ChapterPDF Available

Flora and vegetation of Afghanistan

Authors:
M.D.
M.D.
M.D.

Figures

Content may be subject to copyright.
2 ﻥﺎﻫﺎﻴﮐ ﺔﻋﻮﻤﺠﻣ ﻓﺍﺮﻐﺟ ﺗﺎﺒﻧ 2 Flora and Vegetation Geography
2.1 
             .              )Vegetation Types (            
     .                      .          )    ( .                ) 5.1   (                            .                     .         1.26 1.31
         .             
                    .                  .    "" 
           
       .              .         
         ) 2.01.(         " "
                  .ﺳﺁ ﻪﻧﺎ
)   (   " "   )  
 ( .               .          ﺳﺁ ﻄﺳﻭ                   
)  ( . ﻲﻠﺧﺍﺩ ﻱﺎﻴﺳﺁ              ) (         
)
   (             .  )    (                            .      ﻪﻧﺎﻴﻣ ﻱﺎﻴﺳﺁ                      
.
2.2  ) (
2.1.1     
                     .                   
„Symbolae Afghanicae“ )RECHINGER KOEIE 19541963(       K.H. RECHINGER (1963 ff.)    97     .
2.1 Introduction
Afghanistan is a very mountainous country with a wide range of
ecological conditions and has a correspondingly wide range of
plant species and vegetation types. This diversity is enhanced by
its location at the crossroad of several biogeographical regions.
With their widely differing floristic stock, these greatly contribute
to the floristic richness and vegetation pattern of the country.
Afghanistan, in essence, is a country of Central Asia (see
below). It is also essentially a very dry country with sparse
precipitation (see chapt. 1.5) during winter and early spring,
followed by a prolonged summer drought, but varying significantly
between north and south, west and east, lowlands and mountains.
Temperature conditions are characterized by a strong
continentality, with hot summers and cold winters, easily
recognizable in the ecological climate diagrams shown in Figs.
1.26 and 1.31 from various parts of the country. Whereas the
mountains get substantial amounts of snow in winter and rain in
spring, precipitation is much less and more unreliable in the
northern and southern deserts and semi-deserts.
Some eastern parts receive episodic or even periodic summer
rain from monsoonal activity. That additional rainfall during the
vegetation period provides the precondition for the occurrence of
various forest types. Today, sadly, these forests and woodlands
are much degraded or have even completely disappeared.
In this chapter, an outline is given of the main floristic
features of the country and its vegetation types (Fig. 2.1).
Because the terms Central Asia, Middle Asia, and Inner Asia
have different meanings for different researchers and in different
countries, we give here our definition of them. Central Asia (s.l.)
includes Middle Asia, Inner Asia and Central Asia (s.str.). Often
Central Asia and Middle Asia are used as synonyms. However, in
German and Russian geographical literature, Middle Asia mainly
refers to the former Soviet states of Kazakhstan, Uzbekistan,
Kirgisia, Turkmenistan, western part of Tajikistan and the lowlands
N of the Hindu Kush (N-Afgh). Inner Asia refers to the mountain
regions between the Altai and Sajan in the N and South-Tibet
(Himalaya) in the S, the Pamirs in the W and middle China in the E,
including Tuwa (Siberia), i.e. the largest highlands and mountains
of the world. Central Asia (s.str.) covers the Tien Shan mountains,
the former E-Turkestan, Xinjiang and Mongolia, and thus partly
overlaps with the term Inner Asia. In this book, we use the term
Central Asia in the wide sense, use recognised geographical
names, and try to avoid ambiguous political terms.
2.2 Flora of Afghanistan
2.2.1 General remarks on biodiversity
A reliable Flora or at least a check-list of the plants occurring in
Afghanistan has not yet been published. But by far the most
comprehensive information source for the flora of Afghanistan is
the monumental multi (97 !)-authored Flora Iranica (Fl. Ir.) edited
by K.H. RECHINGER (1963 ff.), and its incomplete forerunner, the six
parts of the Symbolae Afghanicae (KOEIE & RECHINGER 1954-1963).
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
2
    Flora and vegetation geography 3
          
     178     
) 1 9   .(          
      .            " "     .
            207    )
    (
    1970  ) 2 9  .(                              )PODLECH ANDERS 1977 (   KITAMURA )1960 .(              .                .                  FREITAG )1971a, b (  .          BRECKLE )1971 1974 1975 (   .             .  9         .                        .       .
                    ) (                     )HEYWOOD WATSON 1995 .(                              .                . GROOMBRIDGE )1992 (     3.500     3035 %   510 %
      .         4.000       30 %     .              )5.600  ( )5.700  (  )PIGNATTI 1982 STRID & KIT TAN 1997.(                          .                   ) 1  (           .                 
         
                .                                     ) 2.3.1.2 3.3   (.
2.2.2 .     
Fabaceae )Leguminosae   (   630     
Astragalus
    380    1.000         .              
  .  
Astragalus
       biome     
The Fl. Ir. includes almost all accessible collections from the
area and is now nearly completed with 178 fascicles of plant
families published (see chapter 9 and Appendix 1). Besides
Afghanistan, it covers N Iraq, Iran, adjacent parts of Pakistan,
Azerbeijan and the mountain areas of Turkmenistan. It can be
stated that this is almost a “natural” region, the Irano-Turanian
area.
The Flora of Pakistan has in a similar way covered almost all
plant families and 207 fascicles (most of them also online) have
been published; it started in 1970 (see chapter 9 & Appendix 2).
Additionally, many research papers on the flora of various
parts and floristic lists from several expeditions have been
published, e.g., on the Wakhan corridor (PODLECH & ANDERS 1977).
Floristic lists from several expeditions also exist, e.g. KITAMURA
(1960). Many publications deal with particular families or genera.
Significantly less information is available about the vegetation of
the country. The most extensive study dealing with the whole
country and incorporating earlier results is that by FREITAG (1971a,
b). With regard to the high mountain vegetation, it was
supplemented by papers of BRECKLE (1971, 1974, 1975). Here we
present an updated account that includes some unpublished
information. Extensive lists of references are given in chapter 9.
They clearly show that Afghanistan is a country whose flora and
vegetation has been much studied, mainly before the Soviet
military intervention and subsequent civil wars. However, many
gaps still remain.
Though Afghanistan is a rather arid country with extensive
deserts and semi-deserts, the number of vascular plant species is
distinctly higher than in the more humid C European countries
which offer more favourable conditions for plant growth (HEYWOOD
& WATSON 1995). This can be partly ascribed to the fact that it did
not suffer as much from extinctions during the dramatic changes
of climate during the Quaternary, but the main reason is the much
greater diversity of habitats. GROOMBRIDGE (1992) gave an
estimate of 3.500 species of vascular plants and 30-35% of
endemism, as well as an additional c. 5-10% of species which
might be found in future. Our estimate is about 4.000 species and
c. 30% of endemism. With these data, Afghanistan is below
Mediterranean countries as Italy and Greece with 5.600 and
5.700 plant species, respectively (PIGNATTI 1982, STRID & KIT TAN
1997).
As everywhere, the amount and seasonal distribution of
precipitation and the altitude determine the distribution patterns
of the country's flora and vegetation. Thus, diverse ecological
conditions, ranging from hot deserts and humid subtropical
regions to high alpine regions (see chapter 1), have favoured the
establishment of a complex and varied flora and vegetation.
However, the composition of the flora and the vegetation structure
are also greatly influenced by a long history of over-exploitation
which has led not only to the almost complete loss of forests but
also to widespread degradation of formerly rich woodland and
semi-desert ecosystems. Grazing by sheep and especially goats as
well as cutting of trees and uprooting of shrubs and even dwarf
shrubs have not only greatly reduced the coverage of the
vegetation, but also its composition and floristic (see also part
2.3.1.2 and Chapter 3.3).
2.2.2 Major plant families in Afghanistan
Fabaceae (Leguminosae) have some 630 species of which
Astragalus
is by far the most complex and species-rich with 380
spec in Afghanistan, and 1,000 in Fl. Ir. The account in Flora
Iranica is not yet complete, but the final part is in press and will be
published soon.
Astragalus
has an evolutionary centre here and is
represented in all the more important biomes of the Irano-Turan-
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
4
             .  section                      .   
Oxytropis
  70   .        
Onobrychis
Medicago
)(
Trigonella
Vicia
)(
Hedysarum
Trifolium
)  (                        .
                      :
  
Cicer arietinum
)(
Faba vulgaris
) (
Vicia sativa
) .(          
Medicago sativa
)   .(
  
Glycyrrhiza glabra
G. uralensis
)    (    ۀ       ) 3.01  (. Asteraceae
)Compositae (     500    .  
Cousinia
 350      144     93     .
Cousinia
 
Astragalus
                      .
Artemisia
) ( 43              
        . Brassicaceae
)Cruciferae (  225       .           .    
Erysimum
       16   .          .Brassicaceae    4.500        .   
 cruciferae     
Brassica
)(
Sinapis
) (
Raphanus
) (  . Lamiaceae
)Labiatae (   205  
Nepeta
) 46 (
Eremostachys
)30 (
Salvia
)24 (
Scutellaria
)20 (
Thymus
Mentha
) (
Origanum
) .(
Perowskia
                    . Poaceae
)Gramineae (     170180                 .     
Bromus
)23 (
Poa
) 21 (
Stipa
)17 (
Piptatherum
)15 (
Elymus
=)
Agropyron
   12 (    
Stipagrostis
Cymbopogon
Festuca
Leucopoa
        .               .        
           
    1970     . Caryophyllaceae
   460       180     
  
Silene
)46  (              .        . Chenopodiaceae
138                  /       . 
Salsola
   )27 (
Chenopodium
)18  (
Suaeda
)11  (     .   35                  
Halarchon
  )
Spinacia turkestanica
(   )
Beta
(    .
ian part of the country by annuals, perennials and dwarf shrubs.
Some sections are rich in spiny thorn-cushion plants that
dominate vast surfaces as hedgehog steppe. Another large genus
is
Oxytropis
with c. 70 species. Besides these two genera
numerous species of
Onobrychis
(sainfoin),
Medicago
(medick),
Trigonella
(fenugreek),
Vicia
(vetch),
Hedysarum
(sweet-vetch)
and
Trifolium
(clover) are important constituents of the range lands
and are fodder plants, but others are unpalatable due to high
contents of bitter tasting or even poisonous compounds
.
Many
species are grown as vegetables, often in more primitive races
with smaller seeds, e.g.
Cicer arietinum
(chick-pea),
Faba vulgaris
(field bean), and
Vicia sativa
(vetch). Others are cultivated as
fodder and forage plants, in particular
Medicago sativa
(alfalfa,
lucerne). The rhizomes of
Glycyrrhiza glabra
and
G. uralensis
are
dug out and exported for production of licorice (see Fig. 3.10).
Asteraceae (Compositae) are represented by more than 500
species. The thistle genus
Cousinia
alone includes about 144
species from a total of 350 species in Fl. Ir. with 93 of them
endemic to Afghanistan. It is second only to
Astragalus
among the
species-rich genera and clearly underlines the importance of the
area for the radiation of Irano-Turanian taxa.
Artemisia
(wormwood, sagebrush) has 43 species and is of utmost
importance for many otherwise widely differing plant
communities, as well as a constituent of pastures and as resource
for brushwood collected for heating and cooking.
Brassicaceae (Cruciferae) take third place with c. 225
species. Most of the genera have few or one species only.
Surprisingly, the largest genus in Afghanistan
Erysimum
has only
16 species. Several species are high mountain plants. Above
4,500 m the Brassicaceae are the dominant plant family. As all
over temperate Eurasia, many crucifers are grown as major
vegetable crops, e.g.,
Brassica
(cabbage),
Sinapis
(mustard) and
Raphanus
(raddish).
Lamiaceae (Labiatae) have c. 205 species, including
Nepeta
(catmint, 46 spp..),
Eremostachys
(30 spp.)
,
Salvia
(clary, 24
spp.),
Scutellaria
(20 spp.),
Thymus
(thyme),
Mentha
(mint), and
Origanum
(marjoram). The late-flowering shrubby
Perowskia i
s a
small but very characteristic genus of the country and adjacent
parts of central Asia.
Poaceae (Gramineae) are the largest monocot family in
Afghanistan, with c. 170-180 species, including such important
cultivated plants as wheat, rice, barley, millet and maize. The most
species-rich genera are
Bromus
(brome, c. 23 spp.)
, Poa
(blue-
grass, c. 21 spp.),
Stipa
(17 spp.),
Piptatherum
(15 spp.)
, Elymus
(=
Agropyron
, wheat grass, c. 12 spp.), but also species of
Stipagrostis
,
Festuca
(fescue),
Cymbopogon
and
Leucopoa
etc.
are important components of different plant communities. Most of
them are palatable and therefore valuable range plants. Levels of
endemism both in Afghanistan and throughout the Fl. Ir. region
are very low. The account of the family in Fl. Ir., published in 1970,
is now partly outdated.
Caryophyllaceae are a major family in the Fl. Ir. area with 460
species, but only c.180 occur in Afghanistan with
Silene
(46
spec.) being the largest genus, but only c.1/3 of the total of Fl. Ir.
The family is more a Mediterranean than Irano-Turanian one.
Chenopodiaceae include 138 species from Afghanistan,
mostly growing on soils rich in soluble salts and/or gypsum, or on
disturbed sites. Particularly rich in species are the genera
Salsola
in its traditional circumscription
(saltwort, 27 spp.),
Chenopodium
(goosefoot, 18 spp.) and
Suaeda
(sea-blite, 11 spp.). Altogether,
35 genera adapted to adverse soil, especially saline, conditions
are reported from the country, including the endemic genus
Halarchon,
wild spinach (
Spinacia turkestanica
) and the
cultivated beet (
Beta
).
    Flora and vegetation geography 5
Apiaceae )Umbelliferae (  180   
Ferula assa-foetida
     ) (            .
Ferula
     28                    .            
 ) 3  (.
Bupleurum
)12 (     
Bunium
)10  (
Scaligeria
)10 (    . Ranunculaceae
        
          .   22  120                      .   
Ranunculus
36      . Liliaceae
      156     .        )  (            .
Allium
) 65          :Alliaceae(
Gagea
)  Bethlehem 27 (
Eremurus
)      19  (
Tulipa
)  15  (       .    Iridaceae
  Liliaceae  

Iris
)30  (       .  )Orchidaceae
(              13  .
   Cyperaceae
 100  .        :Boraginaceae
)  125 ( Plumbaginaceae
)  80  (      
Acantholimon
Polygonaceae ) 60 ( Rosaceae
) 90          ( Primulaceae
) 40 ( Rubiaceae ) 45  ( Solanaceae
) 27      (  Scrophulariaceae
)       100 .(           :
   : Butomaceae Commelinaceae Dioscoreaceae Eriocaulaceae Pontederiaceae Sparganiaceae  1 
Hydrocharitaceae Najadaceae      2      .    : Callitrichaceae Ceratophyllaceae Cornaceae Corylaceae Cynomoriaceae Elatinaceae Myrsinaceae Phytolaccaceae Staphyleaceae 1 Santalaceae     2    .         )grasses(      .        
Draba hystrix Pyramidium griffithianum Halarchon vesiculosus
Salvia pterocalyx
   .       30 %             .     
           
      .         
Salvia
                 .      
Salvia
   .                      " " "    "   .                        
           )  
15 (   .    )
Draba
Salvia
(    5   .        /                  .
Apiaceae (Umbelliferae) have more than 180 species, one of
the most notable being
Ferula assa-foetida
, from which a gum is
collected for medicinal use, even as an item of export. The genus
is the largest in number, with 28 species in Afghistan, most of
them tall monocarpic plants. There are many other drugs derived
from naturally occurring species in the area (see chapter 3). Other
genera rich in species are
Bupleurum
(12 spp.), and the tuber-
forming
Bunium
(10 spp.) and
Scaligeria
(10 spp.).
Ranunculaceae are also quite well-represented in many
vegetation types, usually by small annuals or perennial herbs. 22
genera with 120 species are recorded for the country, many being
high mountain plants and often containing poisonous substances.
Ranunculus
is by far the largest genus with 36 species.
Liliaceae, in their traditional circumscription, amount to 156
species in the country. Most Afghan species are bulbous
perennials and significant and conspicuous elements of the
ephemeral flora. The leading genera are
Allium
(onion, 65 spp., in
Fl. Ir. treated as its own family: Alliaceae),
Gagea
(yellow star of
Bethlehem, 27 spp.),
Eremurus
(steppe-lilies or desert candles,
19 spp.), and
Tulipa
(tulips, 15 spp.).
In showiness, Iridaceae compete with Liliaceae, but only
Iris
(30 spp.) is highly diversified in the country. In contrast, the
orchids (Orchidaceae), so common and varied in the
Mediterranean area and in the Himalayas, have only 13 species in
our area. Another large and important family are the Cyperaceae
with c. 100 spec.
Other larger plant families are: Boraginaceae (c. 125 spec.),
Plumbaginaceae (more than 80 spec.) with the large thorny
cushion genus
Acantholimon;
Polygonaceae (c. 60 spec.);
Rosaceae (c. 90 spec., with many important fruit trees and
shrubs); Primulaceae (c. 40 spec.); Rubiaceae (c. 45 spec.);
Solanaceae (c. native 27 spec., and with important food plants);
and Scrophulariaceae (s.l., c. 100 spec.).
A few small families are not treated in this Field Guide: in the
Monocots these are Butomaceae, Commelinaceae,
Dioscoreaceae, Eriocaulaceae, Pontederiaceae, Sparganiaceae
with 1 species, and Hydrocharitaceae and Najadaceae with 2
spec. recorded in Fl. Ir. from Afghanistan; in the Dicots these are
Callitrichaceae, Ceratophyllaceae, Cornaceae, Corylaceae,
Cynomoriaceae, Elatinaceae, Myrsinaceae, Phytolaccaceae and
Staphyleaceae with 1 spec, and Santalaceae with 2 spec.
recorded in Fl. Ir. from Afghanistan.
In all these families, except the grasses, the percentage of
Afghan endemic species is high (HEDGE & WENDELBO, 1970a).
Many of these endemics are very isolated, at least
morphologically, such as
Draba hystrix, Pyramidium griffithianum,
Halarchon vesiculosus
and
Salvia pterocalyx.
Overall,
e
ndemism
at species rank is probably c. 30%; a similar total to that in Iran
and Turkey. But in contrast to these two countries with larger
totals of flowering plants, the Afghan endemics are, in general,
more isolated from their nearest relatives. For example, Turkey has
very many more species of
Salvia
than does Afghanistan and many
more endemics, but the majority of them have clear allies in that
country. In contrast, determining allies for the relatively few
Afghanistan
Salvia
endemics is much less easy. In the same way
that there are distinct and indistinct species, there are endemics
at species and generic level that can, objectively, be classified as
“isolated” or “narrow”. It would not be an easy scientific exercise,
but it could be very rewarding to make a detailed study of generic
and species endemism throughout SW Asia and give the taxa a
rating (e.g. 1-5) according to their distinctness. The
Draba
and the
Salvia
cited above would surely get a 5* rating. Such hard
evidence might well emphasise even more the major importance
of the Afghan/C Asiatic area as a very old and major centre of
development and evolution in flowering plants - at all levels
family, genus, species.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
6
2.2.3    
      )  :          (     
         
         
 : 
 92 %          7 %     .
                         .                     ) :1 (                 
                   )2 (            .       
         .             
        
 .
        
  .                                         .                         .                       .             
           .                 
      .             
         .             .                         )              (.
2.2.3.1                                         .     
Astragalus
Cousinia
Acanthophyllum
Acantholimon
Allium
Eremostachys
Eremurus
     
Ephedra
            .                     
Eremurus
) 2.02(
Eremostachys
)  2.03 (
Acanthophyllum
) 2.04 (              )HEDGE &
WENDELBO 1970a.(
             .
         
          
Ephedra strobilacea
) 2.05  (
Salsola arbuscula
S. richteri
Haloxylon persicum
) Chenopodiaceae(    
Artemisia sieberi
)Asteraceae(   
2.2.3 Plant geographical aspects
With regard to the distribution patterns of plant species
(chorotypes) which are closely related to their history and the
general ecological traits of the respective areas, most parts of
Afghanistan belong to two very different phytogeographical
regions: the Irano-Turanian floristic region with c. 92% of the
country's surface, and the Sino-Japanese floristic region with c.
7%. In both of them the temperature conditions are rather similar,
but they are sharply separated by the amount and seasonal
distribution of rainfalI. Two smaller parts of the country belong to
other floristic regions or show at least strong admixtures of
species from adjacent regions: (1) species of the Saharo-Sindian
region intrude into the lower altitudes of S- and E-Afghanistan, but
only in the hot and dry Jalalabad basin are they so numerous and
dominant that the area should be included in that
phytogeographical region; (2) in the upper belts of the high
mountain areas, the number of C Asian elements increases. The
eastern part of the Wakhan is often considered as the SW
extension of the C Asian floristic region. That region extends
eastwards along the Karakorum and N of the Himalayas to C- and
NE- China, and northwards to S Siberia.
Every elevational belt has its own phytogeographical
characteristics. In the lowlands, Saharo-Sindian plants may
prevail, in the lower mountains Irano-Turanian elements, in the
eastern parts himalayan species, in the higher mountain belts
more C-Asian and eurasian species, and in the alpine and nival
belt some boreal and arctic elements occur.
Within these chorotypes, any particular species has acquired
an individual distributional area according to its particular
ecological requirements, age, and widely differing dispersal
abilities. The topography has greatly contributed to the high
number of endemic species that can be found, particularly among
mountain plants with less effective modes of dispersal. However,
though the overwhelming majority of plant species belong to one
or the other chorotype, there are rather many that are distributed
in more than one phytogeographical region. For instance, many
annuals that are adapted to summer drought occur in both the
Mediterranean and the Irano-Turanian region. Other species were
able to reach suitable habitats even if they are geographically
widely separated from each other. This applies in particular to
plant species of high mountain areas. In this section, just a few
examples of the various chorotypes are given, mainly of more
conspicuous plants (see figures in the pictorial part).
2.2.3.1 Irano-Turanian floristic elements
In parallel with the tremendous diversity of habitat conditions,
from different types of lowland semi-deserts up to montane
woodlands and alpine meadows, the distribution patterns of
individual species vary considerably, but all are located between C
Anatolia and the E Hindu Kush. Most large genera, as e.g.
Astragalus, Cousinia, Acanthophyllum, Acantholimon, Allium,
Eremurus,
and
Eremostachys
as well as smaller ones like
Ephedra
,
occur in all altitudinal belts, but with different constituent species.
Examples of typical Irano-Turanian genera that radiated into most
diverse ecosystems, their isoflor-maps of
Eremurus
(Fig. 2.02),
Eremostachys
(Fig. 2.03) and
Acanthophyllum
(Fig. 2.04) are
shown, indicate with high species-numbers the relevant
evolutionary centres (HEDGE & WENDELBO, 1970a).
Lowland species usually have a wider distribution. Most occur
in northernmost and in S Afghanistan as well as in neighbouring
parts of Iran, Turkmenistan, Uzbekistan and Tajikistan, e.g., the
shrubs
Ephedra strobilacea
(see map Fig. 2.05),
Salsola
arbuscula, S. richteri, Haloxylon persicum
(both Chenopodiaceae)
,
    Flora and vegetation geography 7
2.02 : 
Eremurus
)HEDGE & WENDELBO 1970 .(       ) GIS :RAFIQPOOR 2010(
Fig. 2.02: Species frequency and distribution of
Eremurus
(HEDGE &
WENDELBO, 1970). The single Chinese species is not included on the map
2.03 :  
Eremostachys
        )HEDGE & WENDELBO 1970(
Fig. 2.03: Species frequency and total distribution of
Eremostachys
,
showing the high concentration of species in Afghanistan and adjacent
regions (HEDGE & WENDELBO 1970, prepared in GIS: RAFIQPOOR 2010)
2.04 :   
Acantholimon
)HEDGE & WENDELBO 1970  GIS :RAFIQPOOR 2010(
Fig. 2.04: Species frequency and total distribution of
Acantholimon
(HEDGE
& WENDELBO 1970, prepared in GIS: RAFIQPOOR 2010)
Stipagrostis pennata
)Poaceae (   
Euphorbia
cheirolepis
)Euphorbiaceae .(         
Stipagrostis karelinii
)Poaceae (
Salsola paletzkiana
)Chenopodiaceae (          .          chenopod 
Halarchon vesiculosus
Horaninowia pungens
 
Stocksia brahuica
)Sapindaceae 2.06 (   
         .                            .       
Pistacia atlantica
)Anacardiaceae  2.07 (
Juniperus
excelsa
)Cupressaceae (                            
Rosa beggeriana
2.05 : 
Ephedra strobilacea
           )   FREITAG & MAIER-STOLTE  BROWICZ 1994  GIS :RAFIQPOOR 2010(
Fig. 2.05: Distribution of
Ephedra strobilacea
, an Irano-Turanian lowland
species with a wide range (based on FREITAG & MAIER-STOLTE in BROWICZ
1994, prepared in GIS: RAFIQPOOR 2010)
2.06 : 
Stocksia brahuica
              )
BROWICZ 1983  GIS :RAFIQPOOR 2010 (
Fig. 2.6: Distribution of
Stocksia brahuica
, an Irano-Turanian lowland
species with a narrow range restricted to the southern section of the region
(based on BROWICZ 1983, prepared in GIS: RAFIQPOOR 2010)
range stretching from the sub-mediterranean areas in the W to the
Himalayan subregion of the Sino-Japanese region in the east, like
the most common sub-shrub
Artemisia sieberi
(Asteraceae), the
dune grass
Stipagrostis pennata
(Poaceae) and the tall annual
Euphorbia cheirolepis
(Euphorbiaceae).
Other species have
intruded into N-Afghanistan from the northern deserts, such as the
tall dune plants
Stipagrostis karelinii
(Poaceae) and
Salsola
paletzkiana
(Chenopodiaceae). A third, much smaller group is
present only in the southern deserts but extends to at least
adjacent parts of Pakistani and Iranian Baluchistan, such as the
annual chenopods
Halarchon vesiculosus
and
Horaninowia
pungens,
and the shrub
Stocksia brahuica
(Sapindaceae, map
Fig. 2.06)
.
In the montane belts that harbour most of the floristic
diversity of the country because of a much greater range of habitat
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
8
Artemisia oliveriana
)Asteraceae (                      .     )
Pistacia vera
 2.08 (   )
Amygdalus bucharica
(    )
Acer semenowii
(          .         
Eremurus kaufmannii
          .
2.08 : 
Pistacia vera
              )  BROWICZ 1988(
Fig. 2.8: Distribution of
Pistacia vera
, an Irano-Turanian montane species
with a narrow range restricted to the northern section of the region (based
on BROWICZ 1988, prepared in GIS: RAFIQPOOR 2010)
       :             
          .
       
Salvia rhytidea
) 2.09 (
          
       . 
Astragalus
Cousinia
Acantholimon
Allium
) 2.10(
Eremostachys
Eremurus
Dionysia
                      .
2.09 : 
Salvia rhytidea
           )   HEDGE & WENDELBO 1970(
Fig. 2.9: Distribution of
Salvia rhytidea
, an Irano-Turanian montane
species with a narrow range, endemic nd to Afgh (modified from HEDGE &
WENDELBO 1970, prepared in GIS: RAFIQPOOR 2010)
2.07 :
Pistacia atlantica
         )  BROWICZ 1988  GIS :RAFIQPOOR 2010(
Fig. 2.7: Distribution of
Pistacia atlantica
, an Irano-Turanian montane
species with a wide range (based on BROWICZ 1988). Also in NW Africa and
Libya (prepared in GIS: RAFIQPOOR 2010)
conditions, the range patterns of individual Irano-Turanian
species are much more diverse. Here several species have a wide
the trees
Pistacia atlantica
(Anacardiaceae, map Fig. 2.07) and
Juniperus excelsa
(Cupressaceae), or at least from the Elburs Mts.
to the E Hindu Kush, such as
Rosa beggeriana
and
Artemisia
oliveriana
(Asteraceae),
but most species have much more
restricted distributions. Numerous species occurring in N
Afghanistan only also grow in the mountains of adjacent regions,
as the true pistachio (
Pistacia vera,
map Fig. 2.08), Buchara
almond (
Amygdalus bucharica)
and the maple (
Acer semenowii).
Many species of the upper montane and subalpine belts, as e.g.
Eremurus kaufmannii,
are also distributed towards the north in the
same altitudinal belts.
However, quite a number of plants from the montane belts are
endemics: they grow nowhere else than in Afghanistan though
some might just penetrate into adjacent mountain areas of
Pakistan or Tajikistan. Only a limited number of these endemics
occur in the respective altitudes all over the country, as
Salvia
rhytidea
(map Fig. 2.09), but most are restricted to smaller areas.
The unusually high species diversity in (e.g.)
Astragalus
,
Cousinia, Acantholimon, Allium
(map Fig. 2.10),
Eremostachys,
Eremurus
and
Dionysia
is attributable to the fact that due to
genetic isolation in the same altitudinal belt ecologically
corresponding species have evolved in different mountain
systems.
2.10 :     
Allium ،
       )   HEDGE & WENDELBO 1970(
Fig. 2.10: Distribution of some endemic
Allium
species, Irano-Turanian
montane elements with narrow ranges (modified from HEDGE & WENDELBO
1970, prepared in GIS: RAFIQPOOR 2010)
    Flora and vegetation geography 9
2.11 :      )    BROWICZ 1997   GIS  2010(
Fig. 2.11: Density of woody species from the Sino-Japanese floristic region
(based on BROWICZ 1997, prepared in GIS: RAFIQPOOR 2010)
2.2.3.2    
            .             niche    .                       
     .     
          
) 2.11(             
   .                     .           
Cedrus deodara
) (
Pinus gerardiana
)  (
Pinus wallichiana
)( 
Quercus baloot
) 2.12(
Qu. Dilatata
Qu. Semecarpifolia
 
Indigofera gerardiana
)Fabaceae(
Plectranthus rugosus
)Lamiaceae (
Syringa emodi
) (    
Stipa brandisii
Piptatherum munroi
          .           
Gymnospermium sylvaticum
)Podophyllaceae(
Pertya aitchisonii
Saussurea afghana
) Asteraceae (               
Rhododendron afghanicum
)  2.13 (    
Rh. collettianum
)  2.13 (                 .              .  
             
Pinus roxburghii
                          .                                 )BRECKLE 1967.(
2.2.3.3        
                .    
           
          
           
2.12 : 
Quercus baloot
           )  BROWICZ 1978(
Fig. 2.12: Distribution of
Quercus baloot
, a Himalayan montane species of
the Sino-Japanese floristic region, restricted to E-Afgh and W-Himalaya
(based on BROWICZ 1978, prepared in GIS: RAFIQPOOR 2010)
2.2.3.2 Sino-Japanese floristic elements
With its Himalayan subregion, the Sino-Japanese region extends
into E-Afghanistan. Like the Irano-Turanian area, it also includes
altitudinal belts with a large variety of ecological niches. Though
species diversity per square kilometre certainly is much higher
than in the Irano-Turanian area, the species number of the area in
total is smaller, simply as a result of the limited surface. In outline,
the geographical distribution of the species belonging to that
chorotype in Afghanistan is comparatively uniform (map Fig. 2.11)
because in the respective parts of the country the different
altitudinal belts are particularly close to each other. However, their
eastern extension varies greatly and most are restricted to the
Himalayas or even to the W Himalaya. A large number of
mesophytic and moderately xerophitic trees, shrubs and
perennials belong here, as, e.g.
Cedrus deodara
(Himalayan
cedar), the pines
Pinus gerardiana
and
P. wallichiana
, the oaks
Quercus baloot
(map Fig. 2.12),
Qu. dilatata
and
Qu.
semecarpifolia,
the shrubs
Indigofera gerardiana
(Fabaceae),
Plectranthus rugosus
(Lamiaceae) and
Syringa emodi
(Himalayan
lilac), the grasses
Stipa brandisii
and
Piptatherum munroi
.
Not
surprisingly, only rather few species of that floristic element are
endemic or nearly endemic in E-Afghanistan, such as
Gymnospermium sylvaticum
(Podophyllaceae),
Pertya aitchisonii
and
Saussurea afghana
(both Asteraceae) in the most
mesophylous evergreen broad-leaved oak forests,
Rhododendron
afghanicum
(Fig. 2.13) as undergrowth in the upper coniferous
forests, and
Rh. collettianum
(Fig. 2.13) in the sub-alpine juniper
scrub. These isolated endemics indicate that the Himalayan
forests did not recently invade the area. Fossilized leaves, needles
and cones of Himalayan trees growing today only further east,
such as the thermophylous pine
Pinus roxburghii
and many other
fossil leaves from a rather humid vegetation, have been found in
marl sediments at the Latahband pass east of Kabul. They
document that in the relatively recent past, probably in the Early
Pleistocene, they grew appreciably further west, indicating a
higher monsoonal activity and a warmer climate (BRECKLE 1967).
2.2.3.3 Saharo-Sindian and other southern floristic elements
The Saharo-Sindian floristic region and the corresponding
chorotype are much less homogeneous than the others. Though
the climatic conditions in the belt from the W Sahara to the
southern foothills of the Hindu Kush in N Pakistan, which are
characterized by high aridity, very hot summers and rather mild
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
10
2.13 : 
Rhododendron collettianum
Rhododendron
afghanicum
            )      (
Fig. 2.13 Distribution of
Rhododendron collettianum
and
Rhododendron
afghanicum,
Himalayan species endemic to the monsoon influenced parts
of the Hindu Kush and Safed Koh (based on Fl. Ir. and unpubl. data)
2.16 : 
Calotropis procera
              )   BROWICZ 1988(
Fig. 2.16 Distribution of
Calotropis procera,
a Saharo-Sindian lowland
species with a wide range extending to the tropics (based on BROWICZ
1988, prepared in GIS: RAFIQPOOR 2010)
                       .       /
                
Haloxylon salicornicum
) 2.14(
Cornulaca monacantha
) Chenopodiaceae(
Gymnocarpus
decanderus
)Caryophyllaceae(
Salvia aegyptiaca
)Lamiaceae (   
Gymnarrhena micrantha
)Asteraceae (
Savignya parviflora
)Brassicaceae(           .      
Haloxylon
persicum
)   2.15 (
Seidlitzia
rosmarinus
) Chenopodiaceae(              
    .       
Acacia modesta
)Mimosaceae(
Zizyphus nummularia
Zizyphus oxyphylla
)Rhamnaceae (      
Calotropis procera
) 2.16(
Periploca aphylla
Rhazya stricta
)  Apocynaceae (                          .             
Reptonia buxifolia
)Sapotaceaae( 
Nannorrhops ritchieana
) 2.17(
Maytenus royleanus
)Celastraceae(
Dodonaea viscosa
)Anacardiaceae (                    
 2.14 : 
Haloxylon salicornicum
           )   BROWICZ 1994(
Fig. 2.14 Distribution of
Haloxylon salicornicum,
a Saharo-Sindian
lowland species with a wide range (based on BROWICZ 1994)
2.15 :                 )  BROWICZ 1994(
Fig. 2.15 Distribution of
Haloxylon persicum,
an Irano-Turanian lowland
species with a wide range extending into the Saharo-Sindian region (based
on BROWICZ 1994, prepared in GIS: RAFIQPOOR 2010)
but not frost-free winters, are very similar, the distribution pattern
of the plant species differs considerably, due to the very long
distances and varying climatic history in the individual parts of the
area. However, there are several lowland species in the southern
and/or eastern semi-deserts that are also distributed in the
deserts of N-Africa such as the small shrubs
Haloxylon
salicornicum
(map Fig. 2.14),
Cornulaca monacantha
(both
Chenopodiaceae),
Gymnocarpus decanderus
(Caryophyllaceae),
Salvia aegyptiaca
(Lamiaceae),
and the annuals
Gymnarrhena
micrantha
(Asteraceae) and
Savignya parviflora
(Brassicaceae).
They overlap with others clearly centred in the Irano-Turanian
region and reversely have penetrated into the Arabian section of
the Saharo-Sindian region, as, e.g., the chenopodiaceous shrubs
Haloxylon
persicum
(white saxaul, map Fig. 2.15) and
Seidlitzia
rosmarinus.
Only in the lowland area around Jalalabad in Nangarhar
province and, less significantly, around Khost in Paktia province,
many Saharo-Sindian species that demand more favourable
winter temperatures and somewhat higher rainfall occur, such as
the deciduous thorny shrubs and small trees
Acacia modesta
(Mimosaceae),
Zizyphus nummularia
and
Z. oxyphylla
(Rhamnaceae) and the evergreen shrubs
Calotropis procera
(map
in Fig. 2.16),
Periploca aphylla
and
Rhazya stricta
(both in
Apocynaceae).
Another southern element is represented by mostly
sclerophyllous trees and shrubs that have their centre of
distribution in an area stretching from the driest parts of the
westernmost Himalayas southwards along the foothills of the
Suleiman Range, through the lower mountains of Pakistani
Baluchistan to the higher ranges along the eastern and southern
    Flora and vegetation geography 11
2.17 : 
Nannorrhops ritchieana
             )   BROWICZ 1980(
Fig. 2.17 Distribution of
Nannorrhops ritchieana,
a species of dry
subtropical woodlands just reaching E Afghanistan (based on BROWICZ
1980, prepared in GIS: RAFIQPOOR 2010)
2.19 : 
Epilobium latifolium
            )    (
Fig. 2.19 Distribution of
Epilobium latifolium
, a boreal circumpolar
species absent from Europe and W Asia (based mainly on Fl. Ir., prepared
in GIS: RAFIQPOOR 2010)
                               .
2.2.3.4                                    .                          .                  )BRECKLE 1974 1988.( a.   )   (:
Luzula spadicea
Oxyria digyna
Polygonum viviparum
Phleum alpinum
b.     :
Androsace villosa
) 2.18(
Cerastium cerastioides
Cystopteris fragilis

C. dickieana
Lloydia serotina
        
c.               
:
Epilobium latifolium
) 2.19(
Smelowskia calycina
Koenigia islandica
d.                  :
Delphinium brunonianum
) 2.20 (
Sibbaldia cuneata
      
Chorispora macropoda
Primula algida
) 2.21(
2.18 : 
Androsace villosa
             )    (
Fig. 2.18 Distribution of
Androsace villosa,
a boreal circumpolar species,
extending to all Eurasian high mountains except in N Europe (based mainly
on Fl. Ir., prepared in GIS: RAFIQPOOR 2010)
2.20 : 
Delphinium brunonianum
         )    (
Fig. 2.20 Distribution of
Delphinium brunonianum
, a high mountain
species of C–Asia, the Karakorum and the Himalayas (based mainly on Fl.
Ir., prepared in GIS: RAFIQPOOR 2010)
margin of the Arabian Peninsula, like
Reptonia buxifolia
(Sapotaceaae), the palm
Nannorrhops ritchieana
(map Fig. 2.17),
Maytenus royleanus
(Celastraceae) and
Dodonaea viscosa
(Anacardiaceae)
.
2.2.3.4 Floristic elements of high mountain areas
The alpine and nival belts are more or less continuously present in
the eastern section of the Afghan Hindu Kush and become more
scattered towards the west, with an outlier in the Koh-e-Baba
massif in C Afgh. There, elements of the C Asian, the Himalayan
and the high Irano-Turanian mountains occur partly side by side
and together with species that have wider distribution ranges,
especially the alpine belt is rich in species with a rather wide
distribution, Euro-Siberian or even boreal and arctic (BRECKLE
1974, 1988).
a. Cosmopolitan (or almost so) high mountain species - e.g.,
Luzula spadicea
,
Oxyria digyna, Polygonum viviparum, Phleum
alpinum
b. Circum-boreal mountain species partly extending into the
Arctic - e.g.,
Androsace villosa
(Fig. 2.18),
Cerastium
cerastioides, Cystopteris fragilis
incl.
C. dickieana, Lloydia
serotina
c. Only in some Asiatic and North American mountains and in
parts of the Arctic - e.g.,
Epilobium latifolium
(Fig. 2.19),
Smelowskia calycina, Koenigia islandica
d. Central Asian high mountain plants occurring in most Central
Asian mountain systems, on the Tibetan plateau and in the
Trans-Himalaya, such as
Delphinium brunonianum
(Fig. 2.20),
and
Sibbaldia cuneata,
but not in the Himalaya as e.g.
Chorispora macropoda
and
Primula algida
(Fig. 2.21)
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
12
2.21 : 
Primula algida
                        )    (
Fig. 2.21 Distribution of
Primula algida
, a high mountain species with a
wide range in C Asia just reaching Wakhan and disjunctly in N Turkey, the
Caucasus and N Zagros (based on Fl. Ir., prepared in GIS: RAFIQPOOR 2010)
2.23: 
Rheum tibeticum
              )    (
Fig. 2.23 Distribution of
Rheum tibeticum
, a high mountain species
ranging from the Hindu Kush to the Himalayas and theTibetan plateau
(based on Fl. Ir., prepared in GIS: RAFIQPOOR 2010)
2.25: 
Didymophysa fedtschenkoana
            )           GIS :RAFIQPOOR 2010(
Fig. 2.25 Distribution of
Didymophysa fedtschenkoana
, a high mountain
species
ranging from the Hindu Kush to C Asia (based on Fl. Ir. and unpubl.
data, prepared in GIS: RAFIQPOOR 2010)
e .           

Anaphalis nubigena
Juncus membranaceus
) 2.22(
Lamium rhomboideum
Primula macrophylla
Rheum tibeticum
) 2.23 (
2.22 : 
Juncus membranaceus
        )    (
Fig. 2.22 Distribution of
Juncus membranaceus
, a high mountain species
extending from the Hindu Kush to the W Himalaya (based on Fl. Ir., Fl.
Pak., prepared in GIS: RAFIQPOOR 2010)
2.24 : 
Polygonum myrtillifolium
Polygonum serpyllaceum
     )    (
Fig. 2.24 Distribution of
Polygonum myrtillifolium
and
Polygonum
serpyllaceum
, high mountain species of Afghanistan and Iran (based
mainly on Fl. Ir., prepared in GIS: RAFIQPOOR 2010)
2.26:      :
Corydalis metallica
    
Gynophorea
(
= Erysimum) weileri
      
Potentilla coelestis
     
Potentilla
collettiana
          )       GIS :RAFIQPOOR 2010(
Fig. 2.26 Distribution of endemic species in the Hindu Kush:
Corydalis
metallica
- restricted to the main range;
Gynophorea
(
= Erysimum) weileri -
only in parts of the Kohe-e-Baba;
Potentilla coelestis -
only in the dry
mountains of Kohe-e-Baba;
Potentilla collettiana
- only in the monsoon
influenced parts of the Hindu Kush and Safed Koh (based on F l. Ir.)
e.
Plants restricted to the Afghan mountains, the Pamirs, the
Karakorum and the western Himalaya, such as
Anaphalis
nubigena
,
Juncus membranaceus
(Fig. 2.22),
Lamium
rhomboideum
,
Primula macrophylla,
Rheum tibeticum
(Fig.
2.23)
    Flora and vegetation geography 13
f.        )          (  :
Gentiana umbellate
Polygonum serpyllaceum
) 2.24(
g.    :
Papaver involucratum
Didymophysa fedtschenkoana
) 2.25 (
Polygonum
chitralicum
h.                    :
Aconitum rotundifolium
Corydalis metallica
) 2.26(
Gentiana longicarpa
Gynophorea (Erysimum) weileri
)  2.26(
Potentilla coelestis
) 2.26 (
Potentilla collettiana
) 2.26(
        
       HEDGE & WENDELBO
)1978 ( LÉONARD )1988  ( BROWICZ )1997     ( BRECKLE )2004    ( COX & MOORE )2005   ( .
2.3     
2.3.1   
      5 %      ) ...2005(                         .                                              .            ) 1.5.2   (            .                                  .
2.3.1.1 
                     
                               ) 4
 ( .         : 1 ""         
                  .      )    (                       .                   ) 2.27 2.28 3.12(          .           
           .                          .
    )   (   
Tulipa
Iris
Gagea
Fritillaria
Eremurus
        )  .(               
         .                   .
f. Plants endemic to the Hindu Kush and some Iranian mountains
(Zagros, Elburs, and partly extending to the Caucasus) are
among others
Gentiana umbellata, Polygonum serpyllaceum
(Fig. 2.24)
g. Plants endemic to the Pamir-Alaj and the Hindu Kush, such as
Didymophysa fedtschenkoana
(Fig. 2.25)
, Polygonum
myrtillifolium
(Fig. 2.24),
Polygonum chitralicum
h. Narrow endemics of the Hindu Kush and parts of the Wakhan, or
even restricted to one of the Afghan mountains, as, e.g.
Aconitum rotundifolium, Corydalis metallica
(Fig. 2.26),
Gentiana longicarpa, Gynophorea (Erysimum) weileri
(Fig.
2.26
), Potentilla coelestis
(Fig
.
2.26)
, Potentilla collettiana
Fig.
2.26)
For further references on the somewhat tentative plant
geographical subdivision of the area and floristic elements see
among others HEDGE & WENDELBO (1978, Afgh), LÉONARD (1988,
deserts) BROWICZ (1997, the wider area) and BRECKLE (2004, high
mountain flora) and COX & MOORE (2005, worldwide).
2.3 Vegetation types of Afghanistan
2.3.1 General features
Except for some weeks from spring to early summer, outside of the
irrigated areas which cover about 5% of the country's surface (see
Tab.# 2005) and the few forest areas, the plant cover of
Afghanistan has a poor visual appearance and looks rather
uniform. For most of the year, when seen from a distance, plant
life appears to be almost completely absent, and the monotonous
grey or brown colours of the landscapes seem to be caused by the
barren soil or rock surfaces. This is caused by the strongly
seasonal and predominantly semi-arid climate (see Chapter
1.5.2) in combination with the long-lasting destructive influence
of man on the plant cover. The most important general aspects in
vegetation structure that can be traced to these factors are here
discussed before reviewing the different types of vegetation.
2.3.1.1 Seasonality
During millions of years, the plant species in the Irano-Turanian
region have evolved alternative adaptations to the strongly
seasonal climate with rainfall or snow during the cold winter, a
short favourable spring with moderate temperatures with some
rainfall and moisture stored in the soil, and the very long hot dry
summer and autumn (see also Chapter 4). Two basic main groups
of life forms are most important:
1- The “ephemerals”, comprising annuals and geophytes, survive
the unfavourable seasons as seeds or in underground perennial
organs like bulbs, corms or rhizomes. They start to appear
almost simultaneously in spring or (in the lowlands) in late
autumn after the first rains and complete their life cycle at the
onset of the dry period. Depending on the amount of rainfall,
they form just a thin cover or lush, meadow-like stands, even in
semi-desert ecosystems (Fig. 2.27, 2.28, 3.12), as far as soil
conditions are suitable. The annuals are also perfectly adapted
to a repeated failure of the scanty rainfall because in such
years the seeds remain dormant in the dry soil. As the
ephemerals usually do not suffer from water stress during the
rainy season, most of them look like plants from humid regions.
The majority of the showy monocots, as the species of
Tulipa
,
Iris, Gagea, Fritillaria
and
Eremurus,
belong to the ephemerals
with underground perennial organs (geophytes). Many other
herbaceous perennials that continue photosynthesis at least in
the first part of the dry season behave in a similar way. Only
species with long or deep tap-roots or water-storing tissues
may be active until late summer.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
14
2.27 :               :   
Trigonella grandiflora

Ixiolirion tataricum

Roemeria refracta
   500 
Fig. 2.27: Ephemeral semi-desert in full spring after exceedingly high
rainfall: yellow flowers –
Trigonella grandiflora
; blue –
Ixiolirion tataricum
,
red –
Roemeria refracta
; Faryab prov., c. 500 m
2                       .          :(a)      (b)                     (c)         /                      (d)           (e)       )       (                .                      
        .              
         
    .      )   (           )(        
            ) 2.29 (   ) 2   .(
2.3.1.2  
                        .           
             ) 4.5    .(               .       .                                    .              )  
Artemisia
2.30 (     
Cousinia
Alhagi
     .
                 ﺮﭽﻟﺎﻣ ﻲﻃﺍﺮﻓﺍ ﻞﮕﺸﺑ   .             
2.28 :               450 
Fig. 2.28: Ephemeral semi-desert in late summer, with hay harvesting near
Sheberghan, c. 450 m (HF 08.1969)
2- The woody species continue to be active, though in a much
reduced way, during the dry season when most ephemerals
have disappeared. Accordingly, they show a variety of typical
adaptations: (a) deep and far reaching root systems; (b)
cushion-like habit in dwarf shrubs as protection against strong
insolation, dry wind and mechanical damage by sand drift; (c)
small leaves covered by grey or white hairs and/or thick layers
of epicuticular waxes which are likewise effective against strong
insolation and drying out; (d) spiny leaves and stems that
protect them from grazing; (e) leaves containing essential oils
(often in distinct glands) or a variety of poisonous secondary
compounds or other elements that render them unpalatable to
grazing animals. The two latter features most likely have
evolved in parallel with big herbivores like gazelles and wild
asses in the lowlands and wild sheep and goats in the
mountains. These characters are likewise effective against the
flocks of villagers which have replaced the wild herbivores,
causing a much higher grazing pressure.
The early start of the growth season in the peripheral lowlands
(autumn to early spring) and its much delayed arrival in the high
mountain areas (summer) provide the basis for the economically
important transhumance (Fig. 2.29) of nomadic or semi-nomadic
shepherds in the country (see also Chapter 3).
2.3.1.2 Degradation
Without the impact of man, in normal habitats the floristic
composition, coverage and height of vegetation are intimately
correlated with the climate and its annual performance. However,
as in most countries of the area, in Afghanistan this natural
pattern is obscured by a long history of over-exploitation (see also
Chapter 4.5). The natural ecosystems were heavily degraded
except for a few inaccessible or inhabitable areas. The forests
were exploited for timber and fuel. Woodlands, shrub-lands and
even the scarce vegetation of semi-deserts were likewise at first
thinned out and then badly devastated or destroyed in the search
for firewood and brushwood. Because of the ever-increasing
shortage of trees and shrubs, even weakly woody dwarf shrubs (in
particular species of
Artemisia,
Figs. 2.30) and lignified herbs, as
many
Cousinia
species and
Alhagi,
are now collected for fuel.
Simultaneously, any area in reach was grazed and often
heavily overgrazed by sheep and goats. This also applies to remote
desert and high mountain areas which are used seasonally as
    Flora and vegetation geography 15
         
     .    
            
   ) 2.31 .(             ) 2.32.(
2.29 :           
          
Fig. 2.29: Summer camp (Qata Nau) of nomads and villagers in the Koh-e-
Baba area, S of Bamyan, Darya-e Bod Chur, with piles of sub-shrubs
collected for fuel and fodder
2.31 :             500 
Fig. 2.31: Thistles gathered as fresh fodder in an ephemeral desert;
Sheberghan prov., c. 500 m
         
              .              2006 2008          .                       
             .         ) :1 (         )2 (                        
                )3 (                          .
range-lands by nomadic or semi-nomadic shepherds.
Consequently, in many range-lands the structure and floristic
composition have been changed fundamentally with an increase
or invasion of unpalatable, poisonous or spiny species (Figs.
2.31.) This even applies to the monsoon forest areas (Fig. 2.32).
2.30 :        
Fig. 2.30: Brushwood collected in the northern semi-desert
2.32 :                   3.000 
Fig. 2.32: Plants collected for fuel and fodder, stored on the roofs of
houses for winter use, upper Bashgal valley, 3,000 m
As overgrazing thins out, the protective ground cover, the
fertile upper soil layers become more exposed to wind and water
erosion. In periods of low annual rainfall, as happened during the
recent extraordinary dry years from 2006 to 2008, wind erosion is
much enhanced. The effects of strong episodic rains on
overgrazed slopes are even worse as they cause dramatic loss of
soil by erosion and can lead to a complete and partly irreversible
change of habitat conditions.
Altogether, these impacts have had disastrous effects: (1) the
regeneration of trees and shrubs has almost completely stopped;
(2) the vegetation cover has decreased, and the composition of
the plant communities has changed fundamentally in that
palatable species have been widely replaced by spiny, poisonous
or unpalatable plants, resulting in a heavy loss of floristic diversity
and reduced productivity; (3) the reduced vegetation cover and
trampling effects of animal flocks have intensified erosion in all
parts of the country, leading to widespread desertification.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
16
             .         1967 2005        2    867.000    )UNEP 2003 FAO 2005.(      )FORBES 1892 (               .
               . 7 %                           .            
            .
                            .  
        
           .                  
Alhagi maurorum
Aeluropus
spp.
Prosopis farcta
        ) 2.33.(
2.3.1.3    
                " :  ) " 2.01(                        .FREITAG )a, b1971 (  4           2          ) :1 (     NEDJALKOV )1983a, b (    BRECKLE
)2007(      )2 (                   )resolution (             
   ) FREITAG 1971a .(     .            :GILLI )1969 1971 (        NEDJALKOV )1983a, b (          
       .      FREY PROBST )1987( PAVLOV GUBANOV
)1983 (   .        NEUBAUER )1954a, b (  .                                .                                    
   .    "    "             )    :   plakor (  .
       
     40       :           
             )      (          .                      .                 .
During the last decades of occupation and civil war, these
processes have dramatically increased. According to recent
estimates and satellite recordings, from 1967 to 2005, the area
covered by forests and woodlands has decreased from c. 2 mill.
ha to 867.000 ha (UNEP 2003, FAO 2005). However, according to
old literature records (FORBES 1892), the vegetation of some areas
also suffered greatly in the past during periods of unrest and war.
A particular case of degradation in the broader sense are the
fallow areas. About 7% of the country´s surface, mostly in sloping
areas of the montane belts with higher precipitation, were cleared
for intermittent dry-farming (lalmi). When the fields are not sown,
as in dry years, the fallow fields are quickly invaded by ubiquitous
weedy plant species.
Irrigated fields have replaced the natural vegetation almost
completely on the terraces of river valleys and adjacent plains. As
a result of thoughtless irrigation techniques, lack of drainage
systems and a water shortage, the fields suffered from
salinization. They were abandoned and subsequently colonized –
under heavy grazing pressure - by salt-tolerant plant communities
often dominated by
Alhagi maurorum, Aeluropus
spp. and
Prosopis farcta
(Fig. 2.33).
2.3.1.3 Potential and actual vegetation
The survey of the broadly defined vegetation types given here
focuses on two aspects: the ‘Potential Natural Vegetation’ (Fig.
2.1) as it would exist without the influence of man on natural
habitats; and the actual vegetation as it is today as a result of
man's destructive impacts. It is based on the 4-year long country-
wide survey by FREITAG (1971a, b) which also resulted in two maps
of the potential natural vegetation: (1) a country-wide map that
was largely adapted by NEDJALKOV (1983a, b), slightly modified by
BRECKLE (2007); (2) a detailed map showing the much more
diversified easternmost part of the country in higher resolution
both with regard to scale and vegetation types (in FREITAG 1971a).
The latter map is not reproduced here.
Other authors mainly dealt with the actual vegetation: GILLI
(1969, 1971) studied the vegetation, mainly around Kabul;
NEDJALKOV (1983a, b) described some vegetation types from the
forest region in Kunar province in E Afghanistan. Mountain
vegetation and the flora of the C Hindu Kush were studied by FREY
& PROBST (1978), PAVLOV & GUBANOV (1983) and some others. A
first survey on vegetation was given by NEUBAUER (1954a, b).
The potential natural vegetation is chosen here for classifying
the vegetation cover because it indicates the vegetal resources of
the various parts of the country as they are determined by climate
and soil. Furthermore, it shows to what extent the vegetation can
be restored by application of careful and conscious practices of
land use, though sometimes, or often, only in the long run. It
applies to “normal habitats” which are defined as being flat to
moderately sloping, not receiving additional water-supply (plakor-
sites in Russian literature).
The most important sources for information about the
composition, structure and geographical distribution of the
natural vegetation gained some 40 years ago were: the few
remnants of little-disturbed vegetation all over the country but
preferably those in remote and inaccessible areas; some
intentionally protected small plots (e.g. pistachio and pine
woodlands); the surroundings of tombs and shrines (“ziarat”); and
some rare written documents. In contrast to the natural
vegetation, the actual vegetation usually reflects predominantly
the intensity of anthropogenic influences. Consequently, one type
of natural vegetation is often replaced by substitute plant
communities.
    Flora and vegetation geography 17
2.33 : 
Peganum harmala
                    450 
Fig. 2.33:
Peganum harmala
community, a most common one resulting
from heavy overgrazing, here in the ephemeral semi-desert; W of
Sheberghan, c. 450 m
            .                           .                          
.       .
 ) 2.01   (           18     .  
                  )            (
   
9    .                    )     (    
        .              ) 2.01 (    .    FREITAG )1971a 5 (        .
2.3.2   
2.3.2.1     
 
Stipagrostis-Calligonum
   ): 1a(                       150    .          ) 20 (%
Haloxylon persicum
Salsola richteri
 
Calligonum
        S
tipagrostis karelinii
)    ( S
tipagrostis pennata
            .             
           
       )  (     ) 2.34 (                     .
2.34 :           
 
Fig. 2.34 Desert vegetation in S Afghanistan, Dasht-e-Margo with mobile
barkhan dunes
In fact, the vegetation of the country is much more diversified,
due to the mountainous character. The common rocky sites have
their peculiar plant communities as well as scree covered slopes
or naturally eroding slopes in weak marly sediments. Caused by
their geographic or topographic isolation, these communities,
made up of highly specialized plant species, are particularly rich
in narrow-ranged endemics. They cannot be dealt with in this
survey.
The main zonal vegetation categories on normal ecological
sites are shown in the map (see Fig. 2.01) under No. 1 to No. 8.
Those with the predominant influence of one ecological factor,
namely additional water supply or high salinity (river valleys, lakes,
swamps and saline flats), are summarized in the map under
category No. 9. They represent azonal vegetation types, since here
the climate is less decisive than the outstanding ecological factor
(water, salt, gypsum, heavy metals, etc.) causing peculiar
habitats. Not all vegetation categories described below are
separately indicated on the vegetation map (Fig. 2.01). They are
more completely shown in FREITAG (1971a, Fig. 5) for E-
Afghanistan.
2.3.2 Specific vegetation types
2.3.2.1 Deserts and semi-deserts
Calligonum-Stipagrostis
communities of sand deserts (Map: 1a)
Sand deserts with dune areas are only distributed in the driest
parts of S and N Afghanistan where rainfall is less than 150 mm.
The dunes are partially fixed by scattered (up to 20%) shrubs of
Haloxylon persicum
,
Salsola richteri
and different
Calligonum
species as well as by the tall perennial grasses S
tipagrostis
karelinii
(only N and NW) and
S. pennata
which are associated
with several sub-shrubs and deep-rooting annuals. Removal of the
perennial plants which by their voluminous root systems have very
effective sand-binding capacities commonly resulted in secondary
activation of dune-formation, mainly with sickle-shaped dunes
(barchans) devoid of any plant cover (Fig. 2.34) moving into
adjacent areas including irrigated fields, and blocking roads.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
18
2.35 :      
Artemisia kopetdaghensis
        900 
Fig. 2.35: Semi-desert on sandy soil with
Artemisia kopetdaghensis
, in the
back the Paropamisus Range, near Khusan, Herat prov., c. 900 m

Haloxylon salicornicum
   
) :1b(
                        
Haloxylon salicornicum
)=
Hammada salicornica
( .            chenopodiaceae        .           
Halarchon vesiculosus
) 2.35(
Halocharis violacea
Halocharis sulphurea
) chenopodiaceae (    
Pyramidium griffithianum
)Cruciferae(          .             .                       )contracted vegetation (
       ) 2.36.(       
                .
          Chenopodiaceae
            Chenopodiaceae                          150200          .                                            .      Chenopodiaceae 
Halothamnus
subaphyllus
Salsola arbuscula
Salsola montana
Salsola gemmascens
Seidlitzia rosmarinus
) Ch-63(   
Artemisia

Artemisia sieberi
Artemisia oliveriana
 
Zygophyllum atriplicoides
Zygophyllum eurypterum
Ephedra strobilacea
Ephedra sarcocarpa
Cousinia deserti
        .                        .       ) A2.37 (         ) B2.37(.
            

Ferula assa-foetida
Dorema aitchisonii
          .                                   
Haloxylon griffithii
Salsola tomentosa

Artemisia
          .  
             .
2.36 :      .                
               
Fig. 2.36: View from an inselberg near Delaram. Typical pattern of desert
vegetation in patches and lines caused by varying water availability and
soil structure with mosaic of sorted particle sizes forming a variety of
surface structures
Haloxylon salicornicum
communities of gravel deserts (Map: 1b)
The gravelly plains in the excessively dry and hot parts of SW and S
Afghanistan, with high contents of gypsum and other salts in the
upper soil layers, are the area of
Haloxylon salicornicum
(=
Hammada salicornica
) communities. They contain some other,
mostly chenopodiaceous, sub-shrubs and a number of xero-
halophytic annuals. Among them are a few particularly showy
species such as the chenopods
Halarchon vesiculosus
(Fig. 2.35),
Halocharis violacea, H. sulphurea
and the remarkable endemic
crucifer
Pyramidium griffithianum
with bright purple flowers. After
good winter rains, they can appear in huge numbers. This
community comes closest to a true desert because in vast areas
the perennial vegetation is almost restricted to shallow runnels
(contracted vegetation) between a habitat-mosaic (Fig. 2.36).
Except for the extraction of sub-shrubs and occasional grazing, the
vegetation is scarcely influenced by man.
Shrubby and sub-shrubby chenopod deserts and semi-deserts
(Map: 1c)
A number of rather different plant communities with
predominance or high percentages of chenopodiaceous shrubs
and sub-shrubs occurs further inland at lower altitudes of S
Afghanistan as well as along the western and northern periphery
where rainfall scarcely exceeds 150-200 mm. They also dominate
in drier basins and valleys of C and E Afghanistan where locally
rocks rich in gypsum reach the surface, as in the Bamyan and Ajar
valleys, parts of the Ghorband valley and in the lower Gomal
valley. Important species are, among others, shrubby or sub-
shrubby chenopods as
Halothamnus
subaphyllus
,
Salsola
arbuscula
,
S. montana
,
S. gemmascens
,
Seidlitzia rosmarinus
(Fig. Ch-63), several species of
Artemisia
, in particular
A. sieberi
and
A. oliveriana,
and
the shrubs
Zygophyllum atriplicoides
,
Z.
eurypterum,
Ephedra strobilacea, E. sarcocarpa
and
Cousinia
deserti
. Depending on soil structure, in spring-time ephemerals
and hemicryptophytes can contribute considerably to the diversity
of these open communities. They are common in the lowlands
(Fig. 2.37A) as well as in many of the interior valleys and
mountains (Fig. 2.37B).
    Flora and vegetation geography 19
A2.37 :    
Seidlitzia rosmarinus
         
Stipagrostis plumosa
        730 
Fig. 2.37A: Gravel desert with scattered
Seidlitzia rosmarinus
, patches of
inblown sand with small tufts of dried
Stipagrostis plumosa
and some
dried annuals; Dasht-e Margo, N of Khonnashin, 730 m
2.38 :    
Acacia modesta
    800     
Rhazya stricta
Fig. 2.38 Sub-tropical
Acacia modesta-
scrub, with
Rhazya stricta
in the
foreground; W of Jalalabad, c. 800 m
       ) :1d(
           
 600     150300               .      "   
"            
) 2.27   (        
) 2.28   (         
Salsola leptoclada
)Chenopodiaceae (
Diarthron vesiculosus
)Thymelaeaceae (      .              
Poa bulbosa
)Poaceae(
Carex pachystylis
C. stenophyllus
)Cyperaceae(            Asteraceae 
Cousinia
microcarpa
Cousinia olgae
Gundelia tournefortii
)          (   
    
Aegilops
Bromus
Eremopyrum
Vulpia
Cruciferae   
Malcolmia
Torularia
 
 )  ( 
Trigonella grandiflora
    
  
Tulipa Gagea
Iris Ixiolirion Allium
.
B2.37 :      
Fig. 2.37B: Montane semi-desert with steep slopes; Bulola region
On sand covered soils those semi-deserts can look really
spectacular with the tall umbellifers
Ferula assa-foetida
and
Dorema aitchisonii.
Most of these vegetation types are located
near to the comparatively densely populated foothill areas and are
severely degraded, often to stages without any real woody plants
or just with a few low sub-shrubs with a particularly high capacity
of regeneration, like
Haloxylon griffithii
,
Salsola tomentosa
and
Artemisia
species
.
Such areas look completely barren for most of
the year.
Ephemeral semi-deserts of loess soils (Map: 1d)
The lower part of the loess belt in N-Afghanistan, in altitudes up to
c. 600 m and with rainfall from about 150-300 mm, is inhabited
by typical Middle Asian ephemeral semi-desert communities. In
March, they might look like an English lawn and towards May their
aspect recalls a colourful, lush meadow or steppe (see Fig. 2.27),
but with the onset of June (see Fig. 2.28) they dry up and only a
few species remain active for some time, as the annuals
Salsola
leptoclada
(Chenopodiaceae)
and
Diarthron vesiculosus
(Thymelaeaceae). The plant cover is made up mainly by the
shallow-rooting perennials
Poa bulbosa
(Poaceae),
Carex
pachystylis
and
C. stenophyllus
(Cyperaceae), often together with
the thistle-like Asteraceae
Cousinia microcarpa, C. olgae
and
Gundelia tournefortii
(the latter curious composite only in the W
and NW of the country),
numerous annual grasses from the genera
Aegilops
,
Bromus, Eremopyrum
and
Vulpia
, crucifers from
Malcolmia
and
Torularia,
annual legumes like
Trigonella
grandiflora
, and a wealth of geophytes from the genera
Tulipa,
Gagea, Iris, Ixiolirion
and
Allium
.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
20
           .                              )
2.30 2.32  .(                                       
Psoralea
drupacea
Ammothamnus lehmannii
)Fabaceae( .
      )
Amygdalus
 :1e(
                             150250         
Amygdalus
)  Ro-05A  (       0,51,5     
        .        
Ephedra intermedia
   
Acanthophyllum
Acantholimon
Cousinia
Artemisia
   
Stipa hohenackeriana
       .
            
         
           .   
     
Cousinia stocksii
        .
    
Acacia Zizyphus
) :2(              ) 150300  (     
          
Zizyphus nummularia
Acacia modesta
) 2.38(        
Periploca aphylla
Rhazya stricta
Calotropis procera
) 2.39 (
Withania coagulans
)Solanaceae(   .        " ") (          
Chrysopogon aucheri
Hyparrhenia hirta
Tetrapogon villosus
Stipagrostis
spp.      .          
Stipa
Capensis
)Poaceae(
Cleome viscose
)Capparaceae(   
Aerva javanica
)Amaranthaceae (     
Salvias
 
Salvias aegyptiaca
Salvias santolinifolia
Salvias trichocalycina
    .
2.3.2.2      
 
Pistacia vera
): 3a(
       ) 6001.500 (          300 500             
Pistacia vera
    .                      .               ) 2.40
(       23  6)10 (    .          
       40 %         
Amygdalus bucharica Celtis caucasica Cercis griffithii
) Ca-01  (
Acer
semenowii
Fraxinus xanthoxyloides
  
Ephedra
foliate
 .         
          
           
Codonocephalum grande
Cousinia umbrosa
   Lamiaceae 
Phlomis bucharica
Salvia pterocalyx
   .
These ecosystems are most important grazing areas in winter
and spring. Additionally, in good years large quantities of hay are
collected and stored in big haystacks around the winter camps of
the nomads or brought into the villages (see Fig. 2.30–2.32).
While usually the ecosystems remain intact under moderate
grazing pressure, heavy overgrazing causes a strong increase of
such unpalatable species as the perennials
Psoralea drupacea
and
Ammothamnus lehmannii
(Fabaceae).
Shrubby
Amygdalus
semi-deserts (Map: 1e)
In and near the foothill areas of S and W- Afghanistan as well as in
drier interior valleys of the Hari Rud, Kokcha, Surkhab etc., where
rainfall varies between c. 150 and 250 mm, different but closely
related spiny
Amygdalus
species (see Fig. Ro-05A) that usually
grow up to 0.5-1.5 m are the most significant plants in open semi-
desert shrub-lands. They are accompanied by a high number of
other low shrubs like
Ephedra intermedia
, dwarf shrubs in
Acanthophyllum, Acantholimon, Cousinia
and
Artemisia
,
perennial grasses like
Stipa hohenackeriana
and numerous
annuals and geophytes.
Overgrazing effects are usually less conspicuous because by
their spiny morphology most woody plants are well protected both
against grazing animals and fuel-collecting villagers. Sometimes
the density of subshrubs has even increased, in particular in the
case of the widespread
Cousinia stocksii
community in S and W-
Afghanistan.
Subtropical
Zizyphus – Acacia
scrub (Map: 2)
The semi-desert scrub and dry thorn savannah of the extremely
semi-arid (c. 150-300 mm) and hot Jalalabad basin shows strong
subtropical influence by the spiny deciduous shrubs and small
trees of
Zizyphus nummularia
and
Acacia modesta
(Fig. 2.38),
mixed up with such evergreen unpalatable shrubs as
Periploca
aphylla, Rhazya stricta,
Calotropis procera
(Fig. 2.39)
,
and
Withania coagulans
(Solanaceae)
.
In the comparatively densely
populated region, these strongly armed or unpalatable species
most likely have gained a higher coverage at the cost of perennial
grasses like
Chrysopogon aucheri
,
Hyparrhenia hirta
,
Tetrapogon
villosus
and
Stipagrostis
spp. Most other species of the
herbaceous layer are likewise unpalatable, as the annuals
Stipa
capensis
(Poaceae) and
Cleome viscosa
(Capparaceae), the
perennials
Aerva javanica
(Amaranthaceae) and the tiny desertic
Salvias S. aegyptiaca, S. santolinifolia
and
S. trichocalycina.
2.3.2.2
Deciduous and juniper woodlands
Pistacia vera
communities
(Map: 3a)
The foothills, lower and medium altitudes (c. 600-1,500 m) in N-
Afghanistan, where rainfall fluctuates between c. 300 and 500
mm, are the area of several woodland types dominated by the
deciduous
Pistacia vera
. It coincides with the upper part of the
broad loess belt, and on these soils the communities show their
most typical structure. Size and coverage of the trees that have
flat crowns and several stems vary from shrub-like 2-3 m up to
6(10) m, according to the water supply
(Fig. 2.40) and grazing
intesity. In higher altitudes, on northern slopes or on other more
mesic habitats, the coverage can reach up to 40% and other
deciduous trees might appear like
Amygdalus bucharica
,
Celtis
caucasica, Cercis griffithii
(see Fig. Ca-01
), Acer semenowii
,
Fraxinus xanthoxyloides
and the woody liana
Ephedra foliata.
On
loess soils, the herbaceous layer is meadow-like and made up of a
multitude of perennial and annual grasses, together with large-
leaved composites like
Codonocephalum grande
and
Cousinia
umbrosa;
also Lamiaceae such as
Phlomis bucharica
and
Salvia
pterocalyx.
    Flora and vegetation geography 21
2.39 :    
Calotropis procera
      500 
Fig. 2.39: “Tropical” semi-desert with
Calotropis procera
, E of Jalalabad,
close to Khyber pass, c. 500 m
       :
Eranthis
longestipitata
Corydalis aitchisonii
Anemone bucharica
    
Eremurus
) ( 
E. olgae
E. bucharicus
E. regelii
.
         
         .       /           .                             
Artemisia prasina
A. diffusa
A. oliveriana
 .                       ) : 3  .(
 
Pistacia atlantica
) :3b(          1.0002.000
  250450       
Pistacia atlantica
 ) 2.41 .(
P. atlantica
) An-01B   (          .                 .    
Cercis griffithii
Fraxinus xanthoxyloides
Ficus johannis
    .             
Amygdalus spinosissima
Cerasus bifrons

Astragalus
) 
A. koshubensis
( 
Artemisia
   
2.40 :  
Pistacia vera
      1.000 
Fig. 2.40: Deciduous
Pistacia vera
woodland near Rabotak pass, Baghlan
prov. c. 1,000 m
2.41 :   
Pistacia atlantica
  
Amygdalus
sp         1.800 
Fig. 2.41: Deciduous
Pistacia atlantica
woodland, with shrubby
Amygdalus
sp. in flower; above Musa Qala, Helmand prov., c. 1,800 m
The first geophytes appear in April:
Eranthis longestipitata,
Corydalis aitchisonii
and
Anemone bucharica;
later are such
showy
Eremurus
species as
E. olgae, E. bucharicus
and
E. regelii.
Several smaller woodland areas were protected for centuries
by the village people in order to safeguard their pistachio nut-
collecting as a considerable source of income. However, during
recent decades their area and/or the density of trees have greatly
decreased. Removal of trees at first led to higher productivity of
the most valuable herb layer but overgrazing favoured less
palatable species, in particular wormwoods like
Artemisia
prasina, A. diffusa
and
A. oliveriana
. From large areas at higher
altitudes, all natural vegetation has disappeared because of rain-
fed agriculture (lalmi, see Chapter 3).
Pistacia atlantica
communities (Map: 3b)
In W, S and E-Afghanistan, in altitudes from c. 1,000-2,000 m
and mean precipitation of c. 250-450 mm, the natural vegetation
is represented by
Pistacia atlantica
communities (Fig. 2.41).
P.
atlantica
(Fig. An-01B) is a robust, long-living tree with a thick
trunk and a rounded or somewhat flattened crown. Size and
coverage of trees as well as the associated species depend widely
on site conditions and on the geographical location. Additional
tree species such as
Cercis griffithii
,
Fraxinus xanthoxyloides
and
Ficus johannis
occur here and there. Due to the predominating
skeletal soils, shrubs and sub-shrubs, like
Amygdalus
spinosissima
,
Cerasus bifrons
,
Astragalus
spp (in particular
A.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
22
 2.42 :  
Amygdalus kuramica
  2.300 
Fig. 2.42: Deciduous
Amygdalus kuramica
woodland, Wardak prov., 2,300
m
    .       
     
Stipa arabica
Piptatherum
vicarium
Salvia leriifolia
.     
Eremurus stenophyllus
Fritillaria
imperialis
  )
Tulipa
(  
Anemone biflora
A. petiolulosa Corydalis afghanica
Arum
korolkowii
    .                       
Astragalus
    )
Artemisia
(              .
  )
Amygdalus
 :3c(
 2.0002.800                    
Pistacia
atlantica
       
Amygdalus kuramica
)    2.42  Ro-04    (
A. browiczii
=)
A. zabulica
) (    (    .                 35  .              
Rosa
Colutea
Cerasus
Cotoneaster
Rhamnus
Sageretia thea
subsp
. thea
   .          
Salvia bucharica
S. rhytidea
Eremurus aitchisonii
Eremurus
korshinskyi
Rheum ribes

Cousinia
.     
       .                    .                        
Leucopoa karatavica
  ) M5-50  (.
 
Juniperus excelsa/semiglobosa
) :3d(       1.400    
Pistacia vera
   
Juniperus excelsa
)  2.43(       2.900 )   (  3.200 ) (   .     
Amygdalus
  .                      2.8003.500     )
Cedrus
( .                    .       4501.000                                   .  
2.43 :  
Juniperus excelsa
            2.100 
Fig. 2.43: Evergreen
Juniperus excelsa
woodland, much affected by
grazing and logging; Sabzak pass, N of Herat, 2,100 m
koshubensis
) and
Artemisia
spp. are often common on the
expense of perennial and annual herbs. Some of the common
perennial hemicryptophytes are
the grasses
Stipa arabica
and
Piptatherum vicarium
, and
Salvia leriifolia
. Among geophytes, the
showy
Eremurus stenophyllus, Fritillaria
imperialis
and
Tulipa
spp.
are particularly conspicuous, besides
Anemone biflora
,
A.
petiolulosa
,
Corydalis afghanica
and
Arum korolkowii.
Degradation mainly resulted in open low shrub-lands dominated
by spiny
Astragalus
or by unpalatable
Artemisia
species with an
increasing coverage of small, prostrate annuals.
Amygdalus
communities
(Map: 3c)
From c. 2000-2800 m, in areas with higher precipitation, longer
lasting snow cover and more moderate summer temperatures, the
Pistacia
atlantica
woodlands are gradually replaced by the
communities of
Amygdalus kuramica
(E-Afgh, Fig. 2
.
42, see also
Fig. Ro-04) and
A. browiczii
(
= A. zabulica
) (SE- to W- Afgh). They
reach up to the tree line. The trees are bushy, with rounded
crowns, and rarely exceed 3-5 m. Other tree species are usually
absent but the loose shrub layer includes many species of
Rosa
,
Colutea, Cerasus, Cotoneaster, Rhamnus, Sageretia thea
subsp
.
thea
etc.
Common herbaceous perennials are among many others
Salvia bucharica
and
S. rhytidea, Eremurus aitchisonii
and
E.
korshinskyi, Rheum ribes,
and
Cousinia
spp
.
It reaches up to the
timber line which however is often obscured by removal of trees.
Overgrazing has often favoured the expansion of thorny cushion
sub-shrubs. In areas where they are also removed as brushwood, a
final stage of degradation results in an open
Leucopoa karatavica
grassland (see Fig. M5-50).
Juniperus excelsa/semiglobosa
communities (Map: 3d)
In N-Afghanistan, above c. 1,400 m the deciduous
Pistacia vera
woodlands grade into evergreen
Juniperus excelsa
communities
(Fig. 2.43) that form a belt up to the tree line at 2,900 m (W- Afgh)
to c. 3,200 m (NE-Afgh). In altitude they correspond to the
Amygdalus
communities. They re-occur at higher altitudes of E-
Afghanistan, in particular in Paktia, where they replace the
Cedrus
forests in drier areas from c. 2,800-3,500 m. However, due to the
different precipitation regime in both regions, the structure of the
shrub-layer and the herbaceous layers varies considerably. In N-
Afghanistan, the precipitation is much higher, with approximately
450-1,000 mm, most of them as snow; the winter rains are often
prolonged until June, but the summer is dry as everywhere in the
Irano-Turanian region. These conditions allow a rich shrub, dwarf
    Flora and vegetation geography 23
              
            
     .           
                               .
    12            80 %     .    
Juniperus excelsa
     
J. semiglobosa
 ) G1-02 G1-04A   .(                  .     
Lonicera nummulariifolia
)        (
Ephedra equisetina
 
Rosa
Berberis
Cotoneaster
Prunus
.          
Impatiens parviflora
Lepyrodiclis holosteoides
Geranium
rotundifolium
Parietaria lusitanica
        .     
Eremurus
furseorum
E. spectabilis
Allium rosenbachianum
.   
Prangos pabularia
Codonocephalum grande
      .                                . 
           
  
Celtis caucasica
Fraxinus xanthoxyloides
Acer turkestanicum
Amygdalus kuramica
           
Ferula
  
Rheum ribes
     . 
Juniperus
              .       
Ephedra major
subsp.
Procera
E.
gerardiana
Ribes orientale
.       
     
Stipa turkestanica
Piptatherum
baluchistanicum
Psathyrostachys caducus

Poa

Cousinia
Ferula
Artemisia
  .         
Artemisia glanduligera
                       .
2.3.2.3         

/Olea-Reptonia
) :4a(          8001.300
       300500     
Olea ferruginea
buxifolia Reptonia
) 2.44 (             .      
Nannorrhops ritchieana
) L5-01C  (
Maytenus royleanus
Sageretia thea
subsp
. brandrethiana
Ephedra pachyclada
Dodonaea
ٛ
iscose
        
Pistacia khinjuk
Acacia modesta
Ebenus stellatus
 .             
Tetrapogon
villosus
Dichanthium annulatum
Cymbopogon parkeri
Hyparrhenia hirta
Heteropogon contortus
Aristida cyanantha
                .                  )   (                             .
  lauriphyllous ) :4b(
 
Quercus baloot
        1.3002.100       350600    .
shrub and herbaceous vegetation to develop, with each layer
depending on the others, as long as the slopes are not too steep
and unstable.
Cutting of trees for charcoal production or natural die-back
favours the shrubs, and when they too are cleared, on deeper soils
the herbaceous layer might expand to veritable meadows which
are locally harvested for hay production. Under optimal conditions
the trees might grow up to 12 m and together with the rich shrub
layer the coverage can go up to c. 80%. In NE- and E- Afghanistan,
the common
Juniperus excelsa
is usually accompanied by
J.
semiglobosa
(Fig. G1-02, G1-04A). The latter often outnumbers
the first species in the subalpine belt. Common shrubs are
Lonicera nummulariifolia
(often as a small tree),
Ephedra
equisetina,
different species of
Rosa, Berberis, Prunus
and
Cotoneaster
. The shaded ground is loosely covered by thin-leaved,
delicate annuals such as
Impatiens parviflora, Lepyrodiclis
holosteoides, Geranium rotundifolium
and
Parietaria lusitanica
.
Prominent geophytes are, e.g.,
Eremurus
furseorum, E. spectabilis
and
Allium rosenbachianum.
Important hemi-cryptophytic plants
are, among others,
Prangos pabularia
and
Codonocephalum
grande.
After clearing from trees and shrubs, on loess soils the
latter two species greatly expand in meadows formed by
floristically rich and productive substitute communities. In
contrast, on slopes covered with scree all layers are much
reduced, deciduous trees like
Celtis caucasica, Fraxinus
xanthoxyloides, Acer turkestanicum
and
Amygdalus kuramica
widely replace the junipers, and tall
Ferula
species become
dominant in the herbaceous layer, together with
Rheum ribes.
The
Juniperus
communities in E-Afghanistan receive less
winter rain but sometimes additional summer rain. Common
shrubs are
Ephedra major
subsp.
procera
,
E. gerardiana
and
Ribes
orientale
. The herbaceous layer is dominated by more xerophilous
species, like the perennial grasses
Stipa turkestanica,
Piptatherum baluchistanicum, Psathyrostachys caducus,
Poa
spp., and species of
Cousinia, Ferula
and
Artemisia.
After the
destruction of trees,
Artemisia glanduligera
often occupied large
areas with thorn-cushion species invading from the sub-alpine
belt.
2.3.2.3 Evergreen broad-leaved woodlands and
forests in E Afghanistan
Dry
Reptonia-/Olea
community (Map: 4a)
Around the basins of Khost and Jalalabad, in areas from about
800-1300 m and rainfall from c. 300-500 mm, the
Reptonia
buxifolia
Olea ferruginea
community (Fig. 2.44) forms structurally
rich woodlands of widely differing coverage. Addional
sclerophyllous tree and shrub species are
Nannorrhops ritchieana
(see Fig. L5-01C),
Maytenus royleanus, Sageretia thea
subsp
.
brandrethiana, Ephedra pachyclada
and
Dodonaea viscosa
which
grow together with deciduous trees and shrubs as
Pistacia
khinjuk
,
Acacia modesta,
and
Ebenus stellatus
. A particularly
striking feature of these woodlands is the high coverage of
perennial tussock grasses like
Tetrapogon villosus, Dichanthium
annulatum, Cymbopogon parkeri, Hyparrhenia hirta, Heteropogon
contortus
and
Aristida cyanantha
that greatly increase in coverage
after destruction of the woody component. Most of them start
sprouting with the onset of the summer rains and can give the
landscape the aspect of a lush tropical savannah at the same time
(July to September) whereas in interior Afghanistan most plant life
activity has completely ceased.
Sclerophyllous and lauriphyllous oak forests (Map: 4b)
The
Quercus baloot
communities occur adjacent to the former in
altitudes from 1300-2100 m and rainfall from c. 350-600 mm.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
24
2.44 :      
Reptonia buxifolia
Olea
ferruginea

Nannorhops
        
        1.200 
Fig. 2.44: Evergreen broad-leaved
Reptonia buxifolia
Olea ferruginea
woodland, with
Nannorhops
; S-exposed slope; note the desert varnish on
the rocks, near Khost, Paktya prov., c. 1,200 m
2.45 :     
Quercus baloot
       1.500 
Fig. 2.45: Evergreen broad-leaved
Quercus baloot
forest close to Kandeh
village, Pech-Valley, Kunar prov., c. 1,500 m
          )  15  2.45 (                  
         
 
Quercus baloot
        .         
Amygdalus kuramica
Pistacia khinjuk
 
Lonicera
griffithii
Rosa brunonii
  
Daphne mucronata
Plectranthus rugosus
Perovskia atriplicifolia
Salvia cabulica
.                  
Perovskia atriplicifolia
Sophora griffithii
   
Artemisia
)   
Artemisia
kurramensis
(  .   
Qu. baloot
                  ) 2.46  Fg-01C   (  .    
Quercus baloot
 25        ) Fg-01D  (.
         
       1.900      
Q. baloot
     
Qu. dilatata
) 2.47  2.48 (     
Qu. semecarpifolia
  . 
2.46 : 
Quercus baloot
     1.600 
Fig. 2.46
Quercus baloot
remnants at Tope Dara near Charikar, c. 1,600 m
Depending on water supply and soil conditions, they might
form forests, with the individual trees up to 15 m high (Fig. 2.45),
or shrubby woodlands, but most of the latter are caused by
intensive cutting of twigs for feeding domestic animals during
winter, and by selective felling of whole trees because
Quercus
baloot
yields the most valuable fire wood. Accompanying woody
species are the trees
Amygdalus kuramica
and
Pistacia khinjuk
,
the lianas
Lonicera griffithii
and
Rosa brunonii
,
and the shrubs
Daphne mucronata, Plectranthus rugosus, Perovskia atriplicifolia
and
Salvia cabulica.
These forests and woodlands have
disappeared from large areas, and their place is taken by shrub
communities of
Perovskia atriplicifolia
and
Sophora griffithii,
or by
different
Artemisia
(e.g.,
A. kurramensis)
communities. The
westernmost remnants of
Qu. baloot
forests have survived in the
Panjshir valley to the north of Kabul, and a few tall trees were even
observed at Top Dara above the Koh-e-Daman Plain near Charikar
(see Fig. Fg-01C, Fig. 2.46). Historical records of
Qu. baloot
also
exist
from the Latahband pass some 25 km east of Kâbul (see Fig.
Fg-01D).
In the semi-humid to humid areas of Nuristan and around the
Safed Koh, from c. 1,900 m upwards, with higher amount of
summer rain,
Q. baloot
is replaced at first by the mesophilous
Qu.
dilatata
(Fig. 2.47, Fig. 2.48) and higher up by
Qu. semecarpifolia
    Flora and vegetation geography 25
2.47:      
Quercus dilatata
    2.100 
Fig. 2.47: Evergreen broad-leaved
Quercus dilatata
forest, Dar-e-Nur,
Nangarhar prov., 2,100 m
2.49 :      
Quercus
semecarpifolia
    2.800 
Fig. 2.49: Degraded evergreen broad-leaved
Quercus semecarpifolia
forest, Dar-e-Nur, Nangarhar prov.; 2,800 m
   2.900        820)25 (   .       
Juglans regia
Celtis caucasia
Acer turkestanicum
Pyrus pashia
Diospyros lotus
  
Rosa brunonii
Lonicera griffithii
    
Corylopsis jacquemontiana
Indigofera gerardiana
Cotoneaster rosea
C. aitchisonii
Rubus
niveus
 .   
Taxus wallichiana
Viburnum
cotinifolium
Abelia triflora
   .   
       
Strobilanthes
urticifolius
Nepeta erecta
Bistorta amplexifolia
Rumex dentatus
Salvia nubicola
 
Brachypodium sylvaticum
Piptatherum
munroi
P. aequiglume
  
Impatiens
      
Dryopteris ramosa
D. stewartii Diplazium tomentosum
Deparia (Athyrium) allantodioides
Pteris cretica
.                
Pinus wallichiana
  ) 2.49  (.        
Sambucus wightii
 
Stipa brandisii
  .
                      )
Stipa brandisii
       (  .
2.48:      
Quercus dilatata
  
Taxus contorta
Acer turkestanicum
Stachys floccose
      2.150 
Fig. 2.48: Evergreen broad-leaved
Quercus dilatata
forest, ravine with
Taxus contorta, Acer turkestanicum
,
Stachys floccosa
etc.; Dar-e-Nur,
Nangarhar prov., 2,150 m
2.50 : 
Pinus gerardiana
         2.300 
Fig. 2.50:
Pinus gerardiana
woodland, protected old stand; N of Urgun,
Paktika prov., c. 2,300 m
communities (Fig. 2.49)
.
These oaks might cover the slopes up to
about 2,900 m with dense forests of 8-20(25) m in height.
Common associates of these true Himalayan forests are e.g., the
deciduous trees
Juglans regia, Celtis caucasia, Acer
turkestanicum, Diospyros lotus, Pyrus pashia,
the woody climbers
Rosa brunonii
and
Lonicera griffithii
, and shrub species like
Corylopsis jacquemontiana, Indigofera gerardiana, Cotoneaster
rosea, C. aitchisonii
and
Rubus niveus
. In higher altitudes,
Taxus
wallichiana, Viburnum cotinifolium
and
Abelia triflora
have been
observed. The luxuriant herbaceous layer includes other
mesophilous Himalayan species, like
Strobilanthes urticifolius,
Nepeta erecta, Bistorta amplexifolia, Rumex dentatus, Salvia
nubicola,
the grasses
Brachypodium sylvaticum,
Piptatherum
munroi
and
P. aequiglume
, several annual species of
Impatiens
and even hygrophilous tall ferns like
Dryopteris ramosa, D.
stewartii
,
Diplazium tomentosum, Deparia (Athyrium)
allantodioides
and
Pteris cretica.
Under less humid conditions,
the evergreen oaks form mixed stands with the tall
Pinus
wallichiana
(see Fig. 2.49).
After forest destruction, shrub
communities with
Sambucus wightii
and grasslands with
Stipa
brandisii
are common. They sometimes show a luxuriant growth
but their floristic composition is undesirable mainly because of
the dominance of unpalatable and toxic grasses (
Stipa brandisii
is
cyanogenic causing animal deaths).
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
26
2.51 :    
Cedrus
            2.700 
Fig. 2.51: Westernmost
Cedrus
woodland remnants, degraded by felling
and grazing, E of Gardez, Paktya prov., c. 2,700 m
2.3.2..4         ) :5(
            
       
            .            .
 2.1002.500  
Pinus gerardiana
) 2.50 G3-05   (    
Quercus
baloot
  .        512  
 1570 %   .    )  
Pistacia vera
(       .            .         
            
            
Sophora
griffithii
Caragana ulicina
Cotoneaster afghanicus
Berberis
calliobotrys
Rosa ecae
  .  
Artemisia
      .
   2.5003.100      
 500600      
 
Cedrus deodara
) 2.51 (   
Pinus
gerardiana
   
Juniperus
  
  
Quercus–Pinus wallichiana
  .
Cedrus deodara
                     
2535    80 %   . 
                   
Lonicera quinquelocularis
Berberis calliobotrys
Cotoneaster
spp
.
Ribes orientale
 .            .       
     
Carex cardiolepis
Piptatherum
angustifolium
Poa aitchisonii
 . 
Cedrus deodara

         
                   ) 2.52  3.12    (          .        
Artemisia
 
A. bicolour

A. glanduligera
  .
2.52 :
Cedrus deodara
       2.800 
Fig. 2.52:
Cedrus deodara
forest at the S slope of Safed Koh, Paktya prov.,
c. 2,800 m
2.3.2.4 Temperate coniferous forests and woodlands in E
Afghanistan (Map: 5)
Woodlands and forests of different Himalayan conifers gradually
replace the broad-leaved evergreen forests when mean
precipitation is too low, or when the growth period becomes too
short at higher altitudes. This also explains the occurrence of
broad transitional zones.
In altitudes from 2,100-2,500 m, the
Pinus gerardiana
woodlands
(Fig. G3-05, Fig. 2.50) alternate with the
Quercus
baloot
communities. The trees are usually 5-12 m tall and might
cover 15-70% of the ground. Locally these woodlands are
protected (similar to the
Pistacia vera
woodlands) for “nut”
collecting. The seeds are important in the internal and external
export trade. Due to strong root competition, intact plant
communities are rather poor floristically, but in natural openings
and after logging a rather rich shrub layer might be found with
Sophora griffithii, Caragana ulicina, Cotoneaster afghanicus,
Berberis calliobotrys
and
Rosa ecae
. Often degradation has
resulted in
Artemisia
communities.
Higher up
,
from 2,500- 3,100 m in mountain systems that
receive c. 450-600 mm mean precipitation, mainly in winter,
Cedrus deodara
communities (Fig. 2.51) take the place of
Pinus
gerardiana
woodlands in between the more xerophilous
Juniperus
woodlands and the mesophilous mixed
Quercus–Pinus
wallichiana
forest communities. On steeper slopes, the
Cedrus
deodara
-communities occur as woodlands, but under optimum
conditions, the usually mono-specific tree layer may be 25-35 m
tall and reach a coverage of 80%. The thin shrub layer is more or
less restricted to clearings and usually consists of
Lonicera
quinquelocularis, Berberis calliobotrys, Cotoneaster
spp
.
and
Ribes orientale.
The herbaceous layer is also open and varies
much according to water supply and shade. Usually it includes a
noticeable grassy component, with
Carex cardiolepis, Piptatherum
angustifolium
and
Poa aitchisonii.
As
Cedrus deodara
provides
the most valued timber wood in Afghanistan and adjacent
Pakistan, the forests have been exploited or over-exploited for
decades (Fig. 2.52, see Fig. 3.12) and are completely destroyed in
most of the area. They are replaced by stable
Artemisia
communities with prevailing
A. bicolor
and/or
A. glanduligera
.
    Flora and vegetation geography 27
 2.53:    
Abies
Picea
Cedrus
      2.500 
Fig. 2.53: Dense mixed coniferous forest with
Abies, Picea
and
Cedrus
,
Mandahar forest near Kotgai, Paktya prov., c. 2,500 m
2.55 :    )   (     )   (     
Rhododendron
collettianum
  
Juniperus communis
ssp.
nana
J.
squamata
      3.100 
Fig. 2.55: Sub-alpine scrub (krummholz) at the monsoon influenced side
of Safed Koh (S slope of Sikaram) with
Rhododendron collettianum
thickets in full flower on shady slope, and
Juniperus communis
ssp.
nana
and
J. squamata
on S-facing slope, Paktya prov., 3,100 m
                        
        
Abies Picea
) 2.53 (  .    
Abies pindrow
)  (
A. spectabilis
)    G3- 01A  (
Picea smithiana
) G3-03   (   1530         
Quercus semecarpifolia
Pinus wallichiana
) 2.54 ( .                      .        
Pertya aitchisonii
Salvia nubicola
،
Saussurea afghana
Rumex nepalense
Lilium polyphyllum
Cicerbita aitchisoniana
 .                  
Betula jacquemontii
 .
2.3.2.5      
  
Juniperus
Rhododendron
)  ) ( :6(        )3.2003.300 (  4.000  
Abies spectabilis
Picea
Quercus semecarpifolia
  
Juniperus squamata
 .     5080   
Rosa macrophylla
Ribes alpestre R. villosum
Lonicera webbiana
Rhododendron collettianum
) 2.55 . (         
Abies
    .
2.54 :   
Pinus wallichiana
Cedrus deodara
     2.500 
Fig. 2.54: Mixed coniferous forest with
Pinus wallichiana
and
Cedrus
deodara
; above Kotgai, Paktya prov., c. 2,500 m
At the same altitude but with a much higher summer rainfall,
usually above the broad-leaved evergreen oak forests, in more
humid parts of Nuristan and on the upper slopes of the Safed Koh,
mixed
Abies–Picea
forests (Fig. 2.53) are distributed. They consist
of
Abies pindrow
(upper
montane)
, A. spectabilis
(sub-alpine, see
Fig. G3-01A) and
Picea smithiana
(G3-03)
,
they are 15-30 m high
and often include individual trees of
Quercus semecarpifolia
and
Pinus wallichiana
(Fig. 2.54). Due to the shade in intact
communities, the shrub and herbaceous layers are poorly
developed. They contain a number of mesophilous species like
Pertya aitchisonii, Salvia nubicola, Saussurea afghana
,
Rumex
nepalense, Lilium polyphyllum
and
Cicerbita aitchisoniana.
On
unstable slopes and in small valleys close to the tree-line the
conifers are locally replaced by a
Betula jacquemontii
community.
2.3.2.5 Subalpine, alpine and nival vegetation
Subalpine
Juniperus-
and
Rhododendron
scrub (krummholz)
(Map: 6)
In the wettest parts of Nuristan, from the timber-line at 3,200-
3,300 m up to c. 4,000 m,
Abies spectabilis, Picea
and
Quercus
semecarpifolia
are replaced
by a
Juniperus squamata
community.
Subordinate components of this dense 50-80 cm high thickets
are
Rosa macrophylla
,
Ribes alpestre, R. villosum, Lonicera
webbiana
and
Rhododendron collettianum
(Fig. 2.55). The
herbaceous layer is similar to that of the sub-alpine
Abies
forest.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
28
2.56 :          
Acantholimon
auganum
A. cabulicum
A. leucochlorum
Artemisia glanduligera
     3.200 
Fig. 2.56: Sub-alpine thorn cushion shrub-land with
Acantholimon
auganum, A. cabulicum, A. leucochlorum
and
Artemisia glanduligera
above Dasht-e Nawor, Ghazni prov., 3,200 m
                  
Rhododendron afghanicum
                )BRECKLE 1972 LARSEN 2009.(                      
Abies
   
Picea
      
Juniperus
nana
subsp.
communis

Abies
  . 4060                   
Cousinia
kuramensis
Onobrychis
spinosissima
Cicer macracanthum
                   .
       ) :7a(
                                             .      ) 2.56 (    2.8002.900     3.3003.500        3.8004.000            .          
Cousinia
Astragalus
Onobrychis
Acantholimon
Acanthophyllum
Cicer
                  .       
Artemisia
spp.
Ephedra gerardiana
Rhamnus prostrate
Krascheninnikovia
ceratoides
.        
Piptatherum laterale
Poa araratica
Koeleria
spp.
Festuca
spp.  .         
Trigonella
Astragalus
Oxytropis
    .       
Eremurus kaufmannii
 .                 
Psathyrostachys
caduca
         .
       ) :7b(
                     )juniper (        .                               .          
2.57 :     )
Bos grunniens
(      
Kobresia
Carex
     
   4.400 
Fig. 2.57: Summer pasture for yaks (
Bos grunniens
) in the Wakhan area
with dense
Kobresia
- and
Carex
-vegetation at melting snow, NE of Wazit
pass, Asanktitch-Valley, 4,400 m
On lower sites at the Safed Koh and in the upper Laghman
area, below the tree line, the very rare
Rhododendron afghanicum
occurred, but is most probably now extinct at the first locality
(BRECKLE 1972, LARSEN 2009).
Where summer rain is somewhat less abundant and
Abies
is
replaced by
Picea
at the timber-line as in most parts of Nuristan
and around the Safed Koh, the
Juniperus communis
subsp.
nana
community takes the place of the former. It is only 40-60 cm high
and has a patchy structure, with the clearings covered by thorn
cushions like
Cousinia
kuramensis, Cicer macracanthum
and
Onobrychis spinosissima
and numerous hemi-cryptophytes
related to or identical with those of the cushion shrub
communities.
Sub-alpine thorn cushion shrub-lands (Map: 7a)
Plant communities dominated by thorn cushion plants represent a
broad upper vegetation belt in most higher mountain systems of
Afghanistan where summer rain is absent and where the water
supply completely depends on moisture from melted snow stored
in the soil. These very peculiar shrub-lands (Fig. 2.56) extend from
the timber-line located at c. 2800-2900 m in the western parts
and 3300-3500 m in the north-eastern and eastern parts up to
3800 to 4000 m and play an important role as summer pastures.
Most predominant species belong to spiny species of
Cousinia,
Astragalus
,
Onobrychis,
Acantholimon
,
Acanthophyllum
and
Cicer
,
but species composition varies between the different mountain
systems, and the proportion of endemics is particularly high. Other
common dwarf shrubs are
Artemisia
spp.,
Ephedra gerardiana,
Rhamnus prostrata,
and
Krascheninnikovia ceratoides.
The herb
layer includes many palatable grasses, as e.g.
Piptatherum
laterale, Poa araratica, Koeleria
spp. and
Festuca
spp. Together
with many legumes, such as species of
Trigonella, Astragalus
and
Oxytropis
it provides important grazing resources. One of the most
striking plants is the steppe lily
Eremurus kaufmannii.
Most likely,
the often strong grazing pressure has resulted in a marked
increase in thorn-cushion plants and in the tufted grass
Psathyrostachys caduca
beyond their original representation.
Alpine semi-deserts, steppes and meadows (Map: 7b)
The borderline between subalpine and the alpine vegetation is not
readily discernible, except in the wetter parts of E-Afghanistan
where it is marked by the upper border of the juniper scrub. In
most areas, the thorn-cushion plants of the sub-alpine belt are
    Flora and vegetation geography 29
2.58 : 
Kobresia
                4.200 
Fig. 2.58: Alpine
Kobresia
-meadows alongside melting snow-water
creeks, Fuladi-Valley, Kohe-Baba, Bamyan prov., 4,200 m
2.59 :         cirque  :                  
      4.300 
Fig. 2.59: Mosaic of habitats in the alpine belt around a glacial cirque:
steep rocks, boulders, scree, alpine meadows fed by seepage water, snow
cover of varying duration; S Salang above tunnel, 4,300 m
                 ) 2.57 (   .               )  (
           ) 2.29  .(            
               
    ) 2.58(    .                       .                         .
 ) :8(
    ) 1   ( 4.8005.000 )      ( 5.400 )   (            .                 

Juniperus semiglobosa
Lonicera microphylla
   
Cystopteris dickieana
    5.000   )BRECKLE 1974 1988 .(  5.000  40    )BRECKLE 1974 .(          
Primula macrophylla
     5.600  )   Pr-17  .(
2.60 :           )penitent snow(      Toelzer Koepfl     5.100 
Fig. 2.60: Nival belt, with penitent snow pyramids, pointing to the sun,
Toelzer Koepfl, S of Mir Samir, C Hindu Kush, 5,100 m
step-wise replaced by smaller-sized species of the same genera,
and also the species composition of the herbaceous layer changes
gradually. Genuine alpine meadows dominated by grasses and a
greater variety of herbs are restricted to the C and E Hindu Kush
and the Pamirs (Fig. 2.57) because of more summer rainfall.
Consequently, they are heavily used for summer pasture during
the short summer (two months), usually by nomad (kuchi) people
(see Fig. 2.29). Elsewhere, even on deeper soils, the vegetation is
rather open, except for wet sites along creek borders, head-waters
and swamps below melting snow fields, where alpine meadows
exist (Fig. 2.58). Due to steep topography, delayed soil formation,
and the locally long-lasting snow cover, even small areas might
show a high diversity of plant communities. Vast stretches look
almost devoid of vegetation as they consist of rocks, blocs and
scree (Fig. 2.59).
Nival belt (Map: 8)
Approaching the snow-line (see Chapter 1) at c. 4,800-5,000 m
(N exposed slopes) to 5,400 m (S exposed), everywhere the
coverage and numbers of species decrease significantly. However,
on south-facing rocky slopes in the Hindu Kush even dwarf woody
plants like
Juniperus semiglobosa
and
Lonicera microphylla
can
be found above 5,000 m, as well as the fern
Cystopteris dickieana
(BRECKLE 1974, 1988). There are almost 40 species recorded from
above 5,000 m (BRECKLE 1974). The highest altitudinal record of a
vascular plant in Afghanistan is the beautiful
Primula macrophylla
(see front-cover, Fig. Pr-17) in the C Hindu Kush at 5,600 m.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
30
2.61 :  
Umbilicaria aprina
)(
Rhizoplaca
melanophthalma
) (
Caloplaca biatorina
) (        4.900 
Fig. 2.61: Lichen cover on high alpine and nival rocks with black
Umbilicaria aprina
, yellowish
Rhizoplaca melanophthalma
and orange
Caloplaca biatorina
, Wazit area, Wakhan, 4,900 m
Sibbaldia cuneata
  5.500    .              
                  .               BRECKLE )1974 ( NOROUZI et al. )2007 (    )KÖRNER 1999  .(          4.9005.200    5.0005.300   )GRÖTZBACH & RATHJENS 1969 RATHJENS 1972a, 1978a BRECKLE & FREY 1976a,b  (              4.800    .                  ) 2.60(:        .     )  2.61 (        .
2.3.2.6    
    ) :9a(
           
             .               /     . "  "
          
          ) 2.62 .(                       .
              
 ) :1 (
Populus
pruinosa
            )2 (
Populus euphratica
)  2.63 (            )3 (  
Dalbergia sissoo

Nerium indicum
) (
Ficus palmata
           .        
Salix acmophylla
Fraxinus raibocarpa
Crataegus songarica
 
Tamarix
)         
T. articulata
(
Platanus orientalis
Acer pentapomicum
Rosa
spp
.
Punica granatum
   
Rubus anatolicus
Ampelopsis aegirophylla
Clematis orientalis
 
Arundo donax
Erianthus ravennae
) 6 ( 
2.62 :       )  
Salix
Betula Hippophaë
(            2.800 
Fig. 2.62: Sub-alpine riverine shrublands (gallery forests with
Salix,
Betula, Hippophaë
) in the wide valley of Wakhan and Pamir River junction,
near Qala Panja, c. 2,800 m
Sibbaldia cuneata
is also known from about 5,500 m. Mosses
and lichens occur even up to the highest peaks on rocky surface,
but a coherent nival belt occurs only in the higher parts of the
Pamirs, the Hindu Kush and the Kuh-e-Baba range.
The typical decrease in number of species with increasing
altitude for various mountains in C Asia was shown by BRECKLE
(1974) and by NOROOZI et al. (2007) (see also KÖRNER 1999). The
average snow line in the W Hindu Kush is c. 4,900-5,200 m, in
Wakhan between 5,000-5,300 m (see also GRÖTZBACH & RATHJENS
1969, RATHJENS 1972a, 1978a, BRECKLE & FREY 1976a,b); in some
parts, as in the Salang region, it is less than 4,800 m. The eternal
snow and cover of glaciers in summer often shows the typical
“Penitentes” formation resulting from the high radiation (Fig.
2.60) sometimes with reddish snow-algae. On the rocks lichens
prevail (Fig. 2.61) and conquer the highest peaks.
2.3.2.6 Azonal vegetation
Riverine vegetation (Map: 9a)
The lower terraces of the major river valleys which underwent
periodic or episodic flooding were originally covered by luxurious
riverine forests. They have almost completely disappeared and
were replaced by fruit gardens or fields. Nearly natural riverine and
gallery forest vegetation is only present in remote areas at higher
altitudes as in Wakhan (Fig. 2.62). Elsewhere, only individual
trees, fragments of gallery forests and very few protected localities
allow a reconstruction of the original vegetation.
From the hot lowlands up to medium altitudes, at least three
main types of thermophilous riverine forests were distributed: (1)
Populus
pruinosa
-communities along the Amu-Darya and its
larger tributaries, such as the Surkhab and the Ab-e-Safed; (2) the
Populus euphratica
communities (Fig. 2.63) in the valleys of W
and S-Afghanistan, in particular along the lower Hari Rud, the
Khash Rud, Helmand and Arghandab; (3) the
Dalbergia sissoo-
communities with
Nerium indicum
(
oleander
)
and
Ficus palmata
along the lower Kabul river and its tributaries from Nuristan. At
places, these dominant trees have been found together with
Salix
acmophylla
,
Fraxinus raibocarpa, Crataegus songarica,
several
Tamarix
species (among them the only genuine tree species
T.
articulata
)
, Platanus orientalis,
Acer pentapomicum, Rosa
spp
.,
Punica granatum,
the woody climbers
Rubus anatolicus,
    Flora and vegetation geography 31
2.63 :          
Populus
euphratica
        770 
Fig. 2.63: Lowland riverine forest of
Populus euphratica
; island in
Helmand river near Lashkargar, Helmand prov., 770 m
          .                  
Tamarix

Lycium
ruthenicum
Desmostachya bipinnata
Glycyrrhiza glabra
G.
uralensis
  .        
          
Alhagi
maurorum
Prosopis farcta
Peganum harmala
  .
Vitex
agnus-castus
Stocksia brahuica
        
Nerium indicum
.
                   .          
Populus afghanica
 .              .     
Salix
)   
S. pycnostachya
(
Elaeagnus
angustifolius
Halimodendron halodendron
Rubus caesius
     
Mentha longifolia
Heracleum
afghanicum
Agrimonia eupatoria
Bryonia alba
 .             
Juglans
regia
Acer turkestanicum
Pyrus pashia
       .                  
Tamarix

Salix
Myricaria germanica
Hippophaë rhamnoides
)  2.64 (             
          
 .
     ) :9a (
                     .                   
            
        .                
                  .         2006        .         
           
             .            
           
     .                .
2.64 :        
Salix
Betula
Hippophaë
      3.000 
Fig. 2.64: Sub-alpine gallery shrub-land consisting of
Salix, Betula
and
Hippophaë
, upper Bashgal valley, Konar prov., c. 3,000 m
Ampelopsis aegirophylla
and
Clematis orientalis,
the giant
grasses
Arundo donax
and
Erianthus ravennae
(up to 6 m), and a
tall herbaceous layer. On the slightly to moderately saline margins
of these forests as well as beside dry river courses grow shrub
communities of different species, with
Lycium ruthenicum,
Desmostachya bipinnata, Glycyrrhiza glabra
and
G. uralensis.
Here also is the original habitat of some common weeds of
irrigated fields and fallow areas like
Alhagi maurorum, Prosopis
farcta
and
Peganum harmala
.
Vitex agnus-castus
and
Stocksia
brahuica
form communities in the river beds – occasionally with
Nerium indicum
.
At medium and higher altitudes, the smaller rivers and creeks
are bordered by different montane riverine forests, depending on
hydrology and soil conditions. One more common group of plant
communities besides running water is dominated by
Populus
afghanica
. That fast-growing tree is still present everywhere and
planted as a most important timber resource. Common associates
are various species of
Salix
(e.g.
S. pycnostachya
)
, Elaeagnus
angustifolius, Halimodendron halodendron, Rubus caesius
and
many mesophytic herbs, like
Mentha longifolia, Heracleum
afghanicum, Agrimonia eupatoria, Bryonia alba
etc
.
In regions
with abundant summer rain like Nuristan,
Juglans regia, Acer
turkestanicum
and
Pyrus pashia
are important components of the
tree layer. On brackish sites and higher up the poplars are
replaced by dense
Tamarix
communities,
Salix
species,
Myricaria
germanica
and
Hippophaë rhamnoides
(Fig. 2.64)
and might
form
stands on often flooded fluviatile pebbles especially close to the
tree line.
Rivers, lakes, swamps (Map: 9a)
Because of a arid climate and their land-locked position, many
drainage systems terminate in endorrheic basins and smaller
depressions. Depending on the widely varying amount and
reliability of influx, there are freshwater or alkaline lakes, swamps
or salt flats with widely differing habitats and with a great diversity
of plant communities. These lakes and swamps change size and
shape according to the season and shrink dramatically or even dry
out completely when for subsequent years rainfall remains below
average. Even the largest freshwater lake, the Hamun-e-Puzak,
dried up almost completely in 2006. In addition, by the
construction of dams for irrigation purposes, the hydrology of
most drainage systems has been altered fundamentally and
probably will change even more with the extension of irrigated
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
32
2.65 :                     )
Salix, Juncus
(  2.950 
Fig. 2.65: Band-e-Amir, oligotrophic cold fresh water lakes in a sub-alpine
environment with sparse shore vegetatio n (
Salix, Juncus
), c. 2,950 m
              .        
Potamogeton
)   
P. nodosus
(   
Batrachium sphaerospermum
B. trichophyllum
Zannichellia palustris
.
   
             .   60
)19601970 (         
Potamogeton lucens
P. perfoliatus
P. pectinatus
Vallisneria
spiralis
Ceratophyllum demersum
Utricularia minor
.               
Phragmites australis
Typha australis
Scirpus maritimus
Eleocharis palustris

Butomus umbellatus
Alisma lanceolatum
   .        )   (        ) : 9b (                 .
         
 ) 2009  4.4    (   )  2.65 (   .     6    
            
  .               2.8002.900       .       
Potamogeton natans
P. amblyophyllus
P. filiformis
Utricularia vulgaris
.
               
)     
Phragmites australis
Sparganium ramosum
Scirpus
maritimus
 2.66 (  .            
Myriophyllum spicatum
Potamogeton filiformis
P. pectinatus
Zannichellia palustris
Chara
GILLI )1971 (   .
       )sabkhas) ( :9b (
          ) 2.67 (  .                              
Juncus
gerardi
Crypsis aculeata
Glaux maritima
Camphorosma
monspeliaca
Taraxacum monochlamydeum
 
Nasturtiicarpa notorrhiza
)Cruciferae (     .
     
Ruppia maritima
stoneworts  
Chara
   .
2.66 :  
Phragmites australis
         475 
Fig. 2.66:
Phragmites australis
reed vegetation at the shore of the former
freshwater lake Hamun-e-Puzak, Nimrod prov., c. 475 m
agriculture. This causes reduced influx, increasing salinity, higher
concentrations of nutrients and pollutants, and the disruption of
ecosystems. In general, to date, the flora and vegetation of
aquatic and semi-aquatic ecosystems has been insufficiently
studied.
The river vegetation is usually poor. It contains a few species
of the genera
Potamogeton
(e.g.
P. nodosus
)
and the submerged
Batrachium sphaerospermum, B. trichophyllum
and
Zannichellia
palustris.
The largest formerly fresh water lakes are the Hamun-e-Puzak
and the Hamun-e-Seistan in the Seistan basin at the Iranian
border. In the sixties (1960-1970) they had a rich aquatic
vegetation, with submerged
P. lucens,
P. perfoliatus
and
P.
pectinatus, Vallisneria spiralis, Ceratophyllum demersum
and
Utricularia minor.
In shallow water a broad reed belt was made up
of
Phragmites australis, Typha australis,
Scirpus maritimus
and
Eleocharis palustris,
with
Butomus umbellatus
and
Alisma
lanceolatum
.
Nowadays, most of the above mentioned endorrheic
lakes (Hamun-e-Puzak etc.) are huge salt-swamps, caused by the
reduced inflow (Map: 9b). There is now a rich halophytic
vegetation.
Most famous are the beautiful fresh-water lakes in the
recently (April 2009, see also Chapter 4.4) established Band-e-
Amir National Park (Fig. 2.65). They are made up of a series of 6
lakes separated by natural dams and ecologically characterized
by a stable water level. However, floristically they are rather poor
because of their location in the subalpine belt at 2,800-2,900 m
and the steep banks. Here, common aquatic plants are
Potamogeton natans, P. amblyophyllus, P. filiformis
and
Utricularia vulgaris.
Parts of the Kol-e-Hashmat Khan S of Kabul are still today
partly covered with reeds (mainly
Phragmites australis,
Sparganium ramosum
and
Scirpus maritimus,
Fig. 2.66), and in
shallow water dense submerged stands of
Myriophyllum
spicatum, Potamogeton filiformis, P. pectinatus, Zannichellia
palustris
and
Chara
were reported by GILLI (1971).
Alkaline lakes, saline flats (sabkhas) (Map 9b)
Famous alkaline lakes are the Ab-e-Istada and the lake in the
centre of the Dasht-e-Nawor (Fig. 2.67) in Ghazni province. Both
shallow lakes are heavily influenced by overgrazing in their shore
areas that are subjected to episodic flooding and covered by plant
communities with the predominating perennials
Juncus gerardi,
Crypsis aculeata
,
Glaux maritima
,
Camphorosma monspeliaca
and
Taraxacum monochlamydeum,
and the endemic crucifer
Nasturtiicarpa notorrhiza.
Among the few aquatic plants are the
pondweed
Ruppia maritima
and stoneworts of genus
Chara
.
    Flora and vegetation geography 33
2.67 :            ) (   )3.2003.600  (.   
Fig. 2.67: View from the south to the huge basin of Dasht-e-Nawor,
(3100m) with a brackish lake surrounded by salt-marshes (in dark); slopes
(3,200-3,600 m) with cushion vegetation
                chenopod         .           
         .      
Halocnemum strobilaceum
  
Seidlitzia rosmarinus
  chenopod  

Climacoptera crassa
spp
. Turcomanica
 
Halostachys belangeriana
      .
          
Aeluropus littoralis
     
Hordeum
leporinum
Eremopoa persica
 chenopod 
Halocharis
hispida
Suaeda microsperma
  .
      )         (               .           
Halocnemum strobilaceum
Halostachys
belangeriana
Seidlitzia rosmarinus
 
Halocharis Halimocnemis Gamanthus Salsola
Suaeda
Chenopodiaceae
     
Limonium Nitraria
Frankenia
Tamarix
Reaumuria Cressa cretica
   .
2.4     
2.4.1         
                ) 1.1   .(        ) (        .             )    :250      °C 21,8 (    )     :3.366      
°C 0,25(  K 22  .    0.74
K/100 m          
  .                   .                                   ) 2.68 2.69 2.79   .(
durationof
thermalgrowth
period
5,000 m
4,000 m
3,000 m
1,500 m
900 m
250 m
0
Iceclimate
1
2
cold
3
4
cooltemperate
5
6
warmtemperate
7
9
warm
12
hot
12 11 10 9 8 7 6 5 4 3 2 1 0
subhumid
durationofhygricgrowthperiod
peraridaridsemiar id
perhumid humid
11
10
8
2.68 :  19           .       
Fig 2.68: The 19 climate types in Afghan mountains are schematically
arranged according to altitudinal belts. The white boxes mean that the
corresponding climatic type does not occur
Depressions with typical saline flats which are only
episodically flooded and dominated by sub-shrubby chenopods
are common in the lowlands. One of the largest is the Namak Sar
depression W of Herat. It exhibits a typical zonation, with a broad
inner belt of
Halocnemum strobilaceum
associated with
Seidlitzia
rosmarinus
and numerous annual chenopods, in particular
Climacoptera crassa
spp
. turcomanica
, patches of
Halostachys
belangeriana
on the wettest sites, and a heavily grazed outer belt
dominated by the stiff creeping grass
Aeluropus littoralis
, in
company with annual grasses as
Hordeum leporinum, Eremopoa
persica
and
the chenopods
Halocharis hispida
and
Suaeda
microsperma.
Some of the endorrheic lakes (Hamun-e-Puzak, Hamun-e-
Sabiri, Hamun-e-Helmand, Hamun-e-Gavdizirin) are surrounded
or were more or less replaced by salt flats in recent years. They
now exhibit a rich halophytic vegetation with
Halocnemum
strobilaceum
,
Halostachys belangeriana, Seidlitzia rosmarinus,
and different species of
Halocharis
,
Halimocnemis
,
Gamanthus
,
Salsola
,
Suaeda
,
and other Chenopodiaceae, but also various
species of
Limonium
,
Nitraria, Frankenia
,
Tamarix
,
Reaumuria
,
Cressa cretica,
etc.
2.4 Altitudinal belts of climate and vegetation
2.4.1 Altitudinal belts of climate and vegetation in the
central Afghan mountains
The accentuated topography of Afghanistan is mainly responsible
for the climatic conditions and variability as well as for the spatial
distribution of vegetation within the country (Chapter 1.1). The
altitudinal belts of climate in general are characterized by the
vertical temperature and precipitation gradients. In the vertical
direction, there is a temperature range of almost 22 K between
the hot desert climate (e.g. Zaranj: 250 m, annual mean 21.8°C)
and the main ridge of the Hindu Kush (e.g. Sâlang pass: 3,366 m,
mean annual temperature -0.25°C). This is equivalent to about
0.74 K/100 m, which corresponds to a nearly dry adiabatic
temperature gradient. The precipitation also exhibits a dramatic
change between the desertic lowlands and the almost all year
round humid parts of the high mountains of the Hindu Kush. The
combination of this accentuated hypsometrical change of
temperature and precipitation is the basis for a rather broad
pattern of various climatic types within the country and specifically
within the various altitudinal belts with a typical asymmetry of the
altitudinal belts of vegetation (see Figs. 2.68, 2.69, 2.70).
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
34
2.69 :              )   FREITAG 1971a BRECKLE 2004 2007(
Fig. 2.69: Schematic representation of the vertical arrangement of vegetation belts in the Central Afghan Mountains between Zaranj and Amu-Darya
(based on data of FREITAG 1971a; BRECKLE 2004, 2007)
                    .        
  
             ) 2.69 .(            Chenopodiaceae 
Calligonum-Stipagrostis
Hammada salicornica
 .   1012        100          .      950     .      9501.200           
Amygdalus
  .       
                              .   
Amygdalus
   )150250   ( 79       .     
Amygdalus
cf.
eburnea
     
Amygdalus
cf.
erioclada
      .  1.2001.600        
Pistacia atlantica
          )     
P. atlantica
ssp.
Cabulica
    
P. khinjuk
(   . 
Cercis griffithi
) (           .    79         )250350  (
 . 1.600/1.8002.900       
Amygdalus
      56               )400500   ( .                
   .     
Amygdalus
communis
) (
A. kuramica
)   (
Pistacia
atlantica
)  ( .                 
More complicated are these changes along a profile between
Jalâlâbâd to the Nuristan mountains and the C Hindu Kush to the
Amu Darya.
In the C Afghan mountains, the altitudinal zonation of the
vegetation along a profile between Zaranj and Amu Darya via Koh-
e Baba, shows a relatively simple structure (Fig. 2.69). The
lowlands of Sistân and the Registân in the S and SW Afghanistan
harbour
Calligonum-Stipagrostis-
,
Hammada salicornica-
and
Chenopodiaceae- semi-deserts. With 10-12 thermal vegetation
months and very sparse rainfall (<100 mm), the climate is
extremely harsh. This vegetation formation includes all areas
below 950 m. In the foothill areas between 950-1,200 m, a
narrow belt of a semi-desert formation of
Amygdalus
-shrubs
exists. This formation is very typical only for the W, SW and parts of
E Afghanistan. Along the major valleys (Harirod, Khâsh Rud,
Helmand) this formation extends far into the mountain body. The
Amygdalus
-shrubs grow for 7-9 thermal vegetation months and
fairly arid conditions (N = 150-250 mm). Dominant shrubs are
Amygdalus
cf.
eburnea
in the W and the above mentioned valleys,
and
Amygdalus
cf.
erioclada
in its E area.
At heights of 1,200-1,600 m, the altitudinal belt of the
deciduous trees and open
Pistacia atlantica
-woodlands takes
place in form of a wide semi-circle between Herât and Kâbul
(mostly
P. atlantica
ssp.
cabulica
; in the lower level in the E
P.
khinjuk
).
Cercis griffithi
on the edge of the Harirod valley and in
the vicinity of Kâbul also belongs to this altitudinal belt. The
climate is, with a thermal vegetation period of 7-9 months, rather
warm and rainfall increasing up to about 250-350 mm.
Between 1,600/1,800-2,900 m, the altitudinal belt of the
Amygdalus
-woodlands follows with c. 5-6 thermal vegetation
months and rather semi-humid conditions (N = 400-500 mm).
Their distribution area penetrates along Ghorband-, Sâlang- and
Panjschir valleys in the Hindu Kush mountain. Dominant species
are
Amygdalus communis
(in W),
A. kuramica
(E, SE) and
Pistacia
atlantica
(E). In the upper parts of this altitudinal belt with
increasing rainfall and a further shortening of the thermal growing
ﺎﻫﺍﺮﺤﺻ ﺎﻫ ﺖﺷ
ﻮﻨ
ﺕﺎﺗﺎﺒﻧ ﺎﺑ
ﻪﻟﺎﺴﮑ
Calligonun
-
Aristida
-
Sanddeserts
ﺎﻫ ﻪﺘﺑ ﺎﺑ ﺎﻫ ﺖﺷ
ﻮﮐ ﻡﺍﺩﺎﺑ ﻩﺎﺗﻮﮐ ﺪﻗ
Dwarf
Amygdalus
-
Semi
-
Desert
ﺎﻫﺭﺍﺰﺑﻮ
ﺎﻫ ﻪﻨﻣﺍﺩ ﺭﺩ ﻪﺘﺴﭘ
ﺏﻮﻨ
ﻩﻮﮐ ﺎﻫ
Pistacia atlantica
-
Woodlands
ﺎﻫ ﺭﺍﺰﺑﻮ
ﻮﮐ ﻡﺍﺩﺎﺑ
A
m
yg
dalu
s
-Woodlands
ﺭﺍﺩﺭﺎﺧ ﺪﻨﻧﺎﻣ ﺎﮑﺘﻣ ﺕﺎﺗﺎﺒﻧ
Thorny cushion plants
ﺭﺍﺯ ﻩﺰﺒﺳ
ﺎﻬﺘﺷﺩ ،
ﺎﻬﺘﺷﺩ ﻪﻤ
ﺪﻨﺑﺮﻤﮐ
ﺎﭙﻟﺁ
Alpine Meadows Steppes and
ﻨﺳﻩﺰﻳﺮﺎﻫ
ﺮﻤﮐﺪﻨ ﻝﺍﻮﻴﻧ ﺐﺳ
Subnival Frost debris belt
ﺎﻫ ﻑﺮﺑ
ﺋﺍ
ﺎﻫ ﻝﺎﭽ
ﺪﻨﺑﺮﻤﮐ ﻝﺍﻮﻴﻧ
Perennial Snow and Ice
fields
ﻪﻤﻴﻧﺎﻫﺍﺮﺤﺻ ﻱﺎﻫ ﺖﺷﺩ
ﺎﻤﺷ
Semi
-
deserts
and S
teppes
ﺭﺍﺰﺑﻮ
ﺎﻫ ﻪﻨﻣﺍﺩ ﺭﺩ ﻪﺘﺴﭘ
ﺎﻫ ﻩﻮﮐ ﻝﺎﻤﺷ
Pistacia
vera
-
Woodlands
ﺎﻫ ﺭﺍﺰﺑﻮ
ﻮﮐ ﻭﺮﺳ
Juniperus
-
Woodlands
    Flora and vegetation geography 35
            2.900               .        
       2.9003.600)4.000 (        .             
Onobrychis
Ephedra
Acantholimon
Artemisia
  
Astragalus
 .      4.0004.500              .  4.500                   .                          
  .             )  :5.143  (        
          
            ) 1.2  .(
                                 
)PET (.
  2.68       
         .              4.000                      .             .            100300     .       
Juniperus excelsa
      1.7001800    .                 
          
 
Amygdalus
 )    .(                )5001.200      FREITAG
1971a(                        )KLAER 1974 (.
 
Juniperus excelsa
         1.600      
Pistacia vera
           .   
Amygdalus
                     
Pistacia vera
   .
 600     
Pistacia vera
   .                 Chenopodiaceae     
         .
2.4.2 ﺶﮐﻭﺪﻨﻫ ﺭﺩ ﺕﺎﺗﺎﺒﻧ ﻢﻴﻠﻗﺍ ﻲﻋﺎﻔﺗﺭﺍ ﻱﺎﻫ ﺪﻨﺑﺮﻤﮐ
ﻩﻮﮐ ﺪﻴﻔﺳ ﻱﺰﮐﺮﻣ
            
          
         
   )BRECKLE & FREY 1974   1.5.2  ( .  2.70       
           .
         2.2     .
season isolated trees may occur on the SW slopes of the C Afghan
mountains at about 2,900 m - if ever possible - the potential
timber-line. This formation gradually leads to the formation of the
typical thorn cushion plants, a belt between about 2,900-3,600
(4,100) m. Here with a markedly short thermal growing season
and even semi-humid conditions,
Onobrychis, Acantholimon,
Artemisia, Ephedra
and various species of
Astragalus
dominate.
The altitudinal belt of the alpine vegetation, found roughly
between 4,000-4,500 m, is a mosaic of semi-deserts and steppes
with meadow patches. Above 4,500 m with a very short thermal
vegetation period and under relatively humid conditions, the
narrow sub-nival belt is situated. The all year-round cold-humid
sub-nival belt with frost debris extends in the C Afghan mountains
from c. 4,500 m almost up to the summit regions of the Koh-e
Baba. The very narrow nival belt is concentrated only at the
summit regions of the Koh-e Baba (Shah Folâdi: 5,143 m), where
only on the main N facing slopes small glaciers and firn snow
patches persist in the summer (see Chapter 1.2).
In the Afghan mountains, the availability of moisture in the
altitudinal belts above the timber-line is not the consequence of
high rainfalls but results from the year-round low temperatures
which restrict the potential evapo-transpiration.
As shown in Fig. 2.68, the altitudinal belts of vegetation are in
accordance with the asymmetric arrangement of climatic
altitudinal zones. Coming from the nival and subnival belts, we
arrive at the NE slopes of the mountains at about 4,000 m in the
altitudinal belt with the upper-most thorn-cushion shrubs. This
zone is confined from the top as well as from bottom. Their
altitudinal limits lie, compared to the SW side of the mountain,
about 100-300 m higher. The altitudinal belt of the relatively
uniform
Juniperus excelsa
open forest on the N slope of the
mountain extends c. 1,700-1,800 m in amplitude. A similar
counterpart of these forests is absent on the SW side of the
mountain as well as in many intra-montane basins and valleys. A
drier formation of
Amygdalus
-woodland replaces it (see above).
The reason for this is probably the slight increase in rainfall at the
N-side of the mountain (c. 500-1,200 mm depending on the
region and exposition, FREITAG 1971a) and a reduced average solar
radiation because of the so-called crest-asymmetry (KLAER 1974)
as a special feature of the high mountains of winter rain sub-
tropics.
The
Juniperus excelsa
-open forests changes downwards at
about 1,600 m to the altitudinal belt of the
Pistacia vera
-
community, specific to the northern slopes of the C Afghan
mountains. A shrubby
Amygdalus
formation of the lower
elevations is not developed here, because the somewhat more
favourable moisture supply is sufficient for the growth of
Pistacia
-
woodlands. Below 600 m, the climate for the growth of
Pistacia
vera
-community is then too dry. From here to the N the ephemeral
semi-deserts of the loess zone start, often rich in
Chenopodiaceae, and extend up to the Amu Darya.
2.4.2 Altitudinal belts of climate and vegetation in the
central Hindu Kush and at Safed Koh
Different and quite complicated (see BRECKLE & FREY 1974) is the
altitudinal zonation of the climate and vegetation on the E side of
the Hindu Kush and the Safed Koh, where the influence of the
Indian summer monsoon is apparent (see Chapter 1.5.2). In Fig.
2.70, the altitudinal belts of vegetation along a profile between
Jalâlâbâd and Amu Darya is schematically depicted. For details of
the vegetation formations along this profile see chapter 2.2.
S-W. BRECKLE, H. FREITAG, I. C. HEDGE, M. D. RAFIQPOOR
36
2.70 :               )   FREITAG 1971a BRECKLE 2004 2007(
Fig. 2.70: Schematic representation of the altitudinal arrangement of vegetation belts along the profile Jalalabad–Amu Daryâ (after data of F
REITAG
1971a; BRECKLE 2004, 2007)
          )   150300  (           
Zizyphus-Acacia
     .           500800   .         
         8001.300       
Reptonia buxifolia
    
Olea ferruginea
    .      8001.100  
Pistacia khinjuk
Salvia cabulica
  .          
Quercus baloot
          .     2.100
           
Amygdalus
     . 
Quercus baloot
               )FREITAG
1971a BRECKLE 2007(.           
Quercus baloot
 
Quercus dilatata
    56     ) (   .        
 
Quercus baloot
 
Pinus gerardiana
  . 
Quercus dilatata
Pinus gerardiana
   2.400             
Quercus semecarpifolia
)    (   
Cedrus deodara
)    ( .              )36   712    (       2.900   
Pinus-Abies
     )2.9003.300  (  .         

Juniperus
                . 
Juniperus
       3.3003.500    .             
         
In the semi-arid C part of the Jalâlâbâd basin (N = <150-300
mm), under a long to very long thermal growing season, a dry
quasi-tropical vegetation of
Zizyphus-Acacia
-community with
grasses is developed. This community covers the entire basin as
well as its surrounding mountains in an altitudinal belt between
500-800 m. Next up is located in the E, especially in Paktia, also
with a long thermal vegetation period but with sub-humid
conditions, between 800-1,300 m an altitudinal belt of the
sclerophyllous vegetation type with
Reptonia buxifolia
is found
which in the upper section is mixed with
Olea ferruginea
. In the
drier parts of this vegetation belt in the W a plant community of
Pistacia khinjuk
and
Salvia cabulica
is developed between 800-
1,100 m. This altitudinal belt changes upwards by a fairly sharp
border to the typical community of
Quercus baloot
under
relatively
long thermal growing season and sub-humid conditions. Their
altitudinal distribution ends around 2,100 m and alters, with
decreasing precipitation, to the W into an
Amygdalus
-woodland in
the regions W of Kâbul. The last stands of
Quercus baloot
to the
west are found in Chârikâr, Tangi Ghâru and Lataband pass
east of Kabul (FREITAG 1971a, BRECKLE 2007).
In the moist parts of the E slopes, above the altitudinal belt of
Quercus baloot
with 5-6 thermal vegetation months and fairly
humid conditions we find dense forests of
Quercus dilatata
. In
drier sites further W and in the inner valleys, the
Quercus
baloot-
forests are replaced upwards by
Pinus gerardiana
forests.
Quercus
dilatata
and
Pinus gerardiana
forests merge at about 2,400 m,
depending on the moisture supply, into the
Quercus
semecarpifolia
forests (further E) or to the
Cedrus deodara
forests
(W). The two latter forest types whose growth climate possess a
large hygrothermal amplitude (3-6 thermal and 7-12 hygric
vegetation months), lead at about 2,900 m into the
Pinus-Abies
forests of the cool moist upper-montane belt (2,900-3,300 m).
Under semi-humid conditions, and by an always intermediate to
short thermal growing season,
Juniperus
forms the upper timber-
line both on the E side of the C Hindu Kush, as well as on Safed-
Koh. The
Juniperus
forest of the E forms a narrow altitudinal belt
between 3,300-3,500 m. This formation changes upward under
decrease in temperature to thorn-cushion plant formations which
ﻪﻤﻴﻧﺎﻫﺍﺮﺤﺻ ﺎﻫ ﺖﺷﺩ
ﻝﺎﻤﺷ
Semi
-
deserts
and S
teppes
ﺎﻫ ﺭﺍﺰﺑﻮ
ﺭﻮﺸﮐ ﻝﺎﻤﺷ ﺭﺩ ﻪﺘﺴﭘ
Pistacia vera
-
Woodlands
ﺎﻫ ﺭﺍﺰﺑﻮ
ﻮﮐ ﻭﺮﺳ
Juniperus
-
Woodlands
ﺕﺎﺗﺎﺒﻧﺎﮑﺘﻣ ﺭﺍﺩﺭﺎﺧ ﺪﻨﻧﺎﻣ
Thorny cushion plants
ﺎﻫﺍﺮﺤﺻ ﻪﻤ
ﻥﺎﺘﺴﻧﺎﻐﻓﺍ ﻕﺮﺷﺎﺑ
Zizyphus-Acacia
Subtropical
Zizyphus-Acacia-
Semi-Deserts
ﻁﻮﻠﺑ ﺕﻼﮕﻨ
)
Quercus baloot
(
Quercus baloot
-
Forests
ﻉﻮﻧ ﮒﺮﺒﻧﺯﻮﺳ ﺕﻼﮕﻨ
ﺎﻤ
ﺋﺎ
Himalayan Conifer
-
Forests
ﺭﺍﺯ ﻪﺘﺑﺎﻫ
ﻩﺎﺗﻮﮐ
Juniperus-
Rhododendron
ﺎﻬﺘﺷﺩ ،ﺎﻫﺭﺍﺯ ﻩﺰﺒﺳ
ﺎﻬﺘﺷﺩ ﻪﻤ
ﺎﭙﻟ
Alpine Meadows, Steppes and Semi-Deserts
ﻨﺳﻩﺰﻳﺮ ﺎﻫ
ﺪﻨﺑﺮﻤﮐ ﻝﺍﻮﻴﻧ ﺐﺳ
Subnival Frost debris belt
ﺎﻫ ﻑﺮﺑ
ﺋﺍ
ﺎﻫ ﻝﺎﭽ
ﺪﻨﺑﺮﻤﮐ ﻝﺍﻮﻴﻧ
Perennial Snow and Ice
fields
    Flora and vegetation geography 37
       3.5004.000          ) 2.69  (.
      )      (                     
Juniperus
/ 
Rhododendron
   .         4.1004.600    .  4.600
           
  ) 1.2   .(      5.1005.200                       
    .         ) 2.70 (      
Quercus
       .          
          .           4.8005.000 
          .              200400    ) 2.70   .( 
          
       .                      .          
Juniperus
     
Pistacia vera
    800600              .
occupy, by a short to very short thermal growing season, an
altitudinal range between 3,500-4,000 m on the W side of the
mountain (see Fig. 2.69).
On the humid E side of the mountains (and in Afghanistan
only here) at the foot of this altitude level, i.e. in the vicinity of the
tree line, a narrow belt of krummholz formations with shrubby
Juniperus
and/or
Rhododendron
is developed. The centre of the
altitudinal belt of alpine mats lies between 4,100-4,600 m. Above
4,600 m begins the sub-nival frost debris belt (see Chapter 1.2)
with a very short thermal growing season. The latter changes
roughly above 5,100 - 5,200 m into the vegetation-free nival belt
with permanent snow and glaciers and only isolated suitable plant
sites. For convenience in profile (Fig. 2.70), the altitudinal belts of
various
Quercus
and coniferous forest types are summarized.
Even in the C Hindu Kush, all geo-ecological altitudinal limits
on both sides of the mountains have an asymmetric structure. On
the N side of the mountain the snow line is at c. 4,800-5,000 m,
on the S side some hundred m higher. Other geo-ecological
altitudinal limits lie in contrast to the humid SE side of the
mountain at least 200-400 m deeper (Fig. 2.70). Also along this
profile the arrangement of the vegetation belts on the N flank of
the Hindu Kush is simpler than on its SE side. On the N flank of the
mountain below the potential timber-line there, three distinct
altitudinal belts are developed one on top of each other. The
altitudinal belt of thorn cushion sub-shrubs is followed below by
the altitudinal belt of the
Juniperus
-open-forests, then by the
Pistacia vera
-community which changes at about 800–600 m into
the "steppe" and semi-deserts of the loess zone in the N.
... The combination of the cyclonal winter and monsoon summer rains in the mountainous regions of east Afghanistan gives favorable conditions for the growth of a dense vegetation cover of Mediterranean type and Himalayan forests. Conifer forests of Himalayan nature (Cedrus deodara) are therefore found on the S slopes of both the Hindu Kush and the Safed Koh over a xerophytic deciduous Mediterranoid forest belt of Quercus baloot (Freitag 1971a;Freitag et al. 2010). ...
... The main broadly defined vegetation types are based on the "potential natural vegetation" (a hypothetical vegetation as it would exist without the influence of man in natural habitats) and on the 4-year long country-wide survey by Freitag (1971a, b;Freitag et al. 2010), slightly modified by Breckle (2007). Recently a survey on the Fuladi-region was published (Breckle & Rafiqpoor 2021). ...
Article
Full-text available
The study is based on a comprehensive evaluation of 87 publications concerning reports from Afghanistan and a critical revision of herbarium specimens. Two hundred and thirty eight taxa (230 species with 8 varieties) of lichenized fungi, and 16 species of lichenicolous fungi are listed with their citations or localities in the case of new records for the country or for provinces. New for Afghanistan are Acarospora bicolor, A. interrupta, Caloplaca monacensis, C. stillicidiorum var. muscorum, Collema furfuraceum, Endocarpon pusillum, Gloeoheppia turgida, Gyalolechia bracteata, Heteroplacidium fusculum, Lecanora horiza, Lecidea laboriosa, Melanohalea elegantula, Myriolecis semipallida, Peltula bolanderi, P. obscurans var. obscurans, P. obscurans var. deserticola, P. polyspora, P. radicata, Physconia americana, P. perisidiosa, Phaeophyscia hirsuta, Placidium pilosellum, P. rufescens, Sarcogyne praetermissa, S. pusilla, S. urceolata, Scytinium fragrans, Staurothele areolata, Umbilicaria virginis, Xalocoa ocellata, Xanthoparmelia neodelisei, and the lichenicolous fungus Acarospora subfuscescens.
... Afghanistan is landlocked with mountains and a diverse flora, with over 29% of its plants being endemic (Freitag et al., 2010). The country's economy depends mainly and fundamentally on these resources to grow and become self-sufficient. ...
Conference Paper
Full-text available
Most pharmaceutical products are derived from plants, making plants an essential source for developing and discovering novel therapeutic compounds. The phytochemical components of medicinal plants (MPs), particularly the secondary metabolites (SMs), are linked to the pharmacological effects of MPs. The widespread interest in phytotherapy, consumer preference to use natural resources, the continuous exploitation of natural resources, the economic importance of MPs in the self-sufficiency of developing countries like Afghanistan, difficulties associated with the traditional breeding methods of MPs, and resulting insufficient plant yield have made wild MPs resources unable to meet the current requirements and led researchers to search for alternative solutions. The application of genetic engineering (GE) techniques and biotechnological tools, including combinatorial biosynthesis, CRISPR/Cas9-based systems, and genetically encoded biosensors to select, multiply, improve the bio-production, biodiversity preservation; conservation of the elite and rare genotypes of important MP species in extinction is considered a possible solution. Afghanistan is one of the main exporters of MPs due to its rich flora. Even though it’s uncommon in the country to apply modern biotechnology and GE procedures to improve MPs, they may still be considered promising methods. This paper reviewed the recent successes and developments in the previously/at present use of various biotechnological and GE approaches for the improvement of MPs in Afghanistan and also to identify the main challenges the country’s plant breeders and/or scientists may face during the use of these approaches to improve MPs shortly.
... The eastern regions additionally receive some monsoon rains in summer, which are the basis for the occurrence of various forest types. However, vegetation all over Afghanistan has been severely influenced by humans, and only a few high mountains and very dry desert areas retain a quasi-natural vegetation cover (Breckle, 2007). According to 2020 land cover data from the ESA CCI (European Space Agency Climate Change Initiative: https ://www.esa-landcover-cci.org/), the dominant covers are about 14 % agricultural (crop) lands, about 48 % pasture ground (mainly grassland, shrub, sparse vegetation), only 1 % forest cover and 38 % bare areas of the 65 million hectares of the total land area of Afghanistan (Fig. 1). ...
... ex D. Don) nut crop, as well as range and fuelwood resources derived from Chilgoza forests play a key role in the livelihoods of Indigenous communities in Afghanistan's Eastern Forest Complex (EFC) (Shalizi et al., 2018 b). Chilgoza pine is distributed in the EFC, found in pure or mixed forest stands between 1800 and 3350 m above sea level and is dominant between 2100 and 2500 m elevation (UNEP, 2008, Breckle, 2007, Breckle and Rafiqpoor, 2010. Once extensively covered by forest stands, the EFC has lost about 20 to 60% of its forest cover during the most recent decades of war beginning during the 1980's (UNEP, 2003;Reddy and Saranya, 2017). ...
Article
Full-text available
Income from Chilgoza pine (Pinus gerardiana) nut harvests, grazing, and the collection of firewood support forest communities within Afghanistan's Eastern Forest Complex. Persistent instability, frequent incidence of armed conflict, limited capacity of Indigenous communities, and inaccessibility to scientific expertise on forest regeneration limit options for addressing forest degradation. Representatives from forest communities in 16 districts in Khost, Paktia, and Paktika Provinces were surveyed to assess community user perceptions of Chilgoza pine regeneration status, forest protection, and acceptability of potential regeneration strategies (rotational stand harvesting, group seed tree protection, individual seed tree protection, partial cone harvesting, and integrated method). Human activity management, primarily via fine systems and forest guards, was widely reported and was regarded as important in managed forests. Respondents who reported current implementation of regeneration methods were more likely to regard natural regeneration as important and most regarding natural regeneration as very important reported the use of partial cone crop harvest as the prevailing regeneration method. Among proposed strategies, partial cone harvesting was the most frequently chosen option where regeneration was regarded as very or somewhat important. In light of the previously reported decline of forests under prevailing management practices, these results indicate a general awareness of regeneration as a forest management issue but also a significant gap among forest users in identifying the limitations of partial cone crop harvesting without additional protection for seedlings, as a potential remedy. We offer integrated rotational harvesting and grazing management strategies as a means to promote sound silviculture practices and provide a next step for community-based forest management to sustain Chilgoza pine. The context of this work in a region where tribal politics has limited outsider input allows it to serve as a model to address natural resource management issues in similar conflict-prone settings.
Article
Full-text available
Traditional Afghan Medicine (TAM) remains widely practiced, with many people relying on it for managing and treating health conditions. However, there is insufficient and inconsistent information available about its common practices. This article presents a narrative review of the prevalent methods of TAM and some of the challenges associated with them. The findings of this study outline the common methods of traditional medicine in the country and may pave the way for their advancement and standardization.Fractional therapy, phytotherapy, fasd, cupping, hirudotherapy, enema, hydrotherapy, cauterization, massage therapy, acupuncture and spiritual and religious therapy are the common practices in TAM. Although the effectiveness and efficiency of these practices have been proven by scientific-experimental studies, still, the lack of a distinct procedure and national standard of traditional medicine has caused TAM to be used only within the country.
Article
Full-text available
Ecotourism is a type of nature-based tourism that supports conserving the natural environment. Afghanistan, at the crossroads of Central, West, and South Asia, is a beautiful and diverse nation that could be the best place for ecotourism. Afghanistan's unique geography and rich history make it an ideal ecotourism destination. The study aimed to understand potential ecotourism sites in Afghanistan and the environmental and economic impacts of ecotourism activities. Afghanistan's major ecotourism sites include biodiversity reserves, wildlife, rangelands, forests, lakes, wetlands, tourism sites, valleys, natural caves, deserts, natural springs, and cultural sites. Additionally, food tourism and medicinal plants play a significant role in ecotourism development. The Lonely Planet travel book highlights Afghanistan's appeal as "vastly appealing" due to its former popularity for hiking and nature sightseeing. In the 1970s, Afghanistan attracted over 100,000 tourists annually. Post-Soviet invasion, it experienced a decline. The Ministry of Information and Culture is supporting the growth of foreign tourism in Afghanistan, which rose from 691 visitors in 2021 to 2,300 in 2022. Sustainable ecotourism in Afghanistan demands effective management and planning to overcome misconceptions and bureaucratic obstacles. Afghanistan's ecotourism sites, like the Minaret of Jam, face threats from natural disasters and climate change, including landslides, earthquakes, and heavy snow, exacerbated by climate change. Afghanistan's ecotourism industry, despite its remote location, requires conservation and management, requiring collaboration among private, public, host community, and international organizations for sustainable development.
Conference Paper
Full-text available
Afghanistan is a mountainous country bordered by arid lands with a unique climate that fosters rich biodiversity. According to current data, Afghanistan is home to approximately 5,000 species of flowering and vascular plants. Of these, 29% are endemic, around 700 species possess medicinal and aromatic properties, and 120 species are commonly used in traditional Afghan medicine. Some of these plants are cultivated, while others, found in the wild, hold potential for domestication. However, years of internal conflict have led to the illegal exploitation and export of these valuable natural resources. To promote sustainable economic growth and strengthen Afghanistan’s position within a globalized economy, it is essential to recognize these resources' actual and potential benefits, particularly medicinal plants (MPs). For a primarily agricultural country like Afghanistan, enhancing plant production offers an economic pathway for developing a viable platform for exports at an industrial level. This review highlights key endemic MPs of Afghanistan, underscoring their potential to advance the pharmaceutical sector. Investment in these plants' cultivation and mass production could support the country’s economic self-sufficiency. The main objectives of this study are to emphasize the role of endemic MPs in the growth of Afghanistan's pharmaceutical industry and to introduce significant MPs that, with proper cultivation and preservation, could bolster public health and economic stability by attracting attention from relevant officials.
Article
A comprehensive study on Scutellaria materials collected in Iran revealed an undescribed species of the genus, belonging to section Apeltanthus which was not previously reported from Iran. The new species is morphologically most similar to S. leptosiphon and S. stocksii distributed in Afghanistan, Pakistan, and Central Asia. The occurrence of a member of section Apeltanthus in Iran shows a disjunct distribution pattern of the species of this section. Scutellaria lurestanica is described as a new species from Iran and is compared with the most similar species. Illustrations of the new species, a distribution map, and a table of diagnostic characters against similar species are provided.
Chapter
It is convenient to divide zonobiome IV into five floristic biome groups according to the floristic kingdoms that condition strong floristic differences, each of which forms typical, often similar-looking vegetation units (Fig. 8.1). Of these, the Mediterranean is the largest, as winter rains extend from the Atlantic Ocean into Afghanistan. Those Eastern regions with winter frost are transitional to Zonobiom VII. The individual Mediterranean winter rain areas are geographically far apart from each other. The very different floristic stock has evolved highly diverse sclerophyllic woods which are convergently similar looking vegetation types: macchis, chaparral, matorral, fynbos, mallee.
Article
Full-text available
Armed conflicts disturb the environment and impair land productivity. Afghanistan has been submerged in conflict for >20 years, affecting the environment dramatically. In this study, we used the Normalised difference vegetation index (NDVI) to investigate vegetation's spatial and temporal changes and the potential underpinned mechanisms. We found a 16.44 % increase in NDVI in Afghanistan from 2000 to 2021. The average NDVI growth rate was 11.33 % (within 5 km distance from the armed conflict), higher in the conflict group than in the non-conflict group. People migration may have reduced the human impacts on the environment. The relative contribution of armed conflict to vegetation growth was 3.17 %. Our results showed that the vegetation in Afghanistan increased, confirming the idea that depopulation increase greenness. Despite the reduced variance explained by the war (R² values around 0.3), our study provides empirical evidence on the linkages between the war and vegetation change in Afghanistan.
ResearchGate has not been able to resolve any references for this publication.