactivate insoluble aggregated proteins. We investigated the mechanism by which ClpB couples ATP utilization to protein remodeling with and without the DnaK system. When wild-type ClpB, which is unable to remodel proteins alone in the presence of ATP, was mixed with a ClpB mutant that is unable to hydrolyze ATP, the heterohexamers surprisingly gained protein remodeling activity. Optimal protein remodeling by the heterohexamers in the absence of the DnaK system required approximately three active and three inactive protomers. In addition, the location of the active and inactive ATP binding sites in the hexamer was not important. The results suggest that in the absence of the DnaK system, ClpB acts by a probabilistic mechanism. However, when we measured protein disaggregation by ClpB heterohexamers in conjunction with the DnaK system, incorporation of a single inactive ClpB subunit blocked activity, supporting a sequential mechanism of ATP utilization. Taken together, the results suggest that the mechanism of ATP utilization by ClpB is adaptable and can vary depending on the specific substrate and the presence of the DnaK system.
Article
Full-text available
The protein-remodeling machine Hsp104 dissolves amorphous aggregates as well as ordered amyloid assemblies such as yeast prions. Force generation originates from a tandem AAA+ (ATPases associated with various cellular activities) cassette, but the mechanism and allostery of this action remain to be established. Our cryoelectron microscopy maps of Hsp104 hexamers reveal substantial domain movements upon ATP binding and hydrolysis in the first nucleotide-binding domain (NBD1). Fitting atomic models of Hsp104 domains to the EM density maps plus supporting biochemical measurements show how the domain movements displace sites bearing the substrate-binding tyrosine loops. This provides the structural basis for N- to C-terminal substrate threading through the central cavity, enabling a clockwise handover of substrate in the NBD1 ring and coordinated substrate binding between NBD1 and NBD2. Asymmetric reconstructions of Hsp104 in the presence of ATPgammaS or ATP support sequential rather than concerted ATP hydrolysis in the NBD1 ring.
Article
Full-text available
The clpB gene in Escherichia coli encodes a heat-shock protein that is a close homolog of the clpA gene product. The latter is the ATPase subunit of the multimeric ATP-dependent protease Ti (Clp) in E. coli, which also contains the 21-kDa proteolytic subunit (ClpP). The clpB gene product has been purified to near homogeneity by DEAE-Sepharose and heparin-agarose column chromatographies. The purified ClpB consists of a major 93-kDa protein and a minor 79-kDa polypeptide as analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Upon gel filtration on a Superose-6 column, it behaves as a 350-kDa protein. Thus, ClpB appears to be a tetrameric complex of the 93-kDa subunit. The purified ClpB has ATPase activity which is stimulated 5-10-fold by casein. It is also activated by insulin, but not by other proteins, including globin and denatured bovine serum albumin. ClpB cleaves adenosine 5'-(alpha,beta-methylene)-triphosphate as rapidly as ATP, but not adenosine 5'-(beta,gamma-methylene)-triphosphate. GTP, CTP, and UTP are hydrolyzed 15-25% as well as ATP. ADP strongly inhibits ATP hydrolysis with a Ki of 34 microM. ClpB has a Km for ATP of 1.1 mM, and casein increases its Vmax for ATP without affecting its Km. A Mg2+ concentration of 3 mM is necessary for half-maximal ATP hydrolysis. Mn2+ supports ATPase activity as well as Mg2+, and Ca2+ has about 20% their activity. Anti-ClpB antiserum does not cross-react with ClpA nor does anti-ClpA antiserum react with ClpB. In addition, ClpB cannot replace ClpA in supporting the casein-degrading activity of ClpP. Thus, ClpB is distinct from ClpA in its structural and biochemical properties despite the similarities in their sequences.
Article
Full-text available
The Escherichia coli dnaJ gene was originally discovered because mutations in it blocked bacteriophage lambda DNA replication. Some of these mutations were subsequently shown to interfere with bacterial growth at high temperature, suggesting that dnaJ is an essential protein for the host as well. The first step in purifying the dnaJ protein was to overproduce it at least 50-fold by subcloning its gene into the pMOB45 runaway plasmid. The second step was the development of an in vitro system to assay for its activity. A Fraction II extract from dnaJ259 mutant bacteria was shown to be unable to replicate lambda dv DNA unless supplemented with an exogenous source of wild-type dnaJ protein. Using this complementation assay we purified the dnaJ protein to homogeneity from the membrane fraction of an overproducing strain of bacteria. The purified dnaJ protein was shown to be a basic (pI 8.5), yet hydrophobic, protein of Mr 37,000 and 76,000 under denaturing and native conditions, respectively, and to exhibit affinity for both single- and double-stranded DNA. Using a partially purified lambda dv replication system dependent on the presence of the lambda O and P initiator proteins and at least the host dnaB, dnaG, dnaJ, dnaK, single-stranded DNA-binding protein, gyrase, RNA polymerase holoenzyme, and DNA polymerase III holoenzyme, we have shown that the dnaJ protein is required at a very early step in the DNA replication process.
Article
Full-text available
Functional chaperone cooperation between Hsp70 (DnaK) and Hsp104 (ClpB) was demonstrated in vitro. In a eubacterium Thermus thermophilus, DnaK and DnaJ exist as a stable trigonal ring complex (TDnaK.J complex) and the dnaK gene cluster contains a clpB gene. When substrate proteins were heated at high temperature, none of the chaperones protected them from heat inactivation, but the TDnaK.J complex could suppress the aggregation of proteins in an ATP- and TGrpE-dependent manner. Subsequent incubation of these heated preparations at moderate temperature after addition of TClpB resulted in the efficient reactivation of the proteins. Reactivation was also observed, even though the yield was low, if the substrate protein alone was heated and incubated at moderate temperature with the TDnaK.J complex, TGrpE, TClpB, and ATP. Thus, all these components were necessary for the reactivation. Further, we found that TGroEL/ES could not substitute TClpB.
Article
Full-text available
Classic in vitro studies show that the Hsp70 chaperone system from Escherichia coli(DnaK-DnaJ-GrpE, the DnaK system) can bind to proteins, prevent aggregation, and promote the correct refolding of chaperone-bound polypeptides into native proteins. However, little is known about how the DnaK system handles proteins that have already aggregated. In this study, glucose-6-phosphate dehydrogenase was used as a model system to generate stable populations of protein aggregates comprising controlled ranges of particle sizes. The DnaK system recognized the glucose-6-phosphate dehydrogenase aggregates as authentic substrates and specifically solubilized and refolded the protein into a native enzyme. The efficiency of disaggregation by the DnaK system was high with small aggregates, but the efficiency decreased as the size of the aggregates increased. High folding efficiency was restored by either excess DnaK or substoichiometric amounts of the chaperone ClpB. We suggest a mechanism whereby the DnaK system can readily solubilize small aggregates and refold them into active proteins. With large aggregates, however, the binding sites for the DnaK system had to be dynamically exposed with excess DnaK or the catalytic action of ClpB and ATP. Disaggregation by the DnaK machinery in the cell can solubilize early aggregates that formed accidentally during chaperone-assisted protein folding or that escaped the protection of “holding” chaperones during stress.
Article
Full-text available
The AAA+ protein ClpB mediates the solubilization of protein aggregates in cooperation with the DnaK chaperone system (KJE). The order of action of ClpB and KJE on aggregated proteins is unknown. We describe a ClpB variant with mutational alterations in the Walker B motif of both AAA domains (E279A/E678A), which binds but does not hydrolyze ATP. This variant associates in vitro and in vivo in a stable manner with protein substrates, demonstrating direct interaction of ClpB with protein aggregates for the first time. Substrate interaction is strictly dependent on ATP binding to both AAA domains of ClpB. The unique substrate binding properties of the double Walker B variant allowed to dissect the order of ClpB and DnaK action during disaggregation reactions. ClpB-E279A/E678A outcompetes the DnaK system for binding to the model substrate TrfA and inhibits the dissociation of small protein aggregates by DnaK only, indicating that ClpB acts prior to DnaK on protein substrates.
Chapter
The equation describing the radial distribution of a single solute species at sedimentation equilibrium in an ideal solution (Cantor & Schimmel, 1980) may be written in integrated form as w(r)=w(rref)×exp [Mω22RT(r2rref2)]  w\left( r \right) = w\left( {{{r}_{{ref}}}} \right) \times \exp {\text{ }}\left[ {\frac{{M*{{\omega }^{{\text{2}}}}}}{{2RT}}\left( {{{r}^{2}} - {{r}_{{ref}}}^{2}} \right)} \right]{\text{ }} (1) where w(r) denotes the weight/volume concentration of the solute at radial position r, ω the angular velocity of the rotor, R the molar gas constant, T the absolute temperature, and rref an arbitrarily selected reference position. M* denotes the buoyant molecular weight of solute, defined as MM(1vˉρ) M* \equiv M\left( {1 - \bar{v}\rho } \right) where M and v̄ respectively denote the molecular weight and partial specific volume of solute, and p denotes the density of solvent. The results of a sedimentation equilibrium experiment are ordinarily obtained as an experimental dependence of w (or, more properly, some measurable quantity that is proportional to w) upon r. Such data are customarily analyzed by fitting equation (1) to the data by the method of nonlinear least-squares (Johnson & Faunt, 1992) in order to obtain best-fit values of M* and w(rref). Note that only the best-fit value of M* is sought by the investigator; the presence of a second undetermined variable (the reference concentration) may, under certain circumstances, significantly reduce the precision with which the value of M* can be determined by least-squares fitting of the data. It has been pointed out on several occasions (Nichol & Ogston, 1965; Lewis, 1991; Hsu & Minton, 1991) that if w(r) is known over the entire length of the solution column, then the condition of conservation of mass may be utilized, together with the known loading concentration of solute, to eliminate the reference concentration w(rref) as an independently variable parameter. However, one may not always be able to obtain reliable data for w(r) over the entire length of the solution column, and in some experiments (particularly those involving unstable macromolecules) conservation of mass may not obtain over the duration of the experiment.
Article
Proteins fold and function inside cells that are crowded with macromolecules. Here, we address the role of the resulting excluded volume effects by in vitro spectroscopic studies of Pseudomonas aeruginosa apoazurin stability (thermal and chemical perturbations) and folding kinetics (chemical perturbation) as a function of increasing levels of crowding agents dextran (sizes 20, 40, and 70 kDa) and Ficoll 70. We find that excluded volume theory derived by Minton quantitatively captures the experimental effects when crowding agents are modeled as arrays of rods. This finding demonstrates that synthetic crowding agents are useful for studies of excluded volume effects. Moreover, thermal and chemical perturbations result in free energy effects by the presence of crowding agents that are identical, which shows that the unfolded state is energetically the same regardless of method of unfolding. This also underscores the two-state approximation for apoazurin's unfolding reaction and suggests that thermal and chemical unfolding experiments can be used in an interchangeable way. Finally, we observe increased folding speed and invariant unfolding speed for apoazurin in the presence of macromolecular crowding agents, a result that points to unfolded-state perturbations. Although the absolute magnitude of excluded volume effects on apoazurin is only on the order of 1-3 kJ/mol, differences of this scale may be biologically significant.
Article
The chaperone functions of heat shock protein (Hsp)70 involve an allosteric control mechanism between the nucleotide-binding domain (NBD) and polypeptide substrate-binding domain (SBD): ATP binding and hydrolysis regulates the affinity for polypeptides, and polypeptide binding accelerates ATP hydrolysis. These data suggest that Hsp70s exist in at least two conformational states. Although structural information on the conformation with high affinity for polypeptides has been available for several years, the conformation with an open polypeptide binding cleft was elucidated only recently. In addition, other biophysical studies have revealed a more dynamic picture of Hsp70s, shedding light on the molecular mechanism by which Hsp70s assist protein folding. In this review recent insights into the structure and mechanism of Hsp70s are discussed.
Article
Inhibition of ClpB, the bacterial representative of the heat-shock protein 100 family that is associated with virulence of several pathogens, could be an effective strategy to develop new antimicrobial agents. Using a high-throughput screening method, we have identified several compounds that bind to different conformations of ClpB, and analyzed their effect on the ATPase and chaperone activities of the protein. Two of them inhibit these functional properties as well as the growth of Gram negative bacteria (E. coli), displaying antimicrobial activity under thermal or oxidative stress conditions. This activity is abolished upon deletion of ClpB, indicating that the action of these compounds is related to the stress cellular response in which ClpB is involved. Moreover, their moderate toxicity in human cell lines suggests that they might provide promising leads against bacterial growth.
Article
Functional chaperone cooperation between Hsp70 (DnaK) and Hsp104 (ClpB) was demonstrated in vitro. In a eubacterium Thermus thermophilus, DnaK and DnaJ exist as a stable trigonal ring complex (TDnaK\cdot J complex) and the dnaK gene cluster contains a clpB gene. When substrate proteins were heated at high temperature, none of the chaperones protected them from heat inactivation, but the TDnaK\cdot J complex could suppress the aggregation of proteins in an ATP- and TGrpE-dependent manner. Subsequent incubation of these heated preparations at moderate temperature after addition of TClpB resulted in the efficient reactivation of the proteins. Reactivation was also observed, even though the yield was low, if the substrate protein alone was heated and incubated at moderate temperature with the TDnaK\cdot J complex, TGrpE, TClpB, and ATP. Thus, all these components were necessary for the reactivation. Further, we found that TGroEL/ES could not substitute TClpB.
Article
The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
Article
Polymerization of the intact capsid protein (CA) of HIV-1 into mature capsidlike particles at physiological ionic strength in vitro requires macromolecularly crowded conditions that approach those inside the virion, where the mature capsid is assembled in vivo. The capsid is organized as a hexameric lattice. CA subunits in each hexamer are connected through interfaces that involve the CA N-terminal domain (NTD); pairs of CA subunits belonging to different hexamers are connected through a different interface that involves the C-terminal domain (CTD). At physiological ionic strength in noncrowded conditions, CA subunits homodimerize through this CTD-CTD interface, but do not hexamerize through the other interfaces (those involving the NTD). Here we have investigated whether macromolecular crowding conditions are able to promote hexamerization of the isolated NTD and/or full-length CA (with an inactive CTD-CTD interface to prevent polymerization). The oligomerization state of the proteins was determined using analytical ultracentrifugation in the absence or presence of high concentrations of an inert macromolecular crowding agent. Under the same conditions that promoted efficient assembly of intact CA dimers, neither NTD nor CA with an inactive CTD-CTD interface showed any tendency to form hexamers or any other oligomer. This inability to hexamerize was observed even in macromolecularly crowded conditions. The results indicate that a functional CTD-CTD interface is strictly required for hexamerization of HIV-1 CA through the other interfaces. Together with previous results, these observations suggest that establishment of NTD-CTD interactions involved in CA hexamerization during mature HIV-1 capsid assembly requires a homodimerization-dependent conformational switching of CTD.
Article
HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl–transverse relaxation–optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.
Article
Central to the chaperone function of Hsp70s is the transition between open and closed conformations of their polypeptide substrate binding domain (SBD), which is regulated through an allosteric mechanism via ATP binding and hydrolysis in their nucleotide binding domain (NBD). Although the structure of the closed conformation of Hsp70s is well studied, the open conformation has remained elusive. Here, we report on the 2.4 Å crystal structure of the ATP-bound open conformation of the Escherichia coli Hsp70 homolog DnaK. In the open DnaK structure, the β sheet and α-helical lid subdomains of the SBD are detached from one another and docked to different faces of the NBD. The contacts between the β sheet subdomain and the NBD reveal the mechanism of allosteric regulation. In addition, we demonstrate that docking of the β sheet and α-helical lid subdomains to the NBD is a sequential process influenced by peptide and protein substrates.
Article
The effects of macromolecular nonideality and crowding on chemical equilibria, association reactions, and enzyme kinetics. Keywords (Audience): Second-Year Undergraduate
Article
We present here a fluorescence anisotropy method for the quantification of the polymerization of FtsZ, an essential protein for cytokinesis in prokaryotes whose GTP-dependent assembly initiates the formation of the divisome complex. Using Alexa 488 labeled wild-type FtsZ as a tracer, the assay allows determination of the critical concentration of FtsZ polymerization from the dependence of the measured steady-state fluorescence anisotropy on the concentration of FtsZ. The incorporation of the labeled protein into FtsZ polymers and the lack of spectral changes on assembly were independently confirmed by time-resolved fluorescence and fluorescence correlation spectroscopy. Critical concentration values determined by this new assay are compatible with those reported previously under the same conditions by other well-established methods. As a proof of principle, data on the sensitivity of the assay to changes in FtsZ assembly in response to Mg(2+) concentration or to the presence of high concentrations of Ficoll 70 as crowding agent are shown. The proposed method is sensitive, low sample consuming, rapid, and reliable, and it can be extended to other cooperatively polymerizing systems. In addition, it can help to discover new antimicrobials that may interfere with FtsZ polymerization because it can be easily adapted to systematic screening assays.
Article
Experiments on monomeric proteins have shown that macromolecular crowding can stabilize toward heat perturbation and also modulate native-state structure. To assess the effects of macromolecular crowding on unfolding of an oligomeric protein, we here tested the effects of the synthetic crowding agent Ficoll 70 on human cpn10 (GroES in E. coli), a heptameric protein consisting of seven identical β-barrel subunits assembling into a ring. Using far-UV circular dichroism (CD), tyrosine fluorescence, nuclear magnetic resonance (NMR), and cross-linking experiments, we investigated thermal and chemical stability, as well as the heptamer-monomer dissociation constant, without and with crowding agent. We find that crowding shifts the heptamer-monomer equilibrium constant in the direction of the heptamer. The cpn10 heptamer is both thermally and thermodynamically stabilized in 300 mg/mL Ficoll 70 as compared to regular buffer conditions. Kinetic unfolding experiments show that the increased stability in crowded conditions, in part, is explained by slower unfolding rates. A thermodynamic cycle reveals that in presence of 300 mg/mL Ficoll the thermodynamic stability of each cpn10 monomer increases by over 30%, whereas the interfaces are stabilized by less than 10%. We also introduce a new approach to analyze the spectroscopic data that makes use of multiple wavelengths: this provides robust error estimates of thermodynamic parameters.
Article
ClpB is a hexameric molecular chaperone that, together with the DnaK system, has the ability to disaggregate stress-denatured proteins. The hexamer is a highly dynamic complex, able to reshuffle subunits. To further characterize the biological implications of the ClpB oligomerization state, the association equilibrium of the wild-type (wt) protein and of two deletion mutants, which lack part or the whole M domain, was quantitatively analyzed under different experimental conditions, using several biophysical [analytical ultracentrifugation, composition-gradient (CG) static light scattering, and circular dichroism] and biochemical (ATPase and chaperone activity) methods. We have found that (i) ClpB self-associates from monomers to form hexamers and higher-order oligomers that have been tentatively assigned to dodecamers, (ii) oligomer dissociation is not accompanied by modifications of the protein secondary structure, (iii) the M domain is engaged in intersubunit interactions that stabilize the protein hexamer, and (iv) the nucleotide-induced rearrangement of ClpB affects the protein oligomeric core, in addition to the proposed radial extension of the M domain. The difference in the stability of the ATP- and ADP-bound states [ΔΔG(ATP-ADP) = -10 kJ/mol] might explain how nucleotide exchange promotes the conformational change of the protein particle that drives its functional cycle.
Article
We describe a series of stringent relationships between abundance, solubility and chaperone usage of proteins. Based on these relationships, we show that the need of Escherichia coli proteins for the chaperonin GroEL can be predicted with 86% accuracy. Furthermore, from the observation that the abundance and solubility of proteins depend on the physicochemical properties of their amino acid sequences, we demonstrate that the requirement for GroEL can also be predicted directly from the sequences with 90% accuracy. These results indicate that the physicochemical properties of the amino acid sequences represent an essential component of the cellular quality control system that ensures the maintenance of protein homeostasis in living systems.
Article
Hsp104 is a ring-forming AAA+ machine that recognizes both aggregated proteins and prion-fibrils as substrates and, together with the Hsp70 system, remodels substrates in an ATP-dependent manner. Whereas the ability to disaggregate proteins is dependent on the Hsp104 M-domain, the location of the M-domain is controversial and its exact function remains unknown. Here we present cryoEM structures of two Hsp104 variants in both crosslinked and noncrosslinked form, in addition to the structure of a functional Hsp104 chimera harboring T4 lysozyme within the M-domain helix L2. Unexpectedly, we found that our Hsp104 chimera has gained function and can solubilize heat-aggregated beta-galactosidase (beta-gal) in the absence of the Hsp70 system. Our fitted structures confirm that the subunit arrangement of Hsp104 is similar to other AAA+ machines, and place the M-domains on the Hsp104 exterior, where they can potentially interact with large, aggregated proteins.
Article
ClpB is a member of the AAA+ superfamily that forms a ring-shaped homohexamer. Each protomer contains two nucleotide binding domains arranged in two rings that hydrolyze ATP. We extend here previous studies on ClpB nucleotide utilization requirements by using an experimental approach that maximizes random incorporation of different subunits into the protein hexamer. Incorporation of one subunit unable to bind or hydrolyze ATP knocks down the chaperone activity, while the wt hexamer can accommodate two mutant subunits that hydrolyze ATP in only one protein ring. Four subunits seem to build the functional cooperative unit, provided that one of the protein rings contains active nucleotide binding sites.
Article
Hsp70 chaperones are molecular switches that use the free energy of ATP binding and hydrolysis to modulate their affinity for protein substrates and, most likely, to remodel non-native interactions allowing proper substrate folding. By means of isothermal titration calorimetry, we have measured the thermodynamics of ATP and ADP binding to (i) wild-type DnaK, the main bacterial Hsp70; (ii) two single-point mutants, DnaK(T199A), which lacks ATPase activity but maintains conformational changes similar to those observed in the wild-type protein, and DnaK(R151A), defective in interdomain communication; and iii) two deletion mutants, the isolated nucleotide binding domain (K-NBD) and a DeltaLid construct [DnaK(1-507)]. At 25 degrees C, ATP binding to DnaK results in a fast endothermic and a slow exothermic process due to ATP hydrolysis. We demonstrate that the endothermic event is due to the allosteric coupling between ATP binding to the nucleotide binding domain and the conformational rearrangement of the substrate binding domain. The interpretation of our data is compatible with domain docking upon ATP binding and shows that this conformational change carries an energy penalty of ca. 1 kcal/mol. The conformational energy stored in the ATP-bound DnaK state, together with the free energy of ATP hydrolysis, can be used in remodeling bound substrates.
Article
Enzymes catalyze biochemical reactions in highly crowded environments where the amount of macromolecules may occupy up to 40% of the volume. Here we report how cell-like conditions tune catalytic parameters for the monomeric multi-copper oxidase, Saccharomyces cerevisiae Fet3p, in vitro. At low amounts of crowding agent, we detect increases in both of K(M) (weaker substrate binding) and k(cat) (improved catalytic efficiency), whereas at higher crowding levels, both parameters were reduced. Presence of crowding agents does not affect Fet3p structural content but increases thermal resistance. The observations are compatible with ordering of a non-optimal substrate-binding site and restricted internal dynamics as a result of excluded volume effects making the protein less structurally 'strained'.
Article
Clp proteases are the most widespread energy-dependent proteases in bacteria. Their two-component architecture of protease core and ATPase rings results in an inventory of several Clp protease complexes that often coexist. Here, we present insights into Clp protease function, from their assembly to substrate recruitment and processing, and how this is coupled to the expense of energy.
Article
The Escherichia coli heat shock protein ClpB, a member of the Hsp100 family, plays a crucial role in cellular thermotolerance. In co-operation with the Hsp70 chaperone system, it is able to solubilize proteins aggregated by heat shock conditions and refold them into the native state in an ATP-dependent way. It was established that the mechanism of ClpB action depends on the formation of a ring-shaped hexameric structure and the translocation of a protein substrate through an axial channel. The structural aspects of this process are not fully known. By means of homology modeling and protein–protein docking, we obtained a model of the hexameric arrangement of the full-length ClpB protein complexed with ATP. A molecular dynamics simulation of this model was performed to assess its flexibility and conformational stability. The high mobility of the “linker” M-domain, essential for the renaturing activity of ClpB, was demonstrated, and the size and shape of central channel were analyzed. In this model, we propose the coordinates for a loop between b4 and B6 structural elements, not defined in previous structural research, which faces the inside of the channel and may therefore play a role in substrate translocation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 47–60, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
Article
Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (K(d)=5-10 microM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.
Article
The very high concentration of macromolecules within cells can potentially have an overwhelming effect on the thermodynamic activity of cellular components because of excluded volume effects. To estimate the magnitudes of such effects, we have made an experimental study of the cytoplasm of Escherichia coli. Parameters from cells and cell extracts are used to calculate approximate activity coefficients for cytoplasmic conditions. These calculations require a representation of the sizes, concentrations and effective specific volumes of the macromolecules in the extracts. Macromolecule size representations are obtained either by applying a two-phase distribution assay to define a related homogeneous solution or by using the molecular mass distribution of macromolecules from gel filtration. Macromolecule concentrations in cytoplasm are obtained from analyses of extracts by applying a correction for the dilution that occurs during extraction. That factor is determined from experiments based upon the known impermeability of the cytoplasmic volume to sucrose in intact E. coli. Macromolecule concentrations in the cytoplasm of E. coli in either exponential or stationary growth phase are estimated to be ≈0.3 to 0.4 g/ml. Macromolecule specific volumes are inferred from the composition of close-packed precipitates induced by polyethylene glycol.
Article
Methods for characterization and evaluation of uncertainties in the parameter values for binding experiments are presented. A sum-of-squares profile is defined and illustrated. Sum-of-squares profiles give a qualitative description of both the uncertainties and correlation of parameters. The Monte Carlo method is developed as an accurate means of evaluating uncertainties in parameter values for nonlinear models. Examples are given for both actual and synthetic data.
Article
The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli. Recent studies in vitro demonstrated that GroES binding to GroEL causes the displacement of unfolded polypeptide into the central volume of the GroEL cavity for folding in a sequestrated environment. Resulting native protein leaves GroEL upon GroES release, whereas incompletely folded polypeptide can be recaptured for structural rearrangement followed by another folding trial. Additionally, each cycle of GroES binding and dissociation is associated with the release of nonnative polypeptide into the bulk solution. Here we show that this loss of substrate from GroEL is prevented when the folding reaction is carried out in the presence of macromolecular crowding agents, such as Ficoll and dextran, or in a dense cytosolic solution. Thus, the release of nonnative polypeptide is not an essential feature of the productive chaperonin mechanism. Our results argue that conditions of excluded volume, thought to prevail in the bacterial cytosol, increase the capacity of the chaperonin to retain nonnative polypeptide throughout successive reaction cycles. We propose that the leakiness of the chaperonin system under physiological conditions is adjusted such that E. coli proteins are likely to complete folding without partitioning between different GroEL complexes. Polypeptides that are unable to fold on GroEL eventually will be transferred to other chaperones or the degradation machinery.
Article
The involvement of two types of molecular chaperone in folding newly synthesized proteins can be rationalized in terms of the crowded nature of the intracellular environment. Recent work sheds light on how these chaperones recognise their substrates and protect them from the problems of macromolecular crowding.
Article
The ability of newly synthesised protein chains to fold into their functional conformations has evolved within the complex intracellular environment. Until recently, however, this ability has been studied largely as the refolding of denatured mature proteins in dilute simple solutions. Recent work aimed at understanding how proteins fold in vivo has allowed some general statements to be postulated.
Article
The technique of tracer sedimentation equilibrium [Rivas, G., et al. (1994) Biochemistry, 2341-2348 (1); Rivas, G., et al. (1996) J. Mol. Recognit. 9, 31-38 (2)] is utilized, together with an extension of the theory of sedimentation equilibrium of highly nonideal solutions [Chatelier and Minton, (1987) Biopolymers 26, 1097-1113 (3)], to characterize the thermodynamic activity and/or the state of association of a dilute, labeled macromolecular solute in the presence of an arbitary concentration of a second, unlabeled macromolecular solute. Experiments are performed on solutions of labeled fibrinogen (0.25-1 g/L) in bovine serum albumin (0-100 g/L) in the presence and absence of divalent cations (Ca(2+), Mg(2+)), and on solutions of labeled tubulin (0.2-0.6 g/L) in dextran (0-100 g/L). It is found that in the absence of the divalent cations, the large dependence of the thermodynamic activity of fibrinogen on BSA concentration is well accounted for by a simple model for steric repulsion. In the presence of the cations and sufficiently large concentrations of BSA (>30 g/L), fibrinogen appears to self-associate to a weight-average molar mass approximately twice that of monomeric fibrinogen. Tubulin appears to self-associate to an extent that increases monotonically with increasing dextran concentration, reaching a weight-average molar mass almost 3 times that of the alphabeta dimer in the presence of 100 g/L dextran. Possible biological ramifications are discussed.
Article
The cytosol of the cell contains high concentrations of small and large macromolecules, but experimental data are often obtained in dilute solutions that do not reflect in vivo conditions. We have studied the crowding effect that large macromolecules have on EcoRV cleavage by adding high-molecular-weight Ficoll 70 to reaction solutions. Results indicate that Ficoll has surprisingly little effect on overall EcoRV reaction velocity because of offsetting increases in V(max) and K(m), and stronger nonspecific binding. The changes in measured parameters can largely be attributed to the excluded volume effects on reactant activities and the slowing of protein diffusion. Covolume reduction upon binding appears to reinforce nonspecific binding strength, and k(cat) appears to be slowed by stronger nonspecific binding, which slows product release. The data also suggest that effective Ficoll particle volume decreases as its concentration increases above a few weight percent, which may be due to Ficoll interpenetration or compression.
Article
We have studied the effects of polysaccharide and protein crowding agents on the refolding of oxidized and reduced hen lysozyme in order to test the prediction that association constants of interacting macromolecules in living cells are greatly increased by macromolecular crowding relative to their values in dilute solutions. We demonstrate that whereas refolding of oxidized lysozyme is hardly affected by crowding, correct refolding of the reduced protein is essentially abolished due to aggregation at high concentrations of crowding agents. The results show that the protein folding catalyst protein disulfide isomerase is particularly effective in preventing lysozyme aggregation under crowded conditions, suggesting that crowding enhances its chaperone activity. Our findings suggest that the effects of macromolecular crowding could have major implications for our understanding of how protein folding occurs inside cells.
Article
Recent studies have led to increased appreciation of the influence of excluded volume in solutions of high total macromolecular content ('macromolecular crowding') upon the various classes of reaction that lead to the assembly of proteins and protein complexes. In general, crowding is expected to stabilize native protein structure relative to less compact non-native structures and to favor the formation of functional complexes of native proteins. Under certain pathological conditions, 'overcrowding' may enhance the formation of nonfunctional aggregates of non-native protein (e.g. amyloid and inclusion bodies).
Article
Strategies for the deconvolution of diffusion in the determination of size-distributions from sedimentation velocity experiments were examined and developed. On the basis of four different model systems, we studied the differential apparent sedimentation coefficient distributions by the time-derivative method, g(s*), and by least-squares direct boundary modeling, ls-g*(s), the integral sedimentation coefficient distribution by the van Holde-Weischet method, G(s), and the previously introduced differential distribution of Lamm equation solutions, c(s). It is shown that the least-squares approach ls-g*(s) can be extrapolated to infinite time by considering area divisions analogous to boundary divisions in the van Holde-Weischet method, thus allowing the transformation of interference optical data into an integral sedimentation coefficient distribution G(s). However, despite the model-free approach of G(s), for the systems considered, the direct boundary modeling with a distribution of Lamm equation solutions c(s) exhibited the highest resolution and sensitivity. The c(s) approach requires an estimate for the size-dependent diffusion coefficients D(s), which is usually incorporated in the form of a weight-average frictional ratio of all species, or in the form of prior knowledge of the molar mass of the main species. We studied the influence of the weight-average frictional ratio on the quality of the fit, and found that it is well-determined by the data. As a direct boundary model, the calculated c(s) distribution can be combined with a nonlinear regression to optimize distribution parameters, such as the exact meniscus position, and the weight-average frictional ratio. Although c(s) is computationally the most complex, it has the potential for the highest resolution and sensitivity of the methods described.
Article
Macromolecular crowding is a critical parameter affecting the efficiency of cellular protein folding. Here we show that the proteins dihydrofolate reductase, enolase, and green fluorescent protein, which can fold spontaneously in diluted buffer, lose this ability in a crowded environment. Instead, they accumulate as soluble, protease-sensitive non-native species. Their folding becomes dependent on the complete GroEL/GroES chaperonin system and is not affected by trap-GroEL, indicating that folding has to occur in the chaperonin cavity with release of nativelike proteins into the bulk solution. In addition, we demonstrate that efficient folding in the chaperonin cavity requires ATP hydrolysis, as formation of ternary GroEL/GroES complexes with substrate proteins in the presence of ADP results only in very inefficient reactivation. However, protein refolding reactions using ADP-fluoroaluminate complexes, or single-ring GroEL and GroES under conditions where only a single round of ATP hydrolysis occurs, yield large amounts of refolded enzymes. Thus, the mode of initial ternary complex formation appears to be critical for subsequent productive release of substrate into the cavity under certain crowding conditions, and is only efficient when triggered by ATP hydrolysis. Our data indicate that stringent conditions of crowding can impart a stronger dependence of folding proteins on the assistance by chaperonins.
Article
In order to better define the structural elements involved in allosteric signalling, wild-type DnaK and three deletion mutants of the peptide binding domain have been characterized by biophysical (steady-state and time-resolved fluorescence) and biochemical methods. In the presence of ATP the chemical environment of the single tryptophan residue of DnaK, located in the ATPase domain, becomes less polar, as seen by a blue shift of the emission maximum and a shortening of the fluorescence lifetime, and its accessibility to polar quenchers is drastically reduced. These nucleotide-dependent modifications are also observed for the deletion mutant DnaK1-537, but not for DnaK1-507 or DnaK1-385, and thus rely on the presence of residues 507-537 (helices A and the N-terminal half of B) of the peptide binding domain. These data indicate that alphaA and half alphaB contribute to the allosteric communication of DnaK. In the presence of ATP, they promote a conformational change that displaces a residue(s) of the peptide binding domain towards a region of the ATPase domain where the tryptophan residue (W102) is located. A putative role for these helical segments as regulators of the position of the lid is discussed.
Article
Simple expressions are derived describing the equilibrium concentration gradient of each species in a solution containing an arbitrary number of solute species at arbitrary concentration, as a function of the concentration of all species. Quantitative relationships between the species gradients and experimentally observable signal gradients are presented. The expressions are model-free and take into account both attractive and repulsive interactions between all species. In order to analyze data obtained from strongly nonideal solutions, a statistical thermodynamic model for repulsive solute-solute interactions is required. The relations obtained are utilized to analyze the dependence of the equilibrium gradient of ribonuclease A in phosphate-buffered saline, pH 7.4, upon total protein concentration. Experimental results are interpreted in the context of a model for weak self-association leading to the formation of significant amounts of oligomers at total protein concentrations exceeding 25 g/l.