ArticlePDF Available

Molecular Phylogeny and Redefined Generic Limits of Calathea (Marantaceae)

Authors:

Abstract and Figures

Calathea, with an estimated 285 species, is the largest genus of Marantaceae and an important component of Neotropical herbaceous diversity. The genus is also of high importance for horticulture as species are cultivated for their showy, patterned leaves. Previous molecular phylogenetic studies indicated that the genus is polyphyletic, but have not provided a basis for redefining generic limits due to incomplete taxon sampling. To address this problem we analyzed DNA sequence data from three plastid markers (matK with flanking 3' trnK intron, trnL intron and trnL-trnF intergenic spacer) and one nuclear marker (ITS) under a maximum parsimony criterion for a large and representative taxon sample covering all previously proposed infrageneric entities, and representing the full range of morphological variation known in the genus. Our results confirm that Calathea is polyphyletic. One clade, including subgenus Calathea, the C. lanicaulis group, and the genus Sanblasia, is sister to a clade formed by Ischnosiphon and Pleiostachya. The genus Monotagma is placed as sister to this clade. The remaining species form a second strongly supported clade as sister to a clade containing these other genera. Based on these findings Calathea is recircumscribed in a narrow sense and Sanblasia is placed in synonymy. The genus Goeppertia is resurrected and redefined to include all members of the second Calathea clade. Morphological characters defining each genus are provided. A total of 246 new combinations are made.
Content may be subject to copyright.
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research
libraries, and research funders in the common goal of maximizing access to critical research.
Molecular Phylogeny and Redefined Generic Limits of Calathea (Marantaceae)
Author(s): Finn Borchsenius, Luz Stella Suárez Suárez, and Linda M. Prince
Source: Systematic Botany, 37(3):620-635. 2012.
Published By: The American Society of Plant Taxonomists
URL: http://www.bioone.org/doi/full/10.1600/036364412X648571
BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and
environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published
by nonprofit societies, associations, museums, institutions, and presses.
Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of
BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries
or rights and permissions requests should be directed to the individual publisher as copyright holder.
Systematic Botany (2012), 37(3): pp. 620–635
©Copyright 2012 by the American Society of Plant Taxonomists
DOI 10.1600/036364412X648571
Molecular Phylogeny and Redefined Generic Limits of Calathea (Marantaceae)
Finn Borchsenius,
1,5
Luz Stella Sua
´rez Sua
´rez,
2,4
and Linda M. Prince
3
1
Department of Bioscience, Aarhus University, Ny Munkegade 114, Building 1540, DK-8000 Aarhus C, Denmark.
2
Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Ciudad Universitaria,
entrada calle 53, edificio 425, Bogota
´, Colombia.
3
Rancho Santa Ana Botanic Garden and Claremont Graduate University – Botany, 1500 North College Avenue,
Claremont, California 91711-3157, U. S. A.
4
Current address: Universidad de Los Llanos, Departamento de Biologı
´a, Km 12 vı
´a Puerto Lo
´pez, Meta
´, Colombia.
5
Author for correspondence (finn.borchsenius@biology.au.dk)
Communicating Editor: Allan J. Bornstein
Abstract—Calathea, with an estimated 285 species, is the largest genus of Marantaceae and an important component of Neotropical
herbaceous diversity. The genus is also of high importance for horticulture as species are cultivated for their showy, patterned leaves.
Previous molecular phylogenetic studies indicated that the genus is polyphyletic, but have not provided a basis for redefining generic limits
due to incomplete taxon sampling. To address this problem we analyzed DNA sequence data from three plastid markers (matK with flanking 30
trnK intron, trnL intron and trnL-trnF intergenic spacer) and one nuclear marker (ITS) under a maximum parsimony criterion for a large and
representative taxon sample covering all previously proposed infrageneric entities, and representing the full range of morphological variation
known in the genus. Our results confirm that Calathea is polyphyletic. One clade, including subgenus Calathea,theC. lanicaulis group, and the
genus Sanblasia, is sister to a clade formed by Ischnosiphon and Pleiostachya.ThegenusMonotagma is placed as sister to this clade. The
remaining species form a second strongly supported clade as sister to a clade containing these other genera. Based on these findings Calathea
is recircumscribed in a narrow sense and Sanblasia is placed in synonymy. The genus Goeppertia is resurrected and redefined to include all
members of the second Calathea clade. Morphological characters defining each genus are provided. A total of 246 new combinations are made.
Keywords—Goeppertia, ITS, matK, maximum parsimony, Sanblasia,trnL-F region.
Marantaceae, with approximately 550 species, is the sec-
ond largest family in the Zingiberales. The family is particu-
larly diverse in the Neotropics where it is represented by an
estimated 450 species. Phylogenetic studies at the family
level (Andersson and Chase 2001; Prince and Kress 2006a)
have shown Neotropical diversity to primarily involve two
large groups: the Maranta clade with nine genera and ca.
70 species is concentrated in southeastern Brazil; and the
Calathea clade with five genera and ca. 370 species is distrib-
uted throughout the Neotropics but with highest diversity in
northwestern South America. Within the Calathea clade,
Calathea G. Mey. is by far the largest genus with an esti-
mated 300 species (Andersson 1998). Govaerts and Kennedy
(2012) list 285 accepted names. These numbers clearly make
Calathea the largest genus in the family. The genus is also
important for horticulture as indoor plants and in tropical
garden landscaping due to their variegated leaves with
spots or bands of white, orange, or red, and often bright
purple underside. Several species have been used as model
organisms for studies of reproductive ecology, plant phys-
iology, and demography (e.g. Kennedy 1978; Horvitz and
Schemske 2002; Claßen-Bockhoff and Heller 2008; Matlaga
and Sternberg, 2009; Swenson 2009; Maron et al. 2010). Other
genera of the Calathea clade are less diverse. Monotagma
K. Schum. has 37 species distributed from Central America
to Brazil (Hagberg and Eriksson 2011); Ischnosiphon Ko
¨rn. has
35 species concentrated in the western Amazon and sub-
Andean region (Andersson 1977); Pleiostachya K. Schum. and
Sanblasia L. Andersson are both monotypic (Andersson 1998).
Calathea was described by Meyer (1818) to accommodate a
group of species formerly included in Maranta L. The name is
derived from Greek “calathos,” which means basket or con-
tainer, as Meyer noted that some species were used for this
purpose by indigenous people of northern South America
(Kennedy 1978). Prior to the advent of molecular phyloge-
netics, monophyly of the genus was generally accepted.
However, Andersson (1981) questioned whether Calathea
would remain monophyletic if Ischnosiphon,Pleiostachya,
and Sanblasia were segregated based on morphological inter-
pretation. The character that delimits Calathea from these
genera is a tri-ovulate ovary, considered by Andersson to
be plesiomorphic relative to the uni-ovulate condition pres-
ent in the other three genera. Phylogenetic analyses based
on molecular data have indeed confirmed this suspicion
(Andersson and Chase 2001; Prince and Kress 2006a, 2006b).
In these studies, one group of Calathea species forms a strongly
supported clade sister to Ischnosiphon and Pleiostachya.The
genus Monotagma is placed as sister to this clade, but with
weaker support. The remaining species of Calathea constitute
a second, strongly supported clade as sister to a clade
containing these other genera. The exact delimitation of the
two Calathea clades and the number of species in each has
not yet been established, but it is clear that the second one,
including species from three of the four subgenera in
Schumann’s infrageneric classification (see below), is the
largest. A fifth genus of the Calathea clade, Sanblasia,has
not been sampled in any phylogeny. It has inflorescences
that are intermediate between Calathea and Ischnosiphon
(Andersson 1984, 1998), but its exact relationship to these
genera is unknown.
Calathea presents considerable variation in characters,
including shoot architecture, arrangement and structure of
inflorescence bracts, length of cymule axes, structure and
position of bracteoles, and the presence or absence of an
outer staminode (Kennedy et al. 1988; Andersson and Chase
2001). Beginning with Ko
¨rnicke (1858, 1862), this variation
has inspired the establishment of a number of infrageneric
classifications, often containing many of the same basic
groups (Table 1). These have, however, never been tested
systematically using cladistic methods. The most compre-
hensive classification was proposed by Schumann (1902) in
his family monograph. Schumann took his starting point in
Ko
¨rnicke’s pioneering work, but also included classification
elements adopted from later schemes proposed by Bentham
620
(1883) and Petersen (1890). He arranged the 104 known
species of Calathea into four subgenera: Eucalathea Ko
¨rn,
Macropus Benth., Pseudophrynium Ko
¨rn., and Microcephalum
Benth. Subgenus Eucalathea included species with distichous
inflorescence bracts and laterally compressed inflorescences;
subgenus Macropus included those with distichous bracts
and cylindrical inflorescences; subgenus Pseudophrynium
included species with spirally arranged bracts and large
inflorescences with more than five bracts; those with small
inflorescences and five or less bracts were placed in sub-
genus Microcephalum. The largest subgenus, Pseudophrynium,
was further subdivided into four series corresponding to
sections established by Petersen: Scapifoliae Eichler ex Petersen
with tall flowering shoots bearing one or more cauline leaves;
Comosae Petersen with sterile bracts apically in the inflores-
cence; Nudiscapae Petersen without sterile bracts and lacking
cauline leaves; and Rhizanthae Eichler ex Petersen with inflo-
rescences borne on separate shoots. A fifth series, Polystachyae
K. Schum., was added in print to accommodate a single
Brazilian species, C. polystachya K. Schum., with multiple
inflorescences arising from the leaf axils. Recent investiga-
tions have shown that this species is identical to Maranta
purpurea S. Vieira and V. C. Souza (2008:137) described from
Mato Grosso in Brazil (S. Vieira, pers. comm.). Section
Polystachyae is therefore not considered in this paper. An
updated version of Schumann’s classification was presented
by Loesener (1930), who included 130 species.
The most recent contribution to our understanding of the
infrageneric relationships in Calathea was made by Kennedy
et al. (1988), who divided 64 Ecuadorian species into eight
groups. Four of these corresponded to sections established
by Bentham or Petersen (Breviscapus,Calathea [as Eucalathea],
Comosae,Microcephalum), while the rest were new informal
groups: 1) the C. lanicaulis group with nine species resem-
bling those of section Calathea, but with sessile or short-
peduncled inflorescences and spirally arranged bracts (versus
distinctly peduncled with distichous bracts in section Calathea;
2) the C. marantifolia group, including six species from sub-
genus Pseudophrynium series Scapifoliae with terminal inflores-
cences on an elongated shoot bearing one to four cauline
leaves and bracts often broader than long and ovate to
depressed-ovate; 3) the C. ornata group, including six spe-
cies from Schumann’s series Nudiscapae that, in their young
stage, have leaves with delicate white and purple dots and
stripes that usually disappear in fully grown plants; and
4) the C. capitata group, a segregate of four species from
section Comosae with sterile bracts on top of the inflores-
cences similar in shape and color to the fertile ones (versus
dissimilar in section Comosae as circumscribed by Kennedy
et al. 1988).
The work of Kennedy et al. (1988) undoubtedly represents
the best hypothesis for monophyletic species groups pre-
sented to date. It is nevertheless far from complete in terms
of taxon coverage and it lacks a formal phylogenetic frame-
work. Therefore, it can not be used directly for establishing
new generic boundaries. Schumann’s subgenera and series
appear in several cases to be artificial and also lack phyloge-
netic support (Andersson and Chase 2001). Prince and Kress
(2006a) concluded that Calathea was polyphyletic, but did not
establish a morphological basis for redefining generic bound-
aries. The existing knowledge is therefore insufficient to draw
a clear limit between the two large clades of Calathea species
that appear in phylogenetic analyses. In addition, the status
of the genus Sanblasia is uncertain. To overcome these limi-
tations we present a phylogenetic analysis of Calathea based
on plastid and nuclear genome DNA markers, sequenced for
a large and representative taxon sample covering all previ-
ously proposed infrageneric entities, and representing the full
range of morphological variation known in the genus. We use
the results to: 1) explore clade structure in Calathea in relation
to morphological variation and previously proposed classifi-
cation schemes, particularly those of Schumann (1902) and
Kennedy et al. (1988); and 2) redefine generic boundaries for
Calathea corresponding to the two large clades of Calathea
species identified by previous studies, thereby resurrecting
one previously recognized genus.
Materials and Methods
Taxon Sampling—Based on the infrageneric classification of Schumann
(1902) and the eight species groups of Kennedy et al. (1988) we devised an
even sampling of species across all classificatory entities proposed in
these two treatments (Appendix 1). We selected five species from sec-
tion Calathea and five from the Calathea lanicaulis group as delimited by
Kennedy et al. (1988). Species from these two groups formed the first of
two Calathea clades in the analysis of Prince and Kress (2006a). From
section Microcephalum we also included five species. For the remaining
Table 1. Comparison of previously proposed infrageneric classifications of Calathea. Note that, in contrast to later authors, Ko
¨rnicke (1858, 1862)
did not assign a formal rank to his groups. Names placed on the same row refer to corresponding entities.
Ko
¨rnicke (1858, 1862) Bentham (1883) Petersen (1890) Schumann (1902) Kennedy et al. (1988)
Eucalathea Section Eucalathea Section Distichae Subgenus Eucalathea Section Calathea
Calathea lanicaulis group
Anguste vel
brevissime spicatae
Section Macropus Section Tubispatha Subgenus Macropus [included in sect. Comosae]
Subgenus Pseudophrynium:
Pseudophrynium Section Pseudophrynium Section Scapifoliae - Series Scapifoliae Calathea marantifolia group
Section Comosae - Series Comosae Section Comosae
Calathea capitata group
Grandiflorae Section Breviscapus Section Nudiscapae - Series Nudiscapae Section Breviscapus
Calathea ornata group
Section Rhizanthae - Series Rhizanthae [one treated species placed in
the Calathea ornata group]
- Series Polystachyae [not treated]
Pseudophrynium,
group Pusillae
Section Microcephalum [included in
section Nudiscapae]
Subgenus Microcephalum Section Microcephalum
Genus Monostiche Section Monostiche Section Monostiche [included in series Comosae] [not treated]
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 621
five species groups of Kennedy et al. (1988), which all belong to sub-
genus Pseudophrynium sensu Schumann, we included four species
from each. From Schumann’s subgenus Macropus and his subgenus
Pseudophrynium series Rhizanthae we included two species from each
as this was the maximum number of samples available to us. However,
the two groups consist of few species and we consider this sampling
adequate. Finally, we included three species with unusual morphology
and of uncertain affinity: 1) C. cyclophora Baker, placed by Schumann in
subgenus Eucalathea, but considered by Kennedy (1995) to belong to
section Breviscapus Benth. (that section was included in Pseudophrynium
series Nudiscapae in Schumann’s classification); 2) C. rufibarba Fenzl,
placed by Schumann in subgenus Pseudophrynium series Nudiscapae
and not discussed by Kennedy et al. (1988); and 3) C. killipii L. B. Sm. &
Idrobo, a white flowered Colombian species (L. S. Sua
´rez, pers. obs.)
described after the publication of Schumann’s work and with no clear
affinity to any described infrageneric entity. The total number of Calathea
species sampled was 42, corresponding to ca. 15% of the estimated 285 species
in the genus.
As noted above, Calathea in its current circumscription is polyphyletic
with Ischnosiphon,Pleiostachya,Monotagma, and possibly Sanblasia as
nested elements. We therefore included representatives of these genera
among the ingroup taxa. From the available material we selected six
samples of Ischnosiphon covering five of the seven sections recognized by
Andersson (1977) in that genus. For Monotagma we selected three and
four samples, respectively, from the two sections of that genus proposed
by Hagberg and Eriksson (2011). Finally, Pleiostachya pruinosa (Regel)
K. Schum. and Sanblasia dressleri Andersson, the sole species of their
genera, were added, bringing the total number of ingroup samples to 57.
The outgroup was assembled by selecting two to four species from
each of the four other major clades of Marantaceae identified by Prince
and Kress (2006a), plus a representative of the African genus Haumania
J. Le
´onard. Previous studies are ambiguous with respect to resolution of
relationships between the five major clades of Marantaceae and the
position of Haumania. The latter has been resolved as sister to all other
Marantaceae (Prince and Kress 2006b); as a basally diverging lineage in
the Calathea clade (Prince and Kress 2006a); or as a member of the
African Sarcophrynium clade (Prince and Kress 2006b). The position of
the Calathea clade within the family phylogeny is also disputed. Prince
and Kress (2006a, 2006b) resolved this clade in two different intermedi-
ate positions with no single major clade as sister group, while Andersson
and Chase (2001) and Suksathan et al. (2009) recognized it as sister to the
Asian Donax clade. Our outgroup sample includes representatives of
all major clades in the family and would therefore be appropriate
irrespective of which of these hypotheses is correct. Voucher information
for all samples and GenBank accession numbers for all sequences are
provided in Appendix 1.
DNA Extraction, Amplification and Alignment—We analyzed data for
four loci: the plastid matK gene and flanking 30trnK intron; the trnL
intron; the trnL-trnF intergenic spacer (trnL-FIGS); and the nuclear ITS
region in the ribosomal RNA gene, including part of the 18S, through
ITS1, 5.8S, ITS2, and part of the 26S loci in a single sequence. A number
of sequences generated in previous studies (Prince and Kress 2006a,
2006b) were downloaded from GenBank (Appendix 1). For new sam-
ples, total genomic DNA was extracted using a DNeasy Plant minikit
(Qiagen, Valencia, California) following the manufacturer’s protocol.
Amplification of the matK-trnK intron was obtained using the primer pair
matK-19F with trnK-2R (Steele and Vilgalys 1994; Molvray et al. 2000). If
this approach was not successful then the mIF forward PCR primer of
Prince and Kress (2006a) was used instead. For sequencing we also used
four newly designed internal primers: matK-867F 50-TGGAGTCTTTC-
TTTCTTGAGCGAA-30; matK-988R 50-CTTTTCCTTGATAYCGAACAT-
AATG; matK-1336F 50-TTATCAGATTGTGATATTATYAATCGA-30;
matK-1639R: 50-AATATCRAAATACCAAATACGTTCT-30.ThetrnL intron
and trnL-FIGS were amplified using the primers of Taberlet et al. (1991).
The ITS region was amplified using the method described by Prince and
Kress (2006b). Amplification was made using either Ampliqon Taq DNA
polymerase or PCR Beads (Pharmacia, St. Louis, Missouri) according to
the manufacturer’s directions. All PCR products were checked by agarose
gel electrophoresis. When multiple bands were detected, the target band
was cut out of the gel and purified using QIAquick gel extraction kit
(Qiagen). The PCR products were cleaned using QIAquick spin columns
and sequenced using an AB 3130xl Genetic Analyzer (Applied Biosys-
tems, Foster City, California) at Rancho Santa Ana Botanic Garden, or sent
to Macrogen, Korea for sequencing. Cloning of the primary PCR-product
was necessary in a few cases to obtain unambiguous sequences (matK,
n=3;trnL intron, n = 3; trnL-FIGS, n = 3; and ITS, n = 2). Cloning
was performed using the TOPO cloning kit for sequencing (Invitrogen,
Carlsbad, California) following the manufacturer’s instructions. At least
three randomly selected clones were sequenced in each case. Contig assem-
bly and sequence editing were performed using SequencherÔv.4.1 (Gene
Codes Corp., Ann Arbor, Michican). Edited sequences were aligned ini-
tially using Muscle 3.6 (Edgar 2004) and manually adjusted. Indel infor-
mation was coded using the simple method of Simmons and Ochoterena
(2000) as implemented in the program FastGap 1.2 (Borchsenius 2009;
www.aubot.dk/FastGap_home.htm). A single sequence was unavailable
for study [trnL intron: outgroup taxon Ctenanthe setosa (Roscoe) Eichler].
This was replaced by missing data in the final dataset. The final data
matrix is deposited in TreeBASE (study number S12469).
Phylogenetic Analyses—All analyses shown and discussed in this
paper are based on the maximum parsimony (MP) criterion in PAUP*
4.10.b (Swofford 2002). Previous phylogenetic studies of Marantaceae
have shown that MP and likelihood based methods such as maximum
likelihood or Bayesian analysis yield congruent topologies, but that MP
tends to give less resolved trees and lower statistical support values
(Prince and Kress 2006a, 2006b; Suksathan et al. 2009; Ley and Claßen-
Bockhoff 2011). Since the purpose of this study was to establish a robust
systematic classification we considered a conservative approach appro-
priate. However, to assure that results do not depend on the choice of
method we also performed a Bayesian analysis of the data (details in
legend to Supplemental Figure S1). To address the issue of nonidentical
clone sequences we first conducted preliminary analyses of the four loci
separately including all clones. In all cases we found that non-identical
clones from the same sample formed monophyletic groups or were part
of the same polytomy in all MP trees. We then kept the clone with the
shortest branch and pruned the remaining clones from the dataset as
suggested by Beilstein et al. (2008). The argument for this approach is
that the clone with the shortest branch will be most similar to the
common ancestor of the clone group. For matK, the trnL intron, and the
trnL-F IGS, one clone was pruned from each dataset. For ITS, three
clones from two taxa were pruned. All ITS sequences in the final dataset
were screened for three universally conserved motifs in the 5.8S coding
region (Harpke and Peterson 2008) and no mutations were detected. We
therefore infer that all ITS sequences represent functional paralogues.
Initial analyses showed that topologies based on individual loci were
congruent, differing only in the relationships among outgroup taxa
(notably the placement of Haumania) and in the relative positions of
some terminals within a stable set of major clades. However, an
incongruence-length difference (ILD) test (Farris et al. 1995) performed
in PAUP* (command HomPart) comparing combined plastid data
with the nuclear ITS locus was significant (p< 0.001; heuristic search,
500 replicates, each search consisting of 10 replicates with random addi-
tion sequence in the starting tree, holding up to 10 trees in each round).
For the final analysis we therefore combined data from all four loci, but
calculated Partition Bremer Support (PBS) values (Baker and DeSalle
1997) using TreeRot v. 3 (Sorenson and Franzosa 2007; http://people
.bu.edu/msoren/TreeRot.html) to identify conflicting signals in specific
nodes. All MP searches of individual and combined data partitions were
performed using 100 replicates of heuristic search with starting trees
generated by random sequence addition, holding all shortest trees. Boot-
strap support values for the combined data analysis were calculated
from 1,000 replicates of heuristic search with starting trees generated by
random sequence addition, each consisting of 10 replicates and holding
up to 10 shortest trees in each round.
Results
The combined dataset included a total of 4,320 aligned
nucleotide and 337 indel characters, of which 751 nucleotide
(17%) and 152 indel characters (45%) were potentially parsi-
mony informative. Sequence length of matK varied about
300 base pairs depending on which primer pair could be
successfully applied. Potentially informative characters were
nearly equally distributed among the combined plastid
(435 characters) and nuclear partitions (468 characters). An
MP search resulted in 27 trees of equal length (consistency
index 0.58, retention index 0.78). The strict consensus tree
(Fig. 1) was almost fully resolved with most ingroup nodes
receiving > 80% Bootstrap Support (BS). The Calathea clade
sensu Prince and Kress (2006a), excluding Haumania,was
recovered as monophyletic with low BS (65%). Ischnosiphon,
622 SYSTEMATIC BOTANY [Volume 37
Pleiostachya,andCalathea species belonging to subgenus
Calathea and the C. lanicaulis group formed a clade with
100% BS. Ischnosiphon was paraphyletic with respect to
Pleiostachya, which was placed as sister to I. leucophaeus
(Poepp. & Endl.) Ko
¨rn. with 87% BS, and this species pair
was sister to all other Ischnosiphon species sampled.
Monotagma was resolved as monophyletic with 100% BS
and placed as sister to the Ischnosiphon-Pleiostachya-Calathea
clade. The latter relationship, however, had low BS (76%).
Sanblasia formed a clade together with three members of
subgenus Calathea. The clade was supported by 100% BS,
but PBS revealed a strong conflict between plastid (–13)
Fig. 1. Strict consensus of 27 shortest trees resulting from maximum parsimony analysis of combined data from chloroplast and nuclear markers.
Numbers above branches denote bootstrap support. Numbers below branches denote partition Bremer support values for combined plastid loci and
nuclear ITS, respectively. Inset upper left corner shows one of the shortest parsimony trees with branch lengths. An asterisk after the name of C. lutea
marks that this is the type of Calathea.
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 623
and nuclear (+39) data for this node. The cause of conflict
was the position of C. marantina (Willd. ex Ko
¨rn.) K. Koch,
which in analysis of plastid data alone was placed as sister
to C. crotalifera S. Watson outside the clade including
Sanblasia. Nuclear data supported the same topology as
combined data.
The remaining species of Calathea formed a clade with
90% BS (Calathea I, Fig. 1). Within this clade, C. straminea
Petersen was placed as sister to all other taxa, which in turn
formed five major clades (Fig. 2), each with 98–100% BS.
Two clades corresponded to the C. ornata and C. marantifolia
groups of Kennedy et al. (1988) (Fig. 2). One corresponded
to subgenus Microcephalum of Schumann (1902), but also
included a previously unplaced taxon, C. killipii. The last two
clades corresponded roughly to series Comosae of Schumann
(1902) and section Breviscapus of Kennedy et al. (1988), but
also included a number of taxa from other Schumann catego-
ries. Calathea cyclophora, which Schumann placed in subgenus
Calathea, was sister to all other species of the Comosae clade.
Species of subgenus Macropus and subgenus Pseudophrynium
series Rhizanthae of Schumann (1902) were included in the
Breviscapus clade. Negative PBS values were detected at a
few nodes for both data partitions (Fig. 1). The most impor-
tant conflict concerns the nodes resolving C. villosa (Lodd.
ex. G. Don) Lindl. and C. pavonii Ko
¨rn. as basally diverging
lineages within the Breviscapus clade. Plastid data place
C. pavonii in a clade with C. varians and C. rufibarba,while
nuclear ITS data place C. villosa and C. pavonii as sister species
with 100% BS in a more deeply nested position within the clade.
Bayesian analysis yielded a tree identical to the MP strict
consensus tree except for some minor differences (Supple-
mental Figure S1). Thus Calathea pavonii was placed as sister
to C. rufibarba and C. varians (K. Koch & Mathieu) Ko
¨rn. in a
more deeply nested position in the Breviscapus clade and the
resolution of species relationships in the Microcephalum clade
was lower.
Discussion
Our results support the findings of earlier studies
(Andersson and Chase 2001; Prince and Kress 2006a) that
Calathea as currently circumscribed is polyphyletic. It should
be redefined to include only the Calathea II clade (sensu
Prince and Kress 2006a; Fig. 1) corresponding to the species
of subgenus Calathea, the C. lanicaulis group (Kennedy et al.
1988), and Sanblasia dressleri. The type of the genus, Maranta
casupo Jacq. (= Calathea lutea (Aubl.) E. Mey. ex Schult.),
belongs to this clade and the type species was sampled in
our study. Subgenus Calathea (sensu Schumann 1902) has
traditionally been defined by having distichous bracts and
usually laterally compressed inflorescences (Ko
¨rnicke 1858;
Bentham 1883; Schumann 1902), whereas the nine species in
the C. lanicaulis group of Kennedy et al. (1988) usually have
spirally arranged bracts and cylindrical inflorescences. No
Fig. 2. Calathea clade I. Detail of strict consensus of 27 trees resulting from maximum parsimony analysis of combined data. Numbers above branches
denote bootstrap support. Labels at right margin indicate classification of species according to Schumann (1902)/Kennedy et al. (1988). An asteriskafter
the label signifies that the taxon was not included in the Flora of Ecuador treatment by Kennedy et al. (1988), but placement in their classification was
deduced with certainty from morphology. When this was not possible the taxon is labelled as unplaced and highlighted by gray typeface.
624 SYSTEMATIC BOTANY [Volume 37
species of the latter group were known to Schumann and the
combination of characters presented by these species thus
cannot be accommodated anywhere in his classification.
Inflorescence and flower morphology of Sanblasia have been
described as intermediate between Calathea and Ischnosiphon
(Andersson 1984). The genus has spirally arranged bracts that
are narrow and involute as in Ischnosiphon and interphylls are
missing, which is rarely the case in Calathea. On the other
hand, flowers are tri-ovulate and subtended by channeled
bracteoles, characters found only in Calathea. Andersson
speculated that Sanblasia might be a “survivior of an
experimenting calatheoid stock that gave rise to the more
successful genus Ischnosiphon.” Our results suggest that it
is a derived Calathea species that has evolved an unusual,
Ischnosiphon-like inflorescence morphology.
Based on literature descriptions and our own observa-
tions, a common feature for all three groups making up
Calathea II, and a synapomorphy for the genus Calathea in a
strict sense, are compound inflorescences that usually con-
sist of two to several, similar, partial inflorescences that may
have individual peduncles (Schumann’s subgenus Calathea)
or are sessile and more or less congested (C. lanicaulis group
and Sanblasia). Some species, however, have simple inflores-
cences (e.g. C. timothei H. A. Kenn.). Another synapomorphy
of Calathea s. s. is that the corolla lobes are always reflexed
or rolled back. Finally, most species are relatively large
plants with tall flowering shoots and inflorescences placed
well above the base of the plants. Based on these morpho-
logical criteria the number of currently accepted names in
Calathea s. s. is 37.
Our findings strongly support Calathea II as sister to
Ischnosiphon and Pleiostachya. We find P. pruinosa K. Schum.
in a position as sister to I. leucophaeus with 87% bootstrap
support. Ischnosiphon leucophaeus is a member of section
Papilioderma L. Andersson (1977) together with six other spe-
cies. Andersson and Chase (2001) found two accessions of
Pleiostachya to form a monophyletic group sister to a clade
consisting of two species of section Papillioderma, but noted
that inference was limited since they did not include any
members of the other sections of Ischnosiphon. Prince and
Kress (2006a) sampled five species of Ischnosiphon from four
sections and did not find indications of a sister relationship
between P. pruinosa and I. leucophaeus. Our results show
some conflict between data partitions in the resolution of
the Ischnosiphon-Pleiostachya clade. Nuclear ITS supports the
topology found in the combined analysis. Plastid data alone
(tree not shown) placed P. pruinosa in a clade with I. hirsutus
Petersen, I. leucophaeus, and I. obliquus (Rudge) Ko
¨rn., with
only 69% bootstrap support. We conclude that further anal-
ysis is necessary to finally determine whether Pleiostachya
should be included in Ischnosiphon or not.
The position of Monotagma is also somewhat uncertain.
In our strict consensus tree it is sister to the Calathea II-
Ischnosiphon-Pleiostachya clade, but support is low (76% BS).
Similar low support values for this relationship have been
found in previous phylogenetic studies (Prince and Kress
2006a, 2006b; Suksathan et al. 2009). One explanation might
be that early diversification of the main lineages within the
Calathea clade occurred rapidly. We did not find any indica-
tion that the African genus Haumania should be part of the
Calathea clade as suggested by Prince and Kress (2006a).
Instead it clusters with the two representatives of the likewise
African Sarcophrynium clade [Megaphrynium macrostachyum
(K. Schum.) Milne-Redh. and Hypselodelphys hirsuta (Loes.)
Koechlin; Fig. 1], albeit with no bootstrap support.
A detailed survey of the structure and ontogeny of the
hooded staminode in Marantaceae conducted by Pischtschan
et al. (2010) suggested that one particular type of structure
(“thumb type”) might be restricted to the Calathea II clade,
Ischnosiphon, and Pleiostachya. However, included in their
samples are three species that now, based on genetic and/or
morphological data, clearly can be assigned to the Calathea I
clade: C. microcephala (Poepp. & Endl.) Ko
¨rn., sampled in this
study; C. picturata K. Koch & Linden, placed in subgenus
Macropus by Schumann (1902), but from its morphology
and genetics clearly belongs to the Comosae clade (Schumann
1902; Andersson and Chase 2001; pers. obs.); and C. veitchiana
Veitch ex Hook. f., likewise a member of section Comosae
(Schumann 1902; pers. obs.). The thumb type hooded staminode,
as defined by Pischtschan et al. (2010), thus seems to occur
in the entire Calathea clade, possibly excluding Monotagma,
which has not been investigated.
Calathea I—The Calathea I clade (sensu Prince and Kress
2006a, Fig. 1) contains the largest number of species. It
includes all of Schumann’s subgenera except subgenus
Calathea (Fig. 2). Synapomorphies for this large clade include
a simple inflorescence (with a few exceptions as discussed
below) and corolla lobes straight to spreading, never
reflexed or recurved as in Calathea II. Plants also tend to be
smaller in size than those of Calathea II, though some mem-
bers of the Ornata and Comosae clades can be large. Members
of section Breviscapus sometimes have compound inflores-
cences composed of several, similar, partial inflorescences,
like most species in Calathea II, but in that case the inflores-
cence bracts are always spirally arranged, never distichous,
and the inflorescences are borne basally among the leaves,
not in an elevated position on the flowering shoot. Charac-
ters that uniquely identify the two groups are not easy to
define. They are, however, usually fairly easy to recognize in
the field based on combined characters related to habit,
inflorescence structure, and flower morphology.
Within Calathea I our results reveal a clear and well-
supported clade structure showing a high degree of corre-
spondence to previously proposed infrageneric groupings
(Fig. 2). All species groups of Kennedy et al. (1988) are
monophyletic. Less supported is Schumann’s (1902) classifi-
cation. Subgenus Pseudophrynium series Nudiscapae is poly-
phyletic and its species are nearly equally divided between the
Ornata clade and the Breviscapus clade. Subgenus Macropus is
paraphyletic. Pseudophrynium series Rhizanthae is also polyphy-
letic. One species from that series, C. straminea, forms a basally
diverging branch sister to all other species of Calathea I. The
other species, C. varians, belongs to the Breviscapus clade.
The position of Calathea straminea is interesting as the
species has an unusual morphology. Schumann (1902)
placed it in subgenus Pseudophrynium series Rhizanthae
because its inflorescences are borne on separate, leafless
shoots. He noted, however, that it is distinct from all other
Calathea species due to its solitary, pedunculate flower pairs
and rudimentary bracteoles, and considered that it might
represent a separate genus. We believe it is better included
in the same genus as the other species of Calathea I. Two
other species, C. cannoides (Nicolson, Steyerm. and Sivad.)
H. A. Kenn. and C. zingiberina Ko
¨rn., have similar morpho-
logical characteristics (Kennedy 1990) and we expect that
these will form part of the same clade as C. straminea. All
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 625
three taxa were considered members of the C. ornata group
by Kennedy (1990).
A characteristic feature of several clades in Calathea Iis
that they consist of a core group corresponding to a previ-
ously recognized classification system, but also some line-
ages with completely different morphologies (Fig. 2). For
example, we find that C. killipii forms a basally diverging
lineage in the Microcephalum clade. That species is a large,
erect plant with a robust, turbinate inflorescence found in
Panama and Colombia at elevations up to 1,600 m (L. S.
Sua
´rez, pers. obs.), and bears little morphological resem-
blance to other members of the clade. The only obviously
shared character is white flower color. A similar result is the
placement of C. cyclophora as sister to all other species of the
Comosae clade with 98% BS and positive PBS values from
both plastid and nuclear data partitions (Fig. 1). Calathea
cyclophora does not possess the sterile, apical inflorescence
bracts that characterize other Comosae species. Schumann
(1902) considered C. cyclophora a member of Calathea sub-
genus Calathea as he erroneously interpreted the bracts as
being distichous, while Kennedy (1995) considered it closely
related to C. maasiorum H. A. Kenn., which she placed in sec-
tion Breviscapus. A third example comes from our Breviscapus
clade (Fig. 2). It contains a core group corresponding to sec-
tion Breviscapus of Bentham (1883) and Kennedy et al.
(1988), which are small plants with basal inflorescences. It
also includes, however, species of subgenus Macropus and
Pseudophrynium section Rhizanthae of Schumann (1902), with
elongate flowering shoots and cylindrical inflorescences
(e.g. C. pavonii,C. varians,andC. villosa).Thepresenceof
early diverging lineages with variable morphology nesting
within otherwise homogeneous and species-rich clades is
an interesting feature that could provide opportunities for
gaining further insight into evolutionary pathways leading
to successful radiations.
Nees von Esenbeck (1831) described the genus Goeppertia
based on a heterogeneous assemblage of taxa including
Calathea,Maranta, and Monotagma species: Maranta zebrina
Sims [= Calathea zebrina (Sims) Lindl.]; M. bicolor Ker Gawl
[= M. cristata Nees & Mart.]; M. spicata Aubl. [= Monotagma
spicatum (Aubl.)J.F.Macbr.];andGoeppertia blanda Nees
[= Calathea blanda (Nees) Steud.]. Kennedy (1978) lectotypified
Goeppertia with Maranta zebrina, arguing that this taxon was
the only one mentioned by Nees that lived up to his own
diagnosis stating “Capsula trisperma.Calathea zebrina is a well
known species from Brazil, commonly cultivated and traded,
which based on morphology (Sims 1817; S. Sua
´rez pers. obs.)
clearly belongs to our Breviscapus clade. It has an inflores-
cence of the same type as C. standleyi included in our study
(Fig. 2). Schumann (1902) placed C. zebrina in Nudiscapae.
Molecular data analyzed by Andersson and Chase (2001)
placed it in an unresolved clade together with species from
both our Scapifoliae and Breviscapus clades. Goeppertia is the
oldest generic epithet attached to the Calathea Iclade.We
conclude that the name Goeppertia must be resurrected and
applied to all species of that clade. An emended generic
description is provided at the end of this paper.
We have presented a well resolved and robust phylogeny
of Calathea and related genera that allows us to redefine
generic boundaries within the group. We recircumscribe
Calathea to include the species formerly placed in subgenus
Calathea, the C. lanicaulis group, and Sanblasia. The remaining
species are transferred to a redefined Goeppertia. Our results
indicate only small conflicts between topologies derived
from analysis of plastid and nuclear loci, and all major clades
are supported by both data partitions. The clear and well
supported resolution of major clades in Goeppertia provides
a good basis for establishing a revised infrageneric classifica-
tion of that genus. However, a few critical issues need to be
addressed first. Some additional species with unclear affini-
ties should be sampled for DNA analysis. An example is
the species pair C. dicephala (Poepp. and Endl.) Ko
¨rn. and
C. pearcei Rusby. These were placed by Schumann (1902) in
subgenus Pseudophrynium series Scapifoliae, but they have a
different morphology from the remaining species of that
group. We suspect they may instead be members of the
Microcephalum clade. Finally, the morphological heterogene-
ity of several clades in Goeppertia represents a particular chal-
lenge in the search for synapomorphies that can be used to
circumscribe revised infrageneric entities.
Taxonomic Treatment
1. Calathea G. Mey. Prim. Fl. Esseq. 6. 1818.TYPE:
Maranta casupo Jacq. (lectotype: designated by S. Leman,
Bull. Sci. Soc. Philom. Paris. 1820: 7. 1820) [= Calathea lutea
(Aubl.) E. Mey. ex Schult.].
Sanblasia L. Andersson, Nordic J. Bot. 4: 21. 1984.TYPE:
Sanblasia dressleri L. Andersson.
Herbs, usually with several basal and one or more cauline
leaves. Leaves uniformly green or paler below, but never pat-
terned. Inflorescence terminal on a leafy shoot, compound,
usually composed of 2-several similar, partial inflorescences,
rarely simple; bracts distichous or spirally arranged, persis-
tent. Flower-groups brachyblastic, rarely sub-dolichoblastic,
2-, or rarely 3-flowered; interphylls usually present; bracteoles
(0–)1–2(–4), membranaceous. Flowers open; corolla tube elon-
gate, lobes reflexed or recurved; outer staminode 1 (rarely 0);
ovary with 3 fertile locules. Fruit usually 3-seeded, dehiscent,
obovoid, with persistent sepals; surface smooth; seeds with
basal, white or rarely colored, aril. About 37 species from
Mexico and the Carribean islands to Brazil and Bolivia.
2. Goeppertia Nees. Linnaea 6: 337. 1831.TYPE: Maranta
zebrina Sims (lectotype: designated by H. A. Kennedy,
Univ. California Publ. Bot. 71: 32. 1978) [= Goeppertia zebrina
(Sims) Nees].
Endocodon Raf., Fl. Tellur. 4: 49. 1838.TYPE: Maranta zebrina
Sims [= Goeppertia zebrina (Sims) Nees].
Psydaranta Neck. ex Raf., Fl. Tellur. 4: 53. 1838.TYPE:
Maranta comosa L. f. [= Goeppertia comosa (L. f.) Borchs. &
S. Sua
´rez].
Zelmira Raf., Fl. Tellur. 4: 50. 1838.TYPE: Phrynium
violaceum Roscoe [= Goeppertia violacea (Roscoe) Borchs. &
S. Sua
´rez].
Monostiche Ko
¨rn, Gartenfl. 7: 88. 1858.TYPE: Phrynium
coloratum Hook. [= Goeppertia colorata (Hook.) Borchs. &
S. Sua
´rez].
Thymocarpus Nicolson, Steyerm. & Sivad., Brittonia 33: 22.
1981.TYPE: Thymocarpus cannoides Nicolson,Steyerm.&
Sivad. [= Goeppertia cannoides (Nicolson, Steyerm. & Sivad.)
Borchs. & S. Sua
´rez].
Herbs with basal and/or cauline leaves. Leaves uniformly
green or with various types of patterning, this sometimes
626 SYSTEMATIC BOTANY [Volume 37
present only in juvenile plants. Inflorescence terminal on a
leafy shoot or more rarely borne on a separate leafless shoot,
simple, or rarely compound and composed of up to 9 similar,
partial inflorescences; bracts spirally arranged, persistent or
soon decaying, the distal ones sometimes sterile. Flower-
groups brachyblastic, rarely sub-dolichoblastic; 2- or rarely
3-flowered; interphylls usually present; bracteoles (0–)1–4,
membranaceous or claviculate, the first two usually median
and the remaining (if present) lateral. Flowers open or
remaining closed, rarely self-fertile; corolla tube elongate,
lobes straight or spreading; outer staminode 1 (rarely 0); ovary
with 3 fertile locules. Fruit 3-seeded, dehiscent, obovoid or
obpyramidal, usually with persistent sepals; surface smooth,
muricate,orverrucose;seedswithbasalwhitearil.About
248 species from Mexico and the Carribean islands to
Argentina and Paraguay.
Acknowledgments. Participation of Stella Sua
´rez in this study was
facilitated by a grant from the COIMBRA University group allowing her
to stay and work in Aarhus for three months in 2008. Permits for collec-
tion and exportation of silica gel dried leaf samples of Colombian
Marantaceae were kindly provided through the project “Marantaceae en
la jurisdiccio
´n de Corantioquia,” financed by the Corporacion del Noroeste
Antioquen
˜o. The Amazonian Institute of Scientific Investigation – Sinchi,
through the program “Inventarios florı
´sticos en a
´reas estrategias de la
Amazonia colombiana,” supplied us with valuable samples. We are also
grateful to the Lyon Arboretum, in particular Karen E. Shigematsu,
for allowing access to material of C. pavonii and C. varians. Carla Black,
John Mood, Julio Betancur, Dairon Ca
´rdenas, Rodrigo Bernal, Zaleth
Cordero, Linda Milena Torres, Jaime Navarro, and Aida Vasco further
supplied collections for this study. Gloria Galeano helped with advice
and logistic support. The Carlsberg Foundation, Denmark supported
the work of Finn Borchsenius (grant number 2007_01_0626), and Rancho
Santa Ana Botanic Garden supported the work of Linda Prince. Lab
work in Aarhus University was carried out by Anni Sloth.
Literature Cited
Andersson, L. 1977. The genus Ischnosiphon (Marantaceae). Opera Botanica
43: 1–113.
Andersson, L. 1981. The Neotropical genera of Marantaceae: circumscrip-
tion and relationships. Nordic Journal of Botany 1: 218–245.
Andersson, L. 1984. Sanblasia, a new genus of the Marantaceae. Nordic
Journal of Botany 4: 21–23.
Andersson, L. 1998. Marantaceae. Pp. 278–293 in The families and genera of
vascular plants IV, ed. K. Kubitzki. Berlin: Springer-Verlag.
Andersson, L. and M. W. Chase. 2001. Phylogeny and classification of
Marantaceae. Botanical Journal of the Linnean Society 135: 275–287.
Baker, R. H. and R. DeSalle. 1997. Multiple sources of character infor-
mation and the phylogeny of Hawaiian Drosophilids. Systematic
Biology 46: 654–673.
Beilstein, M. A., I. A. Al-Shehbaz, S. Mathews, and E. A. Kellogg. 2008.
Brassicaceae phylogeny inferred from phytochrome A and ndhF
sequence data: tribes and trichomes revisited. American Journal of
Botany 95: 1307–1327.
Bentham, G. 1883. Maranteae. Pp. 649–654 in Genera Plantarum 3(2), eds.
G. Bentham and J. D. Hooker. London: Reeve and Co.
Borchsenius, F. 2009. FastGap 1.2. Department of Biosciences, Aarhus
University, Denmark: Published online at http://www.aubot.dk/
FastGap_home.htm.
Claßen-Bockhoff, R. and A. Heller. 2008. Floral synorganisation and sec-
ondary pollen presentation in four Marantaceae from Costa Rica.
International Journal of Plant Sciences 169: 745–760.
Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Research 32: 1792–1797.
Farris, J. S., M. Ka
¨llersjo
¨, A. G. Kluge, and C. Bult. 1995. Testing signifi-
cance of incongruence. Cladistics 10: 315–319.
Govaerts, R. and H. Kennedy. 2012. World checklist of Marantaceae. Facili-
tated by the Royal Botanic Gardens, Kew: http://apps.kew.org/
wcsp/ [accessed February 04, 2012].
Hagberg, M. and R. Eriksson. 2011. New names in Monotagma (Marantaceae).
Phytotaxa 20: 1–25.
Harpke, D. and A. Peterson. 2008. 5.8S motifs for the identification of
pseudogenic ITS regions. Botany 86: 300–305.
Horvitz, C. C. and D. W. Schemske. 2002. Leaf herbivory and
neighbourhood competition in a Neotropical herb: effects on demo-
graphic fates. Journal of Ecology 90: 279–290.
Kennedy, H. 1978. Systematics and pollination of the “closed-flowered”
species of Calathea (Marantaceae). University of California Publications
in Botany 71: 1–90, plates 1–20.
Kennedy, H. 1990. Taxonomic notes on Calathea (Marantaceae) from
the Venezuelan Guayana: a new species and a new combination.
Phytologia 69: 373–377.
Kennedy, H. 1995. Calathea maasiorum (Marantaceae), a new species from
French Guiana and Surinam. Brittonia 47: 156–159.
Kennedy, H., L. Andersson, and M. Hagberg. 1988. Marantaceae. Pp. 11–188
in Flora of Ecuador vol.32,eds.G.HarlingandL.Andersson.Go
¨teborg:
University of Go
¨teborg; Stockholm: Riksmuseum; and Quito: Pontificia
Universidad Cato
´lica del Ecuador.
Ko
¨rnicke, F. 1858. Beitrage zur Kenntniss der in unsern Garten cultivierten
Maranteen. Gartenflora 7: 66–89.
Ko
¨rnicke, F. 1862. Monographie Marantearum prodromus. Bulletin de la
Socie
´te
´Impe
´riale des Naturalistes de Moscou 35: 1–147.
Ley, A. C. and R. Claßen-Bockhoff. 2011. Evolution in African Marantaceae -
evidence from phylogenetic, ecological and morphological studies.
Systematic Botany 36: 277–290.
Loesener, T. 1930. Marantaceae. Pp. 564–693 in Die Natu
¨rlichen
Pflanzenfamilien, ed. 2, 15a, ed. A. Engler. Leipzig: Englemann.
Maron, J. L., C. C. Horvitz, and J. L. Williams. 2010. Using experi-
ments, demography, and population models to estimate interaction
strength based on transient and asymptotic dynamics. Journal of
Ecology 98: 290–301.
Matlaga, D. P. and L. da S. L. Sternberg. 2009. Ephemeral clonal integra-
tion in Calathea marantifolia (Marantaceae): evidence of diminished
integration over time. American Journal of Botany 96: 431–438.
Meyer, G. F. W. 1818. Calathea. Pp. 6–7 in Primitae florae Essequebonensis.
Go
¨ttingen: Sumptibus H. Dieterich.
Molvray, M., P. J. Kores, and M. W. Chase. 2000. Polyphyly of mycohet-
erotrophic orchids and functional influences on floral and molecular
characters. Pp. 441–448 in Monocots: Systematics and evolution, eds.
K. L. Wilson and D. A. Morrison. Collingwood: CSIRO.
Nees von Esenbeck, C. G. D. 1831. U
¨ber die Gattungen Maranta und
Thalia.Linnaea 6: 303–431.
Petersen, O. G. 1890. Marantaceae. Pp. 81–172 in Flora Brasiliensis 3(3), ed.
C. F. P. von Martius. Munich and Leipzig: R. Oldenbourg.
Pischtschan, E., A. C. Ley, and R. Claßen-Bockhoff. 2010. Ontogenetic and
phylogenetic diversification of the hooded staminode in Marantaceae.
Taxon 59: 1111–1125.
Prince, L. M. and W. J. Kress. 2006a. Phylogenetic relationships and clas-
sification in Marantaceae: insights from plastid DNA sequence data.
Taxon 55: 281–296.
Prince, L. M. and W. J. Kress. 2006b. Phylogeny and biogeography of the
prayer plant family: getting to the root problem in Marantaceae.
Aliso 22: 645–659.
Schumann, K. 1902. Marantaceae. Pp. 1–184 in Das Pflanzenreich 4(48), ed.
A. Engler. Leipzig: Engelmann.
Simmons, M. P. and H. Ochoterena. 2000. Gaps as characters in sequence-
based phylogenetic analyses. Systematic Biology 49: 369–381.
Sims, J. 1817. Maranta zebrina.Curtis Botanical Magazine 44: t 1926.
Sorenson, M. D. and E. A. Franzosa. 2007. TreeRot, version 3. Boston:
Boston University.
Steele, K. P. and R. Vilgalys. 1994. Phylogenetic analyses of Polemoniaceae
using nucleotide sequences of the plastid gene matK.Systematic Botany
19: 126–142.
Suksathan, P., M. H. Gustafsson, and F. Borchsenius. 2009. Phylogeny
and generic delimitation of Asian Marantaceae. Botanical Journal of
the Linnean Society 159: 381–395.
Swenson, N. G. 2009. Herbaceous monocot plant form and function along
a tropical rain-forest gradient: a reversal of dicot strategy. Journal of
Tropical Ecology 25: 103–106.
Swofford, D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and
other methods), Version 4.0. Beta 10. Sunderland: Sinauer Associates.
Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers
for amplification of three non-coding regions of chloroplast DNA.
Plant Molecular Biology 17: 1105–1109.
Vieira, S. and V. C. Souza. 2008. Four new species of Maranta L.
(Marantaceae) from Brazil. Botanical Journal of the Linnean Society
158: 131–139.
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 627
Appendix 1. List of all samples used in the current study with taxon
name, collector name and number (herbarium), and GenBank accession
numbers. Missing sequences are noted with an —. New sequences made
for this study have GenBank accession numbers starting with JN or JQ.
GenBank numbers are listed in the following order: matK plus flanking 30
trnK intron; trnL intron; trnL-F IGS; ITS. Note that the name Calathea toroi
S. Sua
´rez, validly published in Caldasia 32: 296 (2010), has not been regis-
tered in the International Plant Names Index (IPNI; www.ipni.org) and is
not listed by Govaerts and Kennedy (2012).
Calathea— Calathea altissima (Poepp. & Endl.) Horan., S. Suarez 2367
(COL), JQ341333, JN413119, JQ341216, JQ341268. Calathea attenuata H. A.
Kenn., S. Sua
´rez 2609 (COL), JQ341335, JN413121, JQ341218, JQ341270.
Calathea bella (W. Bull) Regel, W. J. Kress 02-7178 (US), AY140278,
JN413143, AY140357, JQ341292. Calathea capitata (Ruiz & Pav.) Lindl.,
S. Sua
´rez 2247 (COL), JQ341336, JN413122, JQ341219, JQ341271. Calathea
crotalifera S. Watson, S. Sua
´rez 2589 (COL), JQ341337, JN413123,
JQ341220, JQ341272. Calathea curaraya H. A. Kenn., D. Cardenas 21047
(COL), JQ341338, JN413124, JQ341221, JQ341273. Calathea cyclophora
Baker, D. Cardenas 18779 (COL), JQ341339, JN413125, JQ341222,
JQ341274. Calathea ecuadoriana H. A. Kenn., W. J. Kress 01-6966 (US),
AY140269, JN413126, AY140348, JQ341275. Calathea foliosa Rowlee ex
Woodson & Schery, B.Hammel 11993 (DUKE), AY140270, JN413127,
AY140349, JQ341276. Calathea fucata H. A. Kenn., S. Sua
´rez 2627 (COL),
JQ341340, JN413128, JQ341223, JQ341277. Calathea guzmanioides L. B. Sm.
& Idrobo, S. Sua
´rez 2322 (COL), JQ341341, JN413129, JQ341224, JQ341278.
Calathea gymnocarpa H. A. Kenn., W. J. Kress 99-6402 (US), AY140271,
JN413130, AY140350, JQ341279. Calathea hagbergii H. A. Kenn., S. Sua
´rez
2325 (COL), JQ341342, JN413131, JQ341225, JQ341280. Calathea inocephala
(Kuntze) T. Durand & B. D. Jacks., D. Cardenas 18688 (COL), JQ341343,
JN413132, JQ341226, JQ341281. Calathea killipii L. B. Sm. & Idrobo,
S. Sua
´rez 2318 (COL), JQ341344, JN413133, JQ341227, JQ341282. Calathea
lanata Petersen, L. M. Torres 139 (COL), JQ341345, JN413134, JQ341228,
JQ341283. Calathea latifolia (Willd. ex Link) Klotzsch, S. Sua
´rez 2406 (COL),
JQ341346, JN413135, JQ341229, JQ341284. Calathea leonia (Sander)
K. Schum., R. Bernal 3897 (COL), JQ341347, JN413136, JQ341230,
JQ341285. Calathea loeseneri J. F. Macbr., W. J. Kress 99-6594 (US),
AY140273, JN413137, AY140352, JQ341286. Calathea lutea (Aubl.) E. Mey.
ex Schult., L. M. Torres 140 (COL), JQ341348, JN413138, JQ341231,
JQ341287. Calathea marantina (Willd. ex Ko
¨rn.) K. Koch, S. Sua
´rez 2646
(COL), JQ341349, JN413139, JQ341232, JQ341288. Calathea micans
(L. Mathieu) Ko
¨rn., S. Sua
´rez 2251 (COL), JQ341350, JN413140, JQ341233,
JQ341289. Calathea microcephala (Poepp. & Endl.) Ko
¨rn., S. Sua
´rez 2642
(COL), JQ341351, JN413141, JQ341234, JQ341290. Calathea mishuyacu J. F.
Macbr., D. Cardenas 21142 (COL), JQ341352, JN413142, JQ341235,
JQ341291. Calathea pavonii Ko
¨rn., Lyon Arboretum L-78.0725, voucher
K. M. Nagata 3004 (HLA), JQ341353, JN413144, JQ341236, JQ341293.
Calathea petersenii Eggers, S. Sua
´rez 2652 (COL), JQ341354, JN413145,
JQ341237, JQ341294. Calathea pluriplicata H. A. Kenn., W. J. Kress 99-6399
(US), AY140280, JN413146, AY140359, JQ341295. Calathea plurispicata
H. A. Kenn., S. Sua
´rez 2644 (COL), JQ341355, JN413147, JQ341238, JQ341296.
Calathea propinqua (Poepp. & Endl.) Ko
¨rn., S. Sua
´rez 2662 (COL), JQ341356,
JN413148, JQ341239, JQ341297. Calathea rufibarba Fenzl, W. J. Kress 01-6856
(US), AY140359, JN413149, AY140360, AY673048. Calathea silvosa J. F.
Macbr., S. Sua
´rez 2246 (COL), JQ341357, JN413150, JQ341240, JQ341298.
Calathea standleyi J. F. Macbr., S. Sua
´rez 2628 (COL), JQ341358, JN413151,
JQ341241, JQ341299. Calathea straminea Petersen, S. Sua
´rez 2673 (COL),
JQ341359, JN413152, JQ341242, JQ341300. Calathea timothei H. A. Kenn.,
J. Betancur 12348 (COL), JQ341360, JN413153, JQ341243, JQ341301. Calathea
toroi S. Sua
´rez, S. Sua
´rez 2317 (COL), JQ341334, JN413120, JQ341217,
JQ341269. Calathea undulata (Linden & Andre
´) Linden & Andre
´,S. Sua
´rez
2248 (COL), JQ341361, JN413154, JQ341244, JQ341302. Calathea utilis H. A.
Kenn., W. J. Kress 99-6389 (US), AY140282, JN413155, AY140361, JQ341303.
Calathea varians (K. Koch & Mathieu) Ko
¨rn., Lyon Arboretum L-79.0444,
photo voucher K. Shigematsu s. n. (AAU), JQ341362, JN413156, JQ341245,
JQ341304. Calathea variegata (K. Koch) Linden ex Ko
¨rn., S. Sua
´rez 2647
(COL), JQ341363, JN413157, JQ341246, JQ341305. Calathea villosa
(Lodd. ex G. Don) Lindl., R. Dressler 2912 (COL), JQ341364, JN413158,
JQ341247, JQ341306. Calathea vinosa H. A. Kenn., W. J. Kress 77-0879
(DUKE), AY140284, JN413159, AY140363, JQ341307. Calathea warszewiczii
(L. Mathieu ex Planch.) Planch. & Linden, L. Conde 8 (DUKE), AY140285,
JN413160, AY140364, AY673049.
Other ingroup taxa— Ischnosiphon hirsutus Petersen, S. Sua
´rez 2664
(COL), JQ341365, JN413161, JQ341248, JQ341308. Ischnosiphon leucophaeus
(Poepp. & Endl.) Ko
¨rn., W. J. Kress 99-6377 (US), AY140299, JN413162,
AY140380, JQ341309. Ischnosiphon macarenae L. Andersson, S. Sua
´rez 2601
(COL), JQ341366, JN413163, JQ341249, JQ341310. Ischnosiphon obliquus
(Rudge) Ko
¨rn., D. Cardenas 18695 (COL), JQ341367, JN413164, JQ341250,
JQ341311. Ischnosiphon puberulus Loes., W. J. Kress 99-6383 (US),
AY140300, JN413165, AY140381, JQ341312. Ischnosiphon rotundifolius
(Poepp. & Endl.) Ko
¨rn., W. J. Kress 99-6379 (US), AY140301, JN413166,
AY140382, JQ341313. Monotagma juruanum Loes., S. Sua
´rez 2656 (COL),
JQ341368, JN413167, JQ341251, JQ341314. Monotagma laxum (Poepp. &
Endl.) K. Schum., W. J. Kress 99-6381 (US), AY140309, JN413168,
AY140392, AY673058. Monotagma papillosum Hagberg & R. Erikss., W. J.
Kress 94-6411 (US), AY140310, JN413169, AY140393, JQ341315. Monotagma
secundum (Petersen) K. Schum., D. Cardenas 18707 (COL), JQ341370,
JN413171, JQ341253, JQ341317. Monotagma smaragdinum (Linden &
Andre
´) K. Schum., W. J. Kress 99-6380 (US), AY140312, JN413172,
AY140395, JQ341318. Monotagma tomentosum K. Schum. ex Loes., S. Sua
´rez
2368 (COL), JQ341371, JN413173, JQ341254, JQ341319. Monotagma
tuberosum Hagberg & R. Erikss., S. Sua
´rez 2665 (COL), JQ341369,
JN413170, JQ341252, JQ341316. Pleiostachya pruinosa K. Schum., Culti-
vated in Botanic Garden Mainz, voucher R. Classen-Bockhoff 5224 (MJG),
JQ341372, JN413174, JQ341255, JQ341320. Sanblasia dressleri L. Andersson,
C. Black 10 and 11 (US), JQ341373, JN413175, JQ341256, JQ341321.
Outgroup— Ctenanthe setosa (Roscoe) Eichler, W. J. Kress 99-6385 (US),
AY140288, —, AY140368, AY673051. Halopegia blumei (Ko
¨rn.) K. Schum.,
P. Suksathan 3429 (AAU), JQ341323, JN413108, JQ341206, JQ341258.
Haumania sp., D. J. Harris 6672 (E), AY140293, JN413109, AY140374,
AY673053. Hypselodelphys hirsuta (Loes.) Koechlin, A. Ley 269 (WAG),
JQ341324, JN413110, JQ341207, JQ341259. Maranta arundinacea
L., S. Johannsen 21 (AAU), JQ341325, JN413111, JQ341208, JQ341260.
Marantochloa filipes (Benth.) Hutch., A .Ley 262 (WAG), JQ341326,
JN413112, JQ341209, JQ341261. Megaphrynium macrostachyum (K. Schum.)
Milne-Redh., A. Ley 260 (WAG), JQ341327, JN413113, JQ341210,
JQ341262. Phrynium interruptum (K. Schum.) Suksathan & Borchs.,
P. Suksathan 3409 (AAU, QBG), JQ341328, JN413114, JQ341211, JQ341263.
Phrynium pubinerve Blume, F. Borchsenius 675 (AAU), JQ341329, JN413115,
JQ341212, JQ341264. Schumannianthus dichotomus (Roxb.) Gagnep.,
F. Borchsenius 666 (AAU), JQ341330, JN413116, JQ341213, JQ341265.
Stachyphrynium repens (Ko
¨rn.) Suksathan & Borchs., F. Borchsenius 667
(AAU), JQ341331, JN413117, JQ341214, JQ341266. Thalia dealbata Fraser,
F. Borchsenius 671 (AAU), JQ341332, JN413118, JQ341215, JQ341267.
Appendix 2. New combinations of Goeppertia. Nomenclature and origi-
nal reference citation for basionyms follow Govaerts and Kennedy (2012).
Goeppertia ackermannii (Ko
¨rn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea ackermannii Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 133. 1862.
Goeppertia acuminata (Steyerm.) Borchs. & S. Sua
´rez, comb.
nov. Calathea acuminata Steyerm., Fieldiana, Bot. 28:
161. 1951.
Goeppertia aemula (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea aemula Ko
¨rn., Bull. Soc. Imp. Naturalistes Moscou
35(1): 131. 1862.
Goeppertia affinis (Fenzl ex Regel) Borchs. & S. Sua
´rez,
comb. nov. Calathea affinis Fenzl ex Regel, Gartenflora
28: 294. 1879.
Goeppertia albertii (Pynaert & Van Geert) Borchs. &
S. Sua
´rez, comb. nov. Maranta albertii Pynaert & Van
Geert in ? Calathea albertii (Pynaert & Van Geert) L. H.
Bailey & Raffill in L. H. Bailey, Stand. Cycl. Hort. 2:
621. 1914.
Bailey and Rafill stated that their name was based on Maranta
albertii Pynaert & Van Geert, but did not mention where that
name had been published. IPNI does not include Maranta albertii
or Calathea albertii. Govaerts and Kennedy (2012) do not provide a
reference for the presumed basionym Maranta albertii either. Given
this unusual situation we have chosen to follow the citation pro-
vided by Govaerts and Kennedy (2012), but further investigation
is warranted.
Goeppertia albovaginata (K. Koch & Linden) Borchs. &
S. Sua
´rez, comb. nov. Phrynium albovaginatum K. Koch &
Linden, Wochenschr. Vereines Befo
¨rd. Gartenbaues
Ko
¨nigl. Preuss. Staaten 8: 369. 1865. Calathea albovaginata
628 SYSTEMATIC BOTANY [Volume 37
(K. Koch & Linden) K. Schum. in H. G. A. Engler (ed.),
Pflanzenr., IV, 48: 99. 1902.
Goeppertia allenii (Woodson) Borchs. & S. Sua
´rez, comb.
nov. Calathea allenii Woodson, Ann. Missouri Bot. Gard.
29: 331. 1942.
Goeppertia allouia (Aubl.) Borchs. & S. Sua
´rez, comb. nov.
Maranta allouia Aubl., Hist. Pl. Guiane 1: 3. 1775. Calathea
allouia (Aubl.) Lindl., Edwards’s Bot. Reg. 14: t. 1210. 1829.
Goeppertia altissima (Poepp. & Endl.) Borchs. & S. Sua
´rez,
comb. nov. Phrynium altissimum Poepp. & Endl., Nov.
Gen. Sp. Pl. 2: 20. 1837. Calathea altissima (Poepp. & Endl.)
Horan., Prodr. Monogr. Scitam.: 13. 1862.
Goeppertia amazonica (H.A.Kenn.)Borchs.&S.Sua
´rez, comb.
nov. Calathea amazonica H. A. Kenn., Selbyana 15: 63. 1994.
Goeppertia angustifolia (Ko
¨rn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea angustifolia Ko
¨rn., Gartenflora 7: 87. 1858.
Goeppertia annae (H. A. Kenn. & Marcelo) Borchs. &
S. Sua
´rez, comb. nov. Calathea annae H. A. Kenn. &
Marcelo, Phytologia 82: 96. 1997.
Goeppertia applicata (Jacob-Makoy ex E. Morren) Borchs. &
S. Sua
´rez, comb. nov. Calathea applicata Jacob-Makoy ex
E. Morren, Ann. Hort. Belge E
´trange
`re 24: 228. 1874.
Goeppertia argyraea (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea argyraea Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 142. 1862.
Goeppertia argyrophylla (Linden ex K. Koch) Borchs. &
S. Sua
´rez, comb. nov. Maranta argyrophylla Linden ex
K. Koch, Berliner Allg. Gartenzeitung 25: 243. 1857.
Calathea argyrophylla (Linden ex K. Koch) L. H. Bailey &
Raffill in L. H. Bailey, Stand. Cycl. Hort. 2: 624. 1914.
Goeppertia arrabidae (Ko
¨rn.) Borchs. & S. Sua
´rez, comb.
nov. Maranta tuberosa Vell., Fl. Flumin. 1: 4, t. 13. 1829.
Calathea arrabidae Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 144. 1862.
Ko
¨rnicke (1862) made the combination Calathea tuberosa (Vell.) Ko
¨rn.
based on Thalia tuberosa Vell., Fl. Flumin. 1: 4, t. 18. 1829. [= Goeppertia
tuberosa (Vell.) Borchs. & S. Sua
´rez, see below). Therefore, a new name
was assigned for Maranta tuberosa when transferred to Calathea.
Goeppertia atropurpurea (Matuda) Borchs. & S. Sua
´rez,
comb. nov. Calathea atropurpurea Matuda, Anales Inst.
Biol. Univ. Nac. Me
´xico 27: 359. 1957.
Goeppertia attenuata (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea attenuata H. A. Kenn., Nordic J. Bot.
6: 146. 1986.
Goeppertia bachemiana (E. Morren) Borchs. & S. Sua
´rez,
comb. nov. Calathea bachemiana E. Morren, Ann. Bot. Hort.
25: 271. 1875.
Goeppertia bantae (H.A.Kenn.)Borchs.&S.Sua
´rez, comb.
nov. Calathea bantae H. A. Kenn., Canad. J. Bot. 64: 1321. 1986.
Goeppertia baraquinii (Lem.) Borchs. & S. Sua
´rez, comb.
nov. Maranta baraquinii Lem., Ill. Hort. 15: t. 542. 1868.
Calathea baraquinii (Lem.) Regel, Gartenflora 18: 99. 1869.
Goeppertia barbata (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea barbata Petersen in C. F. P. von Martius &
auct. suc. (eds.), Fl. Bras. 3(3): 110. 1890.
Goeppertia bella (W. Bull) Borchs. & S. Sua
´rez, comb. nov.
Maranta bella W. Bull, Cat. 1875: 7. 1875. Calathea bella
(W. Bull) Regel, Gartenflora 28: 297. 1879.
Goeppertia bellula (Linden) Borchs. & S. Sua
´rez, comb. nov.
Calathea bellula Linden, Cat. Ge
´n. 89: 2. 1872.
Goeppertia bracteosa (Rusby) Borchs. & S. Sua
´rez, comb. nov.
Calathea bracteosa Rusby, Mem. New York Bot. Gard.
7: 220. 1927.
Goeppertia brasiliensis (Ko
¨rn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea brasiliensis Ko
¨rn., Bull. Soc. Imp.
Naturalistes Moscou 35(1): 118. 1862.
Goeppertia brevipes (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea brevipes Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 140. 1862.
Goeppertia brunnescens (K. Koch) Borchs. & S. Sua
´rez,
comb. nov. Phrynium brunnescens K. Koch, Wochenschr.
Vereines Befo
¨rd. Gartenbaues Ko
¨nigl. Preuss. Staaten
7: 277. 1864. Calathea brunnescens (K. Koch) K. Schum. in
H. G. A. Engler (ed.), Pflanzenr., IV, 48: 99. 1902.
Goeppertia buchtienii (Pax) Borchs. & S. Sua
´rez, comb. nov.
Calathea buchtienii Pax, Repert. Spec. Nov. Regni Veg.
7: 107. 1909.
Goeppertia burle-marxii (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea burle-marxii H. A. Kenn., Canad.
J. Bot. 60: 2365. 1982.
Goeppertia cannoides (Nicolson, Steyerm. & Sivad.) Borchs. &
S. Sua
´rez, comb. nov. Thymocarpus cannoides Nicolson,
Steyerm. & Sivad., Brittonia 33: 24. 1981. Calathea cannoides
(Nicolson, Steyerm. & Sivad.) H. A. Kenn., Phytologia
69: 375. 1990.
Goeppertia capitata (Ruiz & Pav.) Borchs. & S. Sua
´rez,
comb. nov. Maranta capitata Ruiz&Pav.,Fl.Peruv.1:3.
1798. Calathea capitata (Ruiz & Pav.) Lindl., Bot. Reg. 14:
t. 1210. 1829.
Goeppertia caquetensis (S. Sua
´rez & Galeano) Borchs. &
S. Sua
´rez, comb. nov. Calathea caquetensis S. Sua
´rez &
Galeano, Caldasia 22: 9. 2000.
Goeppertia cardenasii (Rusby) Borchs. & S. Sua
´rez, comb.
nov. Calathea cardenasii Rusby, Mem. New York Bot.
Gard. 7: 222. 1927.
Goeppertia cataractarum (K. Schum.) Borchs. & S. Sua
´rez,
comb. nov. Calathea cataractarum K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 95. 1902.
Goeppertia chimboracensis (Linden) Borchs. & S. Sua
´rez,
comb. nov. Maranta chimboracensis Linden, Ill. Hort. 17:
t. 6. 1870. Calathea chimboracensis (Linden) Linden, Ill. Hort.
17:t.6.1870.
Goeppertia chrysantha (Horan.) Borchs. & S. Sua
´rez, comb. nov.
Calathea chrysantha Horan.,Prodr.Monogr.Scitam.:13.1862.
Goeppertia chrysoleuca (Poepp. & Endl.) Borchs. &
S. Sua
´rez, comb. nov. Phrynium chrysoleucum Poepp. &
Endl., Nov. Gen. Sp. Pl. 2: 19. 1837. Calathea chrysoleuca
(Poepp. & Endl.) Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 142. 1862.
Goeppertia cinerea (Regel) Borchs. & S. Sua
´rez, comb. nov.
Calathea cinerea Regel, Gartenflora 25: 2. 1876.
Goeppertia cleistantha (Standl.) Borchs. & S. Sua
´rez, comb. nov.
Calathea cleistantha Standl.,J.Wash.Acad.Sci.17:250.1927.
Goeppertia clivorum (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea clivorum H. A. Kenn., Canad. J. Bot.
63: 1147. 1985.
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 629
Goeppertia coccinea (Standl. & Steyerm.) Borchs. & S. Sua
´rez,
comb. nov. Calathea coccinea Standl. & Steyerm., Publ.
Field Mus. Nat. Hist., Bot. Ser. 23: 39. 1944.
Goeppertia colombiana (L. B. Sm. & Idrobo) Borchs. &
S. Sua
´rez, comb. nov. Calathea colombiana L. B. Sm. &
Idrobo, Caldasia 5: 44. 1948.
Goeppertia colorata (Hook.) Borchs. & S. Sua
´rez, comb.
nov. Phrynium coloratum Hook., Bot. Mag. 57: t. 3010.
1830, comb. nov. Calathea colorata (Hook.) Benth. in
G. Bentham & J. D. Hooker, Gen. Pl. 3: 654. 1883.
Goeppertia communis (Wand. & S. Vieira) Borchs. &
S. Sua
´rez, comb. nov. Calathea communis Wand. &
S. Vieira, Hoehnea 29: 115. 2002.
Goeppertia comosa (L. f.) Borchs. & S. Sua
´rez, comb. nov.
Maranta comosa L. f., Suppl. Pl.: 80. 1782. Calathea comosa
(L. f.) Lindl., Edwards’s Bot. Reg. 14: t. 1210. 1829.
Goeppertia compacta (S. Sua
´rez & Galeano) Borchs. &
S. Sua
´rez, comb. nov. Calathea compacta S. Sua
´rez &
Galeano, Caldasia 22: 12. 2000.
Goeppertia concinna (W. Bull) Borchs. & S. Sua
´rez, comb.
nov. Maranta concinna W. Bull, Gard. Chron., n. s., 1: 78.
1874. Calathea concinna (W. Bull) K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 119. 1902.
Goeppertia concolor (Eichler ex Petersen) Borchs. & S. Sua
´rez,
comb. nov. Calathea concolor Eichler ex Petersen in C. F. P.
von Martius & auct. suc. (eds.), Fl. Bras. 3(3): 126. 1890.
Goeppertia contrafenestra (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea contrafenestra H. A. Kenn., Canad. J.
Bot. 62: 18. 1984.
Goeppertia coriacea (H.A.Kenn.)Borchs.&S.Sua
´rez, comb.
nov. Calathea coriacea H. A. Kenn., Brenesia 14-15: 351. 1978.
Goeppertia crocata (E. Morren & Joriss.) Borchs. & S. Sua
´rez,
comb. nov. Calathea crocata E. Morren & Joriss., Ann. Bot.
Hort. 25: 141. 1875.
Goeppertia cuneata (H.A.Kenn.)Borchs.&S.Sua
´rez, comb.
nov. Calathea cuneata H. A. Kenn., Bot. Not. 129: 352. 1977.
Goeppertia curaraya (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea curaraya H. A. Kenn., in Fl. Ecuador
32(224): 128. 1988.
Goeppertia cyclophora (Baker) Borchs. & S. Sua
´rez, comb.
nov. Calathea cyclophora Baker, Bull. Misc. Inform. Kew
1895: 17. 1895.
Goeppertia cylindrica (Roscoe) Borchs. & S. Sua
´rez, comb.
nov. Phrynium cylindricum Roscoe, Monandr. Pl. Scitam.:
t. 40. 1828. Calathea cylindrica (Roscoe) K. Schum. in
H. G. A. Engler (ed.), Pflanzenr., IV, 48: 83. 1902.
Goeppertia densa (K. Koch & Linden) Borchs. & S. Sua
´rez,
comb. nov. Phrynium densum K. Koch & Linden, Ann. Hort.
Belge E
´trange
`re 15: 100. 1865. Calathea densa (K. Koch &
Linden) Regel, Index Seminum (LE) 1866: 83. 1866.
Goeppertia dicephala (Poepp. & Endl.) Borchs. & S. Sua
´rez,
comb. nov. Phrynium dicephalum Poepp. & Endl., Nov.
Gen. Sp. Pl. 2: 20. 1837. Calathea dicephala (Poepp. &
Endl.) Ko
¨rn., Bull. Soc. Imp. Naturalistes Moscou 35(1):
127. 1862.
Goeppertia dilabens (L. Andersson & H. A. Kenn.) Borchs. &
S. Sua
´rez, comb. nov. Calathea dilabens L. Andersson &
H. A. Kenn., Nordic J. Bot. 6: 450. 1986.
Goeppertia divaricata (Rusby) Borchs. & S. Sua
´rez, comb.
nov. Calathea divaricata Rusby, Bull. Torrey Bot. Club 29:
695. 1902.
Goeppertia dodsonii (H. A. Kenn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea dodsonii H. A. Kenn., Selbyana 2: 46. 1977.
Goeppertia donnell-smithii (K. Schum.) Borchs. & S. Sua
´rez,
comb. nov. Calathea donnell-smithii K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 75. 1902.
Goeppertia dressleri (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea dressleri H. A. Kenn., Ann. Missouri
Bot. Gard. 60: 414. 1973.
Goeppertia dryadica (J. M. A. Braga) Borchs. & S. Sua
´rez,
comb. nov. Calathea dryadica J. M. A. Braga, Kew Bull.
63: 309. 2008.
Goeppertia eburnea (Andre
´& Linden) Borchs. & S. Sua
´rez,
comb. nov. Calathea eburnea Andre
´& Linden, Ill. Hort.
20: 171. 1873.
Goeppertia ecuadoriana (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea ecuadoriana H. A. Kenn., Canad.
J. Bot. 62: 15. 1984.
Goeppertia eichleri (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea eichleri Petersen in C. F. P. von Martius &
auct. suc. (eds.), Fl. Bras. 3(3): 108. 1890.
Goeppertia elegans (H.A.Kenn.)Borchs.&S.Sua
´rez,
comb. nov. Calathea elegans H.A.Kenn.,Bot.Not.131:
349. 1978.
Goeppertia elliptica (Roscoe) Borchs. & S. Sua
´rez, comb.
nov. Phrynium ellipticum Roscoe, Monandr. Pl. Scitam.:
t. 44. 1827. Calathea elliptica (Roscoe) K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 75. 1902.
Goeppertia enclitica (J. F. Macbr.) Borchs. & S. Sua
´rez,
comb. nov. Calathea enclitica J. F. Macbr., Publ. Field
Mus. Nat. Hist., Bot. Ser. 11: 53. 1931.
Goeppertia erecta (L. Andersson & H. A. Kenn.) Borchs. &
S. Sua
´rez, comb. nov. Calathea erecta L. Andersson &
H. A. Kenn., Nordic J. Bot. 6: 448. 1986.
Goeppertia eximia (K. Koch & C. D. Bouche
´) Borchs. &
S. Sua
´rez, comb. nov. Phrynium eximium K. Koch &
C. D. Bouche
´, Index Seminum (B) 1855(App.): 11. 1855.
Calathea eximia (K. Koch & C. D. Bouche
´)Ko
¨rn. ex Regel,
Gartenflora 7: 87. 1858.
Goeppertia exscapa (Poepp. & Endl.) Borchs. & S. Sua
´rez,
comb. nov. Phrynium exscapum Poepp. & Endl., Nov.
Gen. Sp. Pl. 2: 18. 1837. Calathea exscapa (Poepp. &
Endl.) Ko
¨rn., Bull. Soc. Imp. Naturalistes Moscou 35(1):
122. 1862.
Goeppertia exserta (Rusby) Borchs. & S. Sua
´rez, comb.
nov. Calathea exserta Rusby, Bull. New York Bot. Gard.
6: 495. 1910.
Goeppertia fasciata (Linden ex K. Koch) Borchs. & S. Sua
´rez,
comb. nov. Maranta fasciata Linden ex K. Koch, Berliner
Allg. Gartenzeitung 25: 243. 1857. Calathea fasciata (Linden
ex K. Koch) Regel & Ko
¨rn., Gartenflora 7: 348. 1858.
Goeppertia fatimae (H. A. Kenn. & Marcelo) Borchs. &
S. Sua
´rez, comb. nov. Calathea fatimae H. A. Kenn. &
Marcelo, Phytologia 82: 94. 1997.
Goeppertia flavescens (Lindl.) Borchs. & S. Sua
´rez, comb.
nov. Calathea flavescens Lindl., Bot. Reg. 11: t. 932. 1825.
630 SYSTEMATIC BOTANY [Volume 37
Goeppertia foliosa (Rowlee ex Woodson & Schery)
Borchs. & S. Sua
´rez, comb. nov. Calathea foliosa Rowlee
ex Woodson & Schery, Ann. Missouri Bot. Gard. 29:
332. 1942.
Goeppertia fragilis (Gleason) Borchs. & S. Sua
´rez, comb.
nov. Calathea fragilis Gleason, Bull. Torrey Bot. Club 56:
21. 1929.
Goeppertia fucata (H. A. Kenn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea fucata H. A. Kenn., in Fl. Ecuador 32(224):
133. 1988.
Goeppertia gandersii (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea gandersii H. A. Kenn., in Fl. Ecuador
32(224): 110. 1988.
Goeppertia gardneri (Baker) Borchs. & S. Sua
´rez, comb.
nov. Calathea gardneri Baker, Bull. Misc. Inform. Kew
1895: 18. 1895.
Goeppertia glaziovii (Benth.) Borchs. & S. Sua
´rez, comb.
nov. Calathea glaziovii Benth. in G. Bentham & J. D. Hooker,
Gen. Pl. 3: 654. 1883.
Goeppertia gloriana (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea gloriana H. A. Kenn., Selbyana 18:
35. 1997.
Goeppertia grandis (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea grandis Petersen in C. F. P. von Martius &
auct. suc. (eds.), Fl. Bras. 3(3): 124. 1890.
Goeppertia granvillei (L. Andersson & H. A. Kenn.) Borchs. &
S. Sua
´rez, comb. nov. Calathea granvillei L. Andersson &
H. A. Kenn., Nordic J. Bot. 6: 451. 1986.
Goeppertia grazielae (H. A. Kenn. & Marcelo) Borchs. &
S. Sua
´rez, comb. nov. Calathea grazielae H. A. Kenn. &
Marcelo, Phytologia 82: 101. 1997.
Goeppertia guianensis (Klotzsch ex Benth. & Hook. f.)
Borchs. & S. Sua
´rez, comb. nov. Calathea guianensis
Klotzsch ex Benth. & Hook. f., Gen. Pl. 3: 654. 1883.
Goeppertia gymnocarpa (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea gymnocarpa H. A. Kenn., Bot. Not.
130: 333. 1977.
Goeppertia hammelii (H. A. Kenn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea hammelii H. A. Kenn., Selbyana 18: 33. 1997.
Goeppertia hieroglyphica (Linden & Andre
´) Borchs. &
S. Sua
´rez, comb. nov. Calathea hieroglyphica Linden &
Andre
´, Ill. Hort. 20: 63. 1873.
Goeppertia hirta (Ravenna) Borchs. & S. Sua
´rez, comb. nov.
Calathea hirta Ravenna, Onira 9: 46. 2004.
Goeppertia hopkinsii (Forzza) Borchs. & S. Sua
´rez, comb.
nov. Calathea hopkinsii Forzza, Rodrigue
´sia 58: 535. 2007.
Goeppertia humilis (S. Moore) Borchs. & S. Sua
´rez, comb.
nov. Calathea humilis S. Moore, Trans. Linn. Soc. London,
Bot. 4: 489. 1895.
Goeppertia hylaeanthoides (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea hylaeanthoides H. A. Kenn., Canad. J.
Bot. 75: 1356. 1997.
Goeppertia incompta (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea incompta H. A. Kenn., Canad. J. Bot.
75: 1361. 1997.
Goeppertia indecora (Woodson) Borchs. & S. Sua
´rez, comb.
nov. Calathea indecora Woodson, Ann. Missouri Bot.
Gard. 29: 333. 1942.
Goeppertia inocephala (Kuntze) Borchs. & S. Sua
´rez, comb.
nov. Phyllodes inocephala Kuntze,Revis.Gen.Pl.2:
694. 1891. Calathea inocephala (Kuntze) T. Durand &
B. D. Jacks., Index Kew., Suppl. 1: 72. 1902.
Goeppertia jagoriana (Regel) Borchs. & S. Sua
´rez, comb.
nov. Calathea jagoriana Regel, Gartenflora 28: 297. 1879.
Goeppertia jocosa (J. F. Macbr.) Borchs. & S. Sua
´rez, comb.
nov. Calathea jocosa J. F. Macbr., Publ. Field Mus. Nat.
Hist., Bot. Ser. 11: 53. 1931.
Goeppertia joffilyana ( J. M. A. Braga) Borchs. & S. Sua
´rez,
comb. nov. Calathea joffilyana J. M. A. Braga, Bradea
9: 1. 2002.
Goeppertia kappleriana (Ko
¨rn. ex Horan.) Borchs. &
S. Sua
´rez, comb. nov. Calathea kappleriana Ko
¨rn. ex
Horan., Prodr. Monogr. Scitam.: 12. 1862.
Goeppertia killipii (L. B. Sm. & Idrobo) Borchs. & S. Sua
´rez,
comb. nov. Calathea killipii L. B. Sm. & Idrobo, Caldasia
5: 48. 1948.
Goeppertia koernickeana (Horan.) Borchs. & S. Sua
´rez,
comb. nov. Calathea koernickeana Horan., Prodr. Monogr.
Scitam.: 12. 1862.
Goeppertia kummeriana (E. Morren) Borchs. & S. Sua
´rez,
comb. nov. Calathea kummeriana E. Morren, Ann. Bot.
Hort. 25: 270. 1875.
Goeppertia laetevirens (Huber) Borchs. & S. Sua
´rez, comb.
nov. Calathea laetevirens Huber, Bol. Mus. Goeldi Hist.
Nat. Ethnogr. 4: 548. 1906.
Goeppertia lagoagriana (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea lagoagriana H. A. Kenn., Nordic
J. Bot. 6: 148. 1986.
Goeppertia lanata (Petersen) Borchs. & S. Sua
´rez, comb. nov.
Calathea lanata Petersen in C. F. P. von Martius & auct.
suc. (eds.), Fl. Bras. 3(3): 119. 1890.
Goeppertia lancifolia (Boom) Borchs. & S. Sua
´rez, comb.
nov. Calathea insignis W. Bull, Cat. 1905: 2. 1905, nom.
illeg. Calathea lancifolia Boom, Cat. 1905: 2. 1905.
Goeppertia lasiophylla (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea lasiophylla H. A. Kenn., Univ. Calif.
Publ. Bot. 71: 63. 1978.
Goeppertia lasseriana (Steyerm.) Borchs. & S. Sua
´rez,
comb. nov. Calathea lasseriana Steyerm., Fieldiana, Bot.
28: 163. 1951.
Goeppertia latifolia (Willd. ex Link) Borchs. & S. Sua
´rez,
comb. nov. Alpinia latifolia Willd. ex Link, Jahrb.
Gewa
¨chsk. 1(3): 22. 1820. Calathea latifolia (Willd. ex
Link) Klotzsch in R. H. Schomburgk, Reis. Br.-Guiana:
918. 1849.
Goeppertia legrelleana (Linden) Borchs. & S. Sua
´rez, comb.
nov. Maranta legrelleana Linden, Ann. Hort. Belge
E
´trange
`re 17: 104. 1867. Calathea legrelleana (Linden) Regel,
Gartenflora 28: 301. 1879.
Goeppertia leonia (Sander) Borchs. & S. Sua
´rez, comb. nov.
Maranta leonia Sander, Cat. 1896: 63. 1896. Calathea leonia
(Sander) K. Schum. in H. G. A. Engler (ed.), Pflanzenr.,
IV, 48: 90. 1902.
Goeppertia leonoriae (Lascur., H. Oliva & Avendan
˜o)
Borchs. & S. Sua
´rez, comb. nov. Calathea leonoriae Lascur.,
H. Oliva & Avendan
˜o, Novon 21: 66. 2011.
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 631
Goeppertia leucostachys (Hook. f.) Borchs. & S. Sua
´rez,
comb. nov. Calathea leucostachys Hook. f., Bot. Mag. 101:
t. 6205. 1875.
Goeppertia libbyana (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea libbyana H. A. Kenn., Brittonia 36:
206. 1984.
Goeppertia liesneri (H.A.Kenn.)Borchs.&S.Sua
´rez,
comb. nov. Calathea liesneri H. A. Kenn., Novon 3:
49. 1993.
Goeppertia lindbergii (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea lindbergii Petersen in C. F. P. von Martius &
auct. suc. (eds.), Fl. Bras. 3(3): 113. 1890.
Goeppertia lindeniana (Wallis) Borchs. & S. Sua
´rez, comb.
nov. Calathea lindeniana Wallis, Ann. Hort. Belge
E
´trange
`re 16: 200. 1866.
Goeppertia lindmanii (K. Schum.) Borchs. & S. Sua
´rez,
comb. nov. Calathea lindmanii K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 175. 1902.
Goeppertia littoralis (Ledeb. ex Sweet) Borchs. & S. Sua
´rez,
comb. nov. Phrynium littorale Ledeb. ex Sweet, Hort.
Brit., ed. 3: 658. 1839. Calathea littoralis (Ledeb. ex Sweet)
Ko
¨rn., Gartenflora 7: 88. 1858.
Goeppertia loeseneri ( J. F. Macbr.) Borchs. & S. Sua
´rez,
comb. nov. Calathea loeseneri J. F. Macbr., Publ. Field
Mus. Nat. Hist., Bot. Ser. 11: 51. 1931.
Goeppertia longibracteata (Sweet) Borchs. & S. Sua
´rez,
comb. nov. Phrynium longibracteatum Sweet, Hort. Brit.,
ed. 2: 494. 1830. Calathea longibracteata (Sweet) Lindl., Bot.
Reg. 12: t. 1020. 1827.
Goeppertia longiflora (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea longiflora H. A. Kenn., Univ. Calif.
Publ. Bot. 71: 76. 1978.
Goeppertia longipetiolata (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea longipetiolata H. A. Kenn., Canad.
J. Bot. 61: 1432. 1983.
Goeppertia louisae (Gagnep.) Borchs. & S. Sua
´rez, comb.
nov. Calathea louisae Gagnep., Bull. Soc. Bot. France 55:
xlii. 1908.
Goeppertia lucianii (Linden) Borchs. & S. Sua
´rez, comb. nov.
Maranta lucianii Linden, Cat. Ge
´n. 89: 2. 1872. Calathea
lucianii (Linden) Cogn. & Marchal in A. Dallie
`re, Pl.
Ornam. Feuill. 2: t. 50. 1874.
Goeppertia maasiorum (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea maasiorum H. A. Kenn., Brittonia
47: 156. 1995.
Goeppertia macilenta (Lindl.) Borchs. & S. Sua
´rez, comb.
nov. Calathea macilenta Lindl., Edwards’s Bot. Reg. 14:
t. 1210. 1829.
Goeppertia macrosepala (K. Schum.) Borchs. & S. Sua
´rez,
comb. nov. Calathea macrosepala K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 84. 1902.
Goeppertia majestica (Linden) Borchs. & S. Sua
´rez, comb.
nov. Maranta majestica Linden, Ann. Hort. Belge
E
´trange
`re 15: 103. 1865. Calathea majestica (Linden) H. A.
Kenn., Canad. J. Bot. 64: 1325. 1986.
Goeppertia makoyana (E. Morren) Borchs. & S. Sua
´rez,
comb. nov. Calathea makoyana E. Morren, Ann. Hort.
Belge E
´trange
`re 22: 321. 1872.
Goeppertia mandioccae (Ko
¨rn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea mandioccae Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 138. 1862.
Goeppertia mansoi (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea mansoi Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 119. 1862.
Goeppertia marantifolia (Standl.) Borchs. & S. Sua
´rez, comb.
nov. Calathea marantifolia Standl., J. Wash. Acad. Sci.
17: 250. 1927.
Goeppertia martinicensis (Urb.) Borchs. & S. Sua
´rez, comb.
nov. Calathea martinicensis Urb., Repert. Spec. Nov. Regni
Veg. 15: 103. 1917.
Goeppertia matudae (H. A. Kenn. & Ganders) Borchs. &
S. Sua
´rez, comb. nov. Calathea matudae H. A. Kenn. &
Ganders, Novon 21: 59. 2011.
Goeppertia mediopicta (E. Morren) Borchs. & S. Sua
´rez,
comb. nov. Maranta mediopicta E. Morren, Ann. Bot. Hort.
25: 135. 1875. Calathea mediopicta (E. Morren) Jacob-Makoy
ex E. Morren, Ann. Hort. Belge E
´trange
`re 24: 228. 1874.
Goeppertia metallica (Planch. & Linden) Borchs. & S. Sua
´rez,
comb. nov. Calathea metallica Planch. & Linden, Cat. Ge
´n.
10: 2. 1855.
Goeppertia micans (L. Mathieu) Borchs. & S. Sua
´rez, comb.
nov. Maranta micans L. Mathieu, Prospectus 1853: s.p..
1853. Calathea micans (L. Mathieu) Ko
¨rn., Gartenflora
7: 87. 1858.
Goeppertia microcephala (Poepp. & Endl.) Borchs. &
S. Sua
´rez, comb. nov. Phrynium microcephalum Poepp. &
Endl., Nov. Gen. Sp. Pl. 2: 20. 1837. Calathea microcephala
(Poepp. & Endl.) Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 125. 1862.
Goeppertia mirabilis ( Jacob-Makoy ex E. Morren) Borchs. &
S. Sua
´rez, comb. nov. Calathea mirabilis Jacob-Makoy ex
E. Morren, Ann. Hort. Belge E
´trange
`re 24: 228. 1874.
Goeppertia misantlensis (Lascur.) Borchs. & S. Sua
´rez, comb.
nov. Calathea misantlensis Lascur., Novon 6: 385. 1996.
Goeppertia mishuyacu ( J. F. Macbr.) Borchs. & S. Sua
´rez,
comb. nov. Calathea mishuyacu J. F. Macbr., Publ. Field
Mus. Nat. Hist., Bot. Ser. 11: 54. 1931.
Goeppertia modesta (Brongn. ex Gris) Borchs. & S. Sua
´rez,
comb. nov. Calathea modesta Brongn. ex Gris, Ann. Sci.
Nat., Bot., IV, 41: 193. 1859.
Goeppertia monophylla (Vell.) Borchs. & S. Sua
´rez,
comb. nov. Maranta monophylla Vell.,Fl.Flumin.1:4,
t. 11. 1829. Calathea monophylla (Vell.) Ko
¨rn., Bull. Soc.
Imp. Naturalistes Moscou 35(1): 144. 1862.
Goeppertia multicincta (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea multicincta H. A. Kenn., Canad.
J. Bot. 64: 1323. 1986.
Goeppertia neblinensis (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea neblinensis H. A. Kenn., Phytologia
69: 373. 1990.
Goeppertia neoviedii (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea neoviedii Petersen in C. F. P. von Martius &
auct. suc. (eds.), Fl. Bras. 3(3): 117. 1890.
Goeppertia nidulans (L. B. Sm. & Idrobo) Borchs. & S. Sua
´rez,
comb. nov. Calathea nidulans L. B. Sm. & Idrobo, Caldasia
5: 51. 1948.
632 SYSTEMATIC BOTANY [Volume 37
Goeppertia nigricans (Gagnep.) Borchs. & S. Sua
´rez, comb.
nov. Calathea nigricans Gagnep., Bull. Soc. Bot. France
50: 588. 1903.
Goeppertia nigrocostata (Linden & Andre
´) Borchs. &
S. Sua
´rez, comb. nov. Calathea nigrocostata Linden &
Andre
´, Ill. Hort. 20: t. 144. 1873.
Goeppertia nitens (Ender) Borchs. & S. Sua
´rez, comb. nov.
Calathea nitens Ender, Gartenflora 30: 180. 1881.
Goeppertia nitidifolia (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea nitidifolia H. A. Kenn., Brenesia
14-15: 350. 1978.
Goeppertia nobilis (K. Koch) Borchs. & S. Sua
´rez, comb.
nov. Phrynium nobile K. Koch, Berliner Allg.
Gartenzeitung 25: 147. 1857. Calathea nobilis (K. Koch)
Ko
¨rn., Gartenflora 7: 88. 1858.
Goeppertia oblonga (Mart.) Borchs. & S. Sua
´rez, comb. nov.
Phrynium oblongum Mart., Flora 24(2 Beibl.): 59. 1841.
Calathea oblonga (Mart.) Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 138. 1862.
Goeppertia orbifolia (Linden) Borchs. & S. Sua
´rez, comb. nov.
Maranta orbifolia Linden, Cat. Ge
´n. 16: 2. 1861. Calathea
orbifolia (Linden) H. A. Kenn., Brittonia 34: 22. 1982.
Goeppertia ornata (Linden) Borchs. & S. Sua
´rez, comb. nov.
Maranta ornata Linden, Fl. Serres Jard. Eur. 4: t. 413. 1848.
Calathea ornata (Linden) Ko
¨rn., Gartenflora 7: 87. 1858.
Goeppertia ovandensis (Matuda) Borchs. & S. Sua
´rez, comb.
nov. Calathea ovandensis Matuda, Anales Inst. Biol. Univ.
Nac. Me
´xico 21: 333. 1951.
Goeppertia ovata (Nees & Mart.) Borchs. & S. Sua
´rez, comb.
nov. Phrynium ovatum Nees & Mart., Nova Acta Phys.-
Med. Acad. Caes. Leop.-Carol. Nat. Cur. 11(1): 27. 1823.
Calathea ovata (Nees & Mart.) Lindl., Edwards’s Bot. Reg.
14: t. 1210. 1829.
Goeppertia pachystachya (Poepp. & Endl.) Borchs. &
S. Sua
´rez, comb. nov. Phrynium pachystachyum Poepp. &
Endl., Nov. Gen. Sp. Pl. 2: 19. 1837. Calathea pachystachya
(Poepp. & Endl.) Ko
¨rn.,Bull.Soc.Imp.Naturalistes
Moscou 35(1): 142. 1862.
Goeppertia pacifica (Linden & Andre
´) Borchs. & S. Sua
´rez,
comb. nov. Calathea pacifica Linden & Andre
´, Ill. Hort.
19: t. 101. 1872.
Goeppertia pallidicosta (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea pallidicosta H. A. Kenn., Nordic
J. Bot. 6: 143. 1986.
Goeppertia panamensis (Rowlee ex Standl.) Borchs. &
S. Sua
´rez, comb. nov. Calathea panamensis Rowlee ex
Standl., J. Wash. Acad. Sci. 15: 4. 1925.
Goeppertia paucifolia (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea paucifolia H. A. Kenn., in Fl. Ecuador
32(224): 86. 1988.
Goeppertia pavonii (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea pavonii Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 116. 1862.
Goeppertia pavonina (K. Koch & Linden) Borchs. & S. Sua
´rez,
comb. nov. Maranta pavonina K. Koch & Linden, Ann.
Hort. Belge E
´trange
`re 15: 99. 1865. Calathea pavonina
(K. Koch & Linden) Petersen in C. F. P. von Martius &
auct. suc. (eds.), Fl. Bras. 3(3): 128. 1890.
Goeppertia pearcei (Rusby) Borchs. & S. Sua
´rez, comb. nov.
Calathea pearcei Rusby, Mem. Torrey Bot. Club 6: 123. 1895.
Goeppertia peruviana (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea peruviana Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 128. 1862.
Goeppertia petersenii (Eggers) Borchs. & S. Sua
´rez, comb.
nov. Calathea petersenii Eggers, Bot. Centralbl. 53: 304. 1893.
Goeppertia picturata (K. Koch & Linden) Borchs. & S. Sua
´rez,
comb. nov. Calathea picturata K. Koch & Linden, Wochenschr.
Vereines Befo
¨rd. Gartenbaues Ko
¨nigl. Preuss. Staaten 6:
346. 1863.
Goeppertia pilosa (Rusby) Borchs. & S. Sua
´rez, comb. nov.
Calathea pilosa Rusby, Bull. New York Bot. Gard. 6: 496. 1910.
Goeppertia pittieri (K. Schum.) Borchs. & S. Sua
´rez, comb.
nov. Calathea pittieri K. Schum. in H. G. A. Engler (ed.),
Pflanzenr., IV, 48: 108. 1902.
Goeppertia plicata (H. A. Kenn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea plicata H. A. Kenn., Bot. Not. 129: 354. 1977.
Goeppertia poeppigiana (Loes. ex H. A. Kenn.) Borchs. &
S. Sua
´rez, comb. nov. Calathea poeppigiana Loes. ex H. A.
Kenn., in Fl. Ecuador 32(224): 77. 1988.
Goeppertia porphyrocaulis (W. Bull) Borchs. & S. Sua
´rez,
comb. nov. Maranta porphyrocaulis W. Bull, Cat. 110: 7.
1875. Calathea porphyrocaulis (W. Bull) N. E. Br., Suppl.
Johnson’s Gard. Dict.: 890. 1882.
Goeppertia portobelensis (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea portobelensis H. A. Kenn., Bot. Not.
128: 313. 1975 publ. 1976.
Goeppertia praecox (S. Moore) Borchs. & S. Sua
´rez, comb.
nov. Calathea praecox S. Moore, Trans. Linn. Soc. London,
Bot. 4: 488. 1895.
Goeppertia prolifera (Vell.) Borchs. & S. Sua
´rez, comb.
nov. Maranta prolifera Vell.,Fl.Flumin.1:4,t.10.
1829. Calathea prolifera (Vell.)J.M.A.Braga,Acta
Bot. Bras. 19: 766. 2005.
Goeppertia propinqua (Poepp. & Endl.) Borchs. & S. Sua
´rez,
comb. nov. Phrynium propinquum Poepp. & Endl., Nov.
Gen. Sp. Pl. 2: 18. 1837. Calathea propinqua (Poepp. & Endl.)
Ko
¨rn., Bull. Soc. Imp. Naturalistes Moscou 35(1): 122. 1862.
Goeppertia pruinata (W. Bull) Borchs. & S. Sua
´rez, comb.
nov. Maranta pruinata W. Bull., Cat. 72: 6. 1872. Calathea
pruinata (W. Bull) N. E. Br., Suppl. Johnson’s Gard. Dict.:
890. 1882.
Goeppertia pseudoveitchiana (H. A. Kenn.) Borchs. &
S. Sua
´rez, comb. nov. Calathea pseudoveitchiana H. A. Kenn.,
Canad. J. Bot. 61: 1429. 1983.
Goeppertia pulchella (E. Morren) Borchs. & S. Sua
´rez, comb.
nov. Maranta pulchella E. Morren, Ann. Bot. Hort. 25: 272.
1875. Calathea pulchella (E. Morren) Ko
¨rn., Gartenflora
7: 87. 1858.
Goeppertia pumila (Vell.) Borchs. & S. Sua
´rez, comb. nov.
Maranta pumila Vell., Fl. Flumin. 1: 3, t. 8. 1829. Calathea
pumila (Vell.) Ko
¨rn., Bull. Soc. Imp. Naturalistes Moscou
35(1): 138. 1862.
Goeppertia regalis (Rollison ex Lem.) Borchs. & S. Sua
´rez,
comb. nov. Maranta regalis Rollison ex Lem., Ill. Hort. 2:
t. 74. 1855. Calathea regalis (Rollison ex Lem.) H. A. Kenn.,
Acta Hort. 413: 173. 1995.
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 633
Goeppertia reginae (J. M. A. Braga) Borchs. & S. Sua
´rez,
comb. nov. Calathea reginae J. M. A. Braga, Kew Bull. 63:
311. 2008.
Goeppertia robin-fosteri (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea robin-fosteri H. A. Kenn., Bot. Not.
128: 316. 1975 publ. 1976.
Goeppertia robiniae (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea robiniae H. A. Kenn., Ann. Missouri
Bot. Gard. 60: 419. 1973.
Goeppertia rodeckiana (K. Schum.) Borchs. & S. Sua
´rez,
comb. nov. Calathea rodeckiana K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 115. 1902.
Goeppertia roseobracteata (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea roseobracteata H. A. Kenn., Nordic
J. Bot. 6: 459. 1986.
Goeppertia roseopicta (Linden) Borchs. & S. Sua
´rez, comb.
nov. Maranta roseopicta Linden, Ann. Hort. Belge
E
´trange
`re 16: 202. 1866. Calathea roseopicta (Linden)
Regel, Index Seminum (LE) 1869: 12. 1869.
Goeppertia rossii (Lodd. ex Sweet) Borchs. & S. Sua
´rez,
comb. nov. Phrynium rossii Lodd. ex Sweet, Hort. Brit., ed.
3: 658. 1839. Calathea rossii (Lodd. ex Sweet) Ko
¨rn.,
Gartenflora 7: 88. 1858.
Goeppertia rufibarba (Fenzl) Borchs. & S. Sua
´rez, comb.
nov. Calathea rufibarba Fenzl, Gartenflora 28: 294. 1879.
Goeppertia rusbyi (Loes.) Borchs. & S. Sua
´rez, comb. nov.
Calathea nigricans Rusby, Bull. New York Bot. Gard. 6:
496. 1910, nom. illeg. Calathea rusbyi Loes. in H.G.A.
Engler, Nat. Pflanzenfam. ed. 2, 15a: 678. 1930.
Goeppertia sanderiana (Sander) Borchs. & S. Sua
´rez, comb.
nov. Maranta sanderiana Sander, Cat. (Sander & Co.)
1894: 9. 1894. Calathea sanderiana (Sander) Gentil, Pl. Cult.
Serres Jard. Bot. Brux.: 43. 1907.
Goeppertia saxicola (Hoehne) Borchs. & S. Sua
´rez, comb.
nov. Calathea saxicola Hoehne, Relat. Commiss. Linhas
Telegr. Estrate
´g. Matto Grosso Amazonas 5: 24. 1915.
Goeppertia schunkei (H. A. Kenn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea schunkei H. A. Kenn., Brittonia 34: 18. 1982.
Goeppertia sciuroides (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea sciuroides Petersen, Vidensk. Meddel.
Naturhist. Foren. Kjøbenhavn 1889: 329. 1889.
Goeppertia selbyana (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea selbyana H. A. Kenn., in Fl. Ecuador
32(224): 63. 1988.
Goeppertia sellowii (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea sellowii Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 120. 1862.
Goeppertia silvicola (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea silvicola H. A. Kenn., Univ. Calif.
Publ. Bot. 71: 67. 1978.
Goeppertia silvosa ( J. F. Macbr.) Borchs. & S. Sua
´rez, comb.
nov. Calathea silvosa J. F. Macbr., Publ. Field Mus. Nat.
Hist., Bot. Ser. 11: 52. 1931.
Goeppertia singularis (H.A.Kenn.)Borchs.&S.Sua
´rez, comb.
nov. Calathea singularis H. A. Kenn., Novon 9: 61. 1999.
Goeppertia soconuscum (Matuda) Borchs. & S. Sua
´rez,
comb. nov. Calathea soconuscum Matuda, Anales Inst.
Biol. Univ. Nac. Me
´xico 21: 327. 1951.
Goeppertia sousandradeana (H. A. Kenn. & Ganders)
Borchs. & S. Sua
´rez, comb. nov. Calathea sousandradeana
H. A. Kenn. & Ganders, Novon 21: 63. 2011.
Goeppertia sophiae (Huber) Borchs. & S. Sua
´rez, comb. nov.
Calathea sophiae Huber, Bol. Mus. Goeldi Hist. Nat.
Ethnogr. 4: 550. 1906.
Goeppertia sphaerocephala (K. Schum.) Borchs. & S. Sua
´rez,
comb. nov. Calathea sphaerocephala K. Schum. in H. G. A.
Engler (ed.), Pflanzenr., IV, 48: 101. 1902.
Goeppertia splendida (Lem.) Borchs. & S. Sua
´rez, comb. nov.
Maranta splendida Lem., Gard. Chron. 1864: 414. 1864.
Calathea splendida (Lem.) Regel, Gartenflora 18: 99. 1869.
Goeppertia sprucei (Rusby) Borchs. & S. Sua
´rez, comb. nov.
Calathea sprucei Rusby, Bull. New York Bot. Gard. 6:
495. 1910.
Goeppertia squarrosa (L. Andersson & H. A. Kenn.) Borchs.
& S. Sua
´rez, comb. nov. Calathea squarrosa L. Andersson
& H. A. Kenn., Nordic J. Bot. 6: 454. 1986.
Goeppertia standleyi ( J. F. Macbr.) Borchs. & S. Sua
´rez,
comb. nov. Calathea standleyi J. F. Macbr., Publ. Field
Mus. Nat. Hist., Bot. Ser. 11: 54. 1931.
Goeppertia stenostachys (Rusby) Borchs. & S. Sua
´rez, comb.
nov. Calathea stenostachys Rusby, Mem. New York Bot.
Gard. 7: 221. 1927.
Goeppertia steyermarkii (H. A. Kenn. & Nagata) Borchs. &
S. Sua
´rez, comb. nov. Calathea steyermarkii H. A. Kenn. &
Nagata, Brittonia 41: 164. 1989.
Goeppertia straminea (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea straminea Petersen in C. F. P. von Martius &
auct. suc. (eds.), Fl. Bras. 3(3): 118. 1890.
Goeppertia stromanthifolia (Rusby) Borchs. & S. Sua
´rez,
comb. nov. Calathea stromanthifolia Rusby, Bull. New
York Bot. Gard. 4: 456. 1907.
Goeppertia subtilis (S. Moore) Borchs. & S. Sua
´rez, comb.
nov. Calathea subtilis S. Moore, Trans. Linn. Soc. London,
Bot. 4: 487. 1895.
Goeppertia taeniosa ( Joriss.) Borchs. & S. Sua
´rez, comb.
nov. Calathea taeniosa Joriss., Ann. Bot. Hort. 26: 83. 1876.
Goeppertia tinalandia (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea tinalandia H. A. Kenn., Canad. J.
Bot. 63: 1141. 1985.
Goeppertia trichoneura (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea trichoneura H. A. Kenn., Univ. Calif.
Publ. Bot. 71: 58. 1978.
Goeppertia truncata (Link ex A. Dietr.) Borchs. & S. Sua
´rez,
comb. nov. Maranta truncata Link ex A. Dietr., Sp. Pl. 1:
26. 1831. Calathea truncata (Link ex A. Dietr.) K. Schum.
in H. G. A. Engler (ed.), Pflanzenr., IV, 48: 104. 1902.
Goeppertia tuberosa (Vell.) Borchs. & S. Sua
´rez, comb. nov.
Thalia tuberosa Vell., Fl. Flumin. 1: 4, t. 18. 1829. Calathea
tuberosa (Vell.) Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 124. 1862.
Goeppertia ucayalina (Huber) Borchs. & S. Sua
´rez, comb.
nov. Calathea ucayalina Huber, Bol. Mus. Goeldi Hist.
Nat. Ethnogr. 4: 551. 1906.
Goeppertia ulotricha ( J. F. Macbr.) Borchs. & S. Sua
´rez,
comb. nov. Calathea ulotricha J. F. Macbr., Publ. Field
Mus. Nat. Hist., Bot. Ser. 11: 52. 1931.
634 SYSTEMATIC BOTANY [Volume 37
Goeppertia umbrosa (Ko
¨rn.) Borchs. & S. Sua
´rez, comb. nov.
Calathea umbrosa Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 137. 1862.
Goeppertia undulata (Linden & Andre
´) Borchs. & S. Sua
´rez,
comb. nov. Maranta undulata Linden & Andre
´, Cat. Ge
´n.
87: 4. 1871. Calathea undulata (Linden & Andre
´) Linden &
Andre
´, Ill. Hort. 19: t. 98. 1872.
Goeppertia ursina (Standl.) Borchs. & S. Sua
´rez, comb. nov.
Calathea ursina Standl., Publ. Field Mus. Nat. Hist., Bot.
Ser. 22: 70. 1940.
Goeppertia vaginata (Petersen) Borchs. & S. Sua
´rez, comb.
nov. Calathea vaginata Petersen, Vidensk. Meddel.
Naturhist. Foren. Kjøbenhavn 1889: 331. 1889.
Goeppertia varians (K. Koch & Mathieu) Borchs. & S. Sua
´rez,
comb. nov. Phrynium varians K. Koch & Mathieu, Index
Seminum (B) 1855(App.): 12. 1855. Calathea varians
(K. Koch & Mathieu) Ko
¨rn., Gartenflora 7: 87. 1858.
Goeppertia variegata (K. Koch) Borchs. & S. Sua
´rez, comb.
nov. Phrynium variegatum K. Koch, Berliner Allg.
Gartenzeitung 25: 147. 1857. Calathea variegata (K. Koch)
Linden ex Ko
¨rn., Gartenflora 7: 88. 1858.
Goeppertia veitchiana (VeitchexHook.f.)Borchs.&S.Sua
´rez,
comb. nov. Calathea veitchiana Veitch ex Hook. f., Bot. Mag.
91: t. 5535. 1865.
Goeppertia velutina (Poepp. & Endl.) Borchs. & S. Sua
´rez,
comb. nov. Phrynium velutinum Poepp. & Endl., Nov.
Gen. Sp. Pl. 2: 19. 1837. Calathea velutina (Poepp. & Endl.)
Ko
¨rn., Bull. Soc. Imp. Naturalistes Moscou 35(1): 127. 1862.
Goeppertia venusta (H. A. Kenn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea venusta H. A. Kenn., Ann. Missouri Bot.
Gard. 60: 416. 1973.
Goeppertia verapax (Donn. Sm.) Borchs. & S. Sua
´rez, comb.
nov. Calathea verapax Donn. Sm., Bot. Gaz. 31: 124. 1901.
Goeppertia verecunda (H. A. Kenn.) Borchs. & S. Sua
´rez,
comb. nov. Calathea verecunda H. A. Kenn., Bot. Not. 130:
336. 1977.
Goeppertia villosa (Lodd. ex G. Don) Borchs. & S. Sua
´rez,
comb. nov. Phrynium villosum Lodd. ex G. Don in
R. Sweet, Hort. Brit., ed. 3: 658. 1839. Calathea villosa
(Lodd. ex G. Don) Lindl., Edwards’s Bot. Reg. 20(Misc.):
61. 1834.
Goeppertia vinosa (H. A. Kenn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea vinosa H. A. Kenn., Ann. Missouri Bot.
Gard. 60: 422. 1973.
Goeppertia violacea (Roscoe) Borchs. & S. Sua
´rez, comb.
nov. Phrynium violaceum Roscoe, Monandr. Pl. Scitam.:
t. 37. 1828. Calathea violacea (Roscoe) Lindl., Bot. Reg. 11:
t. 932. 1834.
Goeppertia virginalis (Linden ex Regel) Borchs. & S. Sua
´rez,
comb. nov. Calathea virginalis Linden ex Regel, Gartenflora
28: 299. 1879.
Goeppertia wallisii (Linden) Borchs. & S. Sua
´rez, comb. nov.
Maranta wallisii Linden, Ann. Hort. Belge E
´trange
`re 17:
105. 1867. Calathea wallisii (Linden) Regel, Index Seminum
(LE) 1869: 14. 1869.
Goeppertia warszewiczii (L. Mathieu ex Planch.) Borchs. &
S. Sua
´rez, comb. nov. Maranta warszewiczii L. Mathieu
ex Planch., Fl. Serres Jard. Eur. 9: 209. 1854. Calathea
warszewiczii (L. Mathieu ex Planch.) Planch. & Linden,
Cat. Pl. Exot. 10: 3. 1855.
Goeppertia whitei (Rusby) Borchs. & S. Sua
´rez, comb. nov.
Calathea whitei Rusby, Mem. New York Bot. Gard. 7:
221. 1927.
Goeppertia widgrenii (Ko
¨rn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea widgrenii Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35(1): 117. 1862.
Goeppertia williamsii (J. F. Macbr.) Borchs. & S. Sua
´rez,
comb. nov. Calathea williamsii J. F. Macbr., Publ. Field
Mus. Nat. Hist., Bot. Ser. 11: 54. 1931.
Goeppertia wiotii (E. Morren) Borchs. & S. Sua
´rez, comb.
nov. Maranta wiotii E. Morren, Ann. Bot. Hort. 25: 273.
1875. Calathea wiotii (E. Morren) Regel, Gartenflora 28:
298. 1879.
Goeppertia zingiberina (Ko
¨rn.) Borchs. & S. Sua
´rez, comb.
nov. Calathea zingiberina Ko
¨rn., Bull. Soc. Imp. Naturalistes
Moscou 35: t. 122. 1862.
2012] BORCHSENIUS ET AL.: PHYLOGENY OF CALATHEA 635
... The presented argumentation and data in 15 were thorough and comprehensive and thus we accepted the authors arguments, kept Sansevieria and Dracaena as distinct genera and separated the Hawaiian species of Dracaena in the new genus Chrysodracon. In another case Borchsenius et al. 16 showed that Calathea in the traditional description was polyphyletic. In order to keep Ischnosiphon and Monotagma as distinct genera, being the sister clade to a smaller Calathea clade including the type species, the larger clade of Calathea was put into the then resurrected genus Goeppertia. ...
... In order to keep Ischnosiphon and Monotagma as distinct genera, being the sister clade to a smaller Calathea clade including the type species, the larger clade of Calathea was put into the then resurrected genus Goeppertia. The argumentation and presentation in 16 was robustly based on a molecular phylogeny producing well supported clades. As a consequence, we accepted the recombination of the much larger clade as suggested in 16 . ...
... The argumentation and presentation in 16 was robustly based on a molecular phylogeny producing well supported clades. As a consequence, we accepted the recombination of the much larger clade as suggested in 16 . ...
Article
Full-text available
The lack of comprehensive and standardized taxonomic reference information is an impediment for robust plant research, e.g. in systematics, biogeography or macroecology. Here we provide an updated and much improved reference list of 1,315,562 scientific names for all described vascular plant species globally. The Leipzig Catalogue of Vascular Plants (LCVP; version 1.0.3) contains 351,180 accepted species names (plus 6,160 natural hybrids), within 13,460 genera, 564 families and 84 orders. The LCVP a) contains more information on the taxonomic status of global plant names than any other similar resource, and b) significantly improves the reliability of our knowledge by e.g. resolving the taxonomic status of ~181,000 names compared to The Plant List, the up to date most commonly used plant name resource. We used ~4,500 publications, existing relevant databases and available studies on molecular phylogenetics to construct a robust reference backbone. For easy access and integration into automated data processing pipelines, we provide an ‘R’-package (lcvplants) with the LCVP.
... In addition, species of Marantaceae in the Neotropics are still underrepresented in anatomical studies, with the classical anatomical works of Bertrand (1958) and Tomlinson (1961Tomlinson ( , 1962Tomlinson ( , 1969 based primarily on Old World species. The informal groups described by Andersson (1981Andersson ( , 1998 have been modified as new data is used in the systematics of the family, as demonstrated in the work of Andersson & Chase (2001), Prince & Kress (2006a, b) and Borchsenius, Suárez & Prince (2012). The distinction between genera has not always been clear (Andersson, 1998), and Calathea G.Mey., the largest genus in the Neotropics, was recently split into two, with the resurrection of Goeppertia Nees (Borchsenius et al., 2012). ...
... The informal groups described by Andersson (1981Andersson ( , 1998 have been modified as new data is used in the systematics of the family, as demonstrated in the work of Andersson & Chase (2001), Prince & Kress (2006a, b) and Borchsenius, Suárez & Prince (2012). The distinction between genera has not always been clear (Andersson, 1998), and Calathea G.Mey., the largest genus in the Neotropics, was recently split into two, with the resurrection of Goeppertia Nees (Borchsenius et al., 2012). Anatomical data on the distribution of silica phytolith idioblasts (Albuquerque, Braga & Vieira, 2013) do not support the relationship of Myrosma L.f. with Saranthe (Regel & Körn.) ...
... The species studied here were distributed among three clades (the informal Maranta, Calathea and Donax groups; Prince & Kress, 2006a) with each demonstrating distinctive characteristics. In the Calathea clade, Goeppertia was segregated from Calathea based on molecular phylogenetic studies (Borchsenius et al., 2012). In the present study, Goeppertia demonstrated no anatomical differences between its two leaf edges (although a slight difference was observed between the thickness of the leaf margins in G. zingiberina). ...
Article
Marantaceae consist of species with asymmetric leaves of two types: those with either a wider left or right half; this asymmetry is related, respectively, to clockwise or counterclockwise convolute vernation. In this study, we analysed whether anatomical differences in the leaf edges, i.e. the anatomical asymmetry, were related to the orientation of the convolute vernation and to the asymmetry of leaf morphology, and whether these differences supported the organization of the clades in the family. Transverse sections of the mid third of the leaf buds expanded to the height of the right and left edges of the blades were prepared for 19 species belonging to 11 genera, using cyto-histological techniques. Anatomical analyses of the blade edges revealed that there is a relationship between morphological asymmetry and anatomical asymmetry that has never before been ascribed to the family. The anatomical data support differences between the arrangements in two of the three Neotropical informal groups. In the Calathea clade, Calathea showed much more similarity with Goeppertia than with Ischnosiphon and Monotagma, since they are the only genera that do not present with anatomical asymmetry. In the Maranta clade, Ctenanthe, Saranthe and Stromanthe appear to be related to one another, as they share strong anatomical asymmetry and fibrous edges. These characteristics, however, are not observed in Myrosma, which in turn is more anatomically similar to Maranta.
... Here, we used an array of biochemical and optical techniques to study the biological variability of PSI. To this end, we isolated PSI-LHCI supercomplexes from 5 different angiosperms (flowering plants), namely the suntolerant eudicot species Arabidopsis thaliana and Spinacia oleracea and the monocot species Zea mays, Spathiphyllum wallisii and Calathea roseopicta [in lesser used official nomenclature Goeppertia roseopicta (Borchsenius et al. 2012)]. The latter two are houseplants introduced from the South American tropical forests and are adapted a shade environment (Schott and Endlicher 1832;Van Huylenbroeck et al. 2018). ...
Article
Full-text available
Photosystem I and II (PSI and PSII) work together to convert solar energy into chemical energy. Whilst a lot of research has been done to unravel variability of PSII fluorescence in response to biotic and abiotic factors, the contribution of PSI to in vivo fluorescence measurements has often been neglected or considered to be constant. Furthermore, little is known about how the absorption and emission properties of PSI from different plant species differ. In this study, we have isolated PSI from five plant species and compared their characteristics using a combination of optical and biochemical techniques. Differences have been identified in the fluorescence emission spectra and at the protein level, whereas the absorption spectra were virtually the same in all cases. In addition, the emission spectrum of PSI depends on temperature over a physiologically relevant range from 280 to 298 K. Combined, our data show a critical comparison of the absorption and emission properties of PSI from various plant species.
... While referring to our study taxa, we aim to reflect the most recent taxonomic changes and promote ease of use. Calathea, as formerly defined, is polyphyletic, and was recently split into two main groups (Borchsenius et al., 2012). One clade (Calathea II) is more closely related to Ischnosiphon than the rest of Calathea, and retains the generic name. ...
Article
Full-text available
Lateral organs arranged in spiral phyllotaxy are separated by the golden angle, ~137.5○, leading to chirality: either clockwise or counter-clockwise. In some species, leaves are asymmetricsuch that they are smaller and curved towards the side ascending the phyllotactic spiral. As such, these asymmetries lead to mirroring of leaf shapes in plants of opposite phyllotactic handedness. Previous reports had suggested that the pin-stripe calathea (Goeppertia ornata) may be exclusively of one phyllotactic direction, counter-clockwise, but had limited sampling to a single population. Here, we use a citizen science approach leveraging a social media poll, internet image searches, in-person verification at nurseries in four countries and digitally curated, research-grade observations to demonstrate that calatheas (Goeppertia spp.) around the world are biased towards counter-clockwise phyllotaxy. The possibility that this bias is genetic and its implications formodels of phyllotaxy that assume handedness is stochastically specified in equal proportions is discussed.
... It is made the bias are discussed, with implications for a possible genetic origin of phyllotactic 158While referring to our study taxa, we aim to reflect the most recent taxonomic changes 163 and promote ease of use. Calathea, as formerly defined, is polyphyletic, and was 164 recently split into two main groups(Borchsenius et al. 2012). One clade (Calathea II) is 165 more closely related to Ischnosiphon than the rest of Calathea, and retains the generic 166 name. ...
Preprint
Full-text available
Lateral organs arranged in spiral phyllotaxy are separated by the golden angle, ≈137.5°, leading to handedness: either clockwise or counter-clockwise. In some species, leaves are asymmetric such that they are smaller and curved towards the side ascending the phyllotactic spiral. As such, these asymmetries lead to mirroring of leaf shapes in plants of opposite phyllotactic handedness. Previous reports had suggested that the pin-stripe calathea ( Goeppertia ornata ) may be exclusively of one phyllotactic direction, counter-clockwise, but had limited sampling to a single population. Here, we use a citizen science approach leveraging a social media poll, internet image searches, and in-person verification at nurseries in four countries and two continents to demonstrate that calatheas ( Goeppertia spp. ) around the world are biased towards counter-clockwise phyllotaxy. The possibility that this bias is genetic and its implications for models of phyllotaxy that assume handedness is stochastically specified in equal proportions is discussed.
... Due to the great morphological diversity in Marantaceae, generic delimitation has been troublesome. Phylogenetic analyses of Marantaceae have found Ischnosiphon to be monophyletic (Andersson & Chase, 2001;Prince & Kress, 2006;Suksathan, Gustafsson & Borchsenius, 2009;Borchsenius, Suarez & Prince, 2012), but it may include Pleiostachya K.Schum., and further phylogenetic work should improve taxon and gene sampling to test species monophyly. Andersson, (1977) took into account numerous morphological and cytological characters, including chromosome counts and anatomical traits to delimit Ischnosiphon spp. ...
Article
Recognition and delimitation of taxonomic categories of biological organisms are still challenging and full of controversy. We used Ischnosiphon as a model to unravel the importance of morphometrics as individual-based variables to disentangle the morphological variability of plant species. Ischnosiphon spp. continue to be problematic for users, taxonomists and ecologists, due mainly to the huge morphological variability, the species criteria and circumscription proposed for many taxa and the many habitat and vegetative macro-morphological characters lacking in most currently available exsiccates. Twenty-three morphometric variables were sampled from 228 individuals, belonging to 22 Ischnosiphon spp. Principal components and discriminant multivariate analyses were used to describe and identify patterns of morphological variation in Ischnosiphon. Individual-landmark assessment analysed with multivariate methods captured morphometric intraspecific diversity and morphological variability in Ischnosiphon spp., along with the continuous variation of important morphological traits. By examining the morphology of Ischnosiphon spp. through individual-landmark assessment, we demonstrate that different morphological species concepts used today in the identification of the species are difficult to apply. We propose a replicable and analytical framework to accommodate individual variability in species diagnosis in morphologically diverse plant groups.
... Several studies assessed the relationships among major groups within the arrowroot family based either on morphological and anatomical [58,59,17] or on molecular data with a more or less geographical bias [60,61,21,22,24,[62][63][64]. An updated molecular phylogenetic framework at the family level covering the whole distribution range was recently established by Al-Gharaibeh [25]. ...
Article
Full-text available
Changes in chromosome number and structure, as well as alterations in genome size, are important cytological characters that often reflect speciation events. Due to a wide variety of previously reported chromosome numbers the species-rich arrowroot family (Marantaceae) is an ideal system to investigate the role of chromosomal changes in species diversification, especially of dysploidy and polyploidy. The mechanisms and direction of changes during evolution as well as ancestral states of chromosomal characters are largely unknown. This study provides a detailed survey of chromosomal and genome size variation in 43 Marantaceae accessions (37 species, 16 genera) from the whole distribution range. Phylogenetic tree mapping suggests that x = 13 is the ancestral basic chromosome number. Descending dysploidy to x = 9, 10, 11, and 12 occurred ten times in parallel within each of the five main clades. In contrast, ascending dysploidy to x = 14, occurred only once. Ploidy level variation was confined to basic numbers x = 9, 11, and 13 and was observed in four out of the five clades. The occurrence of triploids and pentaploids points towards heteroploid diploid-tetraploid and tetraploid-hexaploid hybridizations. Trends in genome evolution as exposed by regression analyses revealed a massive genome size increase after dysploidy - and a genome size decrease after polyploidy. A schematic illustration of possible origins and the modes of chromosomal changes in a biogeographical context is presented. Exemplified by the family Marantaceae, it is shown how variable chromosomal evolution can be and how it contributes to species richness and speciation in the plant kingdom.
... Due to the great morphological diversity in Marantaceae, generic delimitation has been troublesome. Phylogenetic analyses of Marantaceae have found Ischnosiphon to be monophyletic (Andersson & Chase, 2001;Prince & Kress, 2006;Suksathan, Gustafsson & Borchsenius, 2009;Borchsenius, Suarez & Prince, 2012), but it may include Pleiostachya K.Schum., and further phylogenetic work should improve taxon and gene sampling to test species monophyly. Andersson, (1977) took into account numerous morphological and cytological characters, including chromosome counts and anatomical traits to delimit Ischnosiphon spp. ...
Article
Recognition and delimitation of taxonomic categories of biological organisms are still challenging and full of controversy. We used Ischnosiphon as a model to unravel the importance of morphometrics as individual-based variables to disentangle the morphological variability of plant species. Ischnosiphon spp. continue to be problematic for users, taxonomists and ecologists, due mainly to the huge morphological variability, the species criteria and circumscription proposed for many taxa and the many habitat and vegetative macro-morphological characters lacking in most currently available exsiccates. Twenty-three morphometric variables were sampled from 228 individuals, belonging to 22 Ischnosiphon spp. Principal components and discriminant multivariate analyses were used to describe and identify patterns of morphological variation in Ischnosiphon. Individual-landmark assessment analysed with multivariate methods captured morphometric intraspecific diversity and morphological variability in Ischnosiphon spp., along with the continuous variation of important morphological traits. By examining the morphology of Ischnosiphon spp. through individual-landmark assessment, we demonstrate that different morphological species concepts used today in the identification of the species are difficult to apply. We propose a replicable and analytical framework to accommodate individual variability in species diagnosis in morphologically diverse plant groups.
Article
We present a taxonomic treatment for the monospecific genus Koernickanthe (Marantaceae) based on morphology and previous phylogenetic studies. We return K. orbiculata to Maranta once more and have located the last remnant syntype for its basionym, Ischnosiphon orbiculatus, deposited at the Komarov Botanical Institute of RAS herbarium (LE), designating it as lectotype. Nomenclature and taxonomic novelties include the acceptance of the name Maranta orbiculata and its correct application, and also provide lectotypification for its basionym and that of its synonym, Calathea cardenasii.
Article
Full-text available
This research aims to develop a feasibility test and practical application of biology learning media technology, especially in terms of taxonomy introduction via google lens. The experimental method was used to collect identification data regarding intersemiotic translation of ornamental plants. The stage to find out the quality of intersemiotic translation of the research object using a google lens in the form of the general method of photo analysis in the use of google lens using the keys of google lens results evaluation method by Shapovalov et al. (2020). The research object which was taken randomly via google lens will be analyzed for information regarding three to six detected results to examine information about the object based on genus and species. The result is google lens can identify ornamental plants well. Intersemiotic translation results have been obtained in the seven plants as research objects. Five research objects have a score of 3 and two research objects get a score of 2 based on the keys of google lens results evaluation. The identification of ornamental plants from the photo is Aglaonema plant, Tillandsia Usneoides, Sansevieria Trifasciata, Aechmea chantinii, Neoregelia fireball, Neoregelia marmorata, and Calathea Makoyana
Article
Full-text available
Nucleotide sequences of the plastid encoded gene matK were examined for their potential utility in phylogenetic analyses within angiosperm families. Sequences 661 bases in length were obtained from twenty species of Polemoniaceae. Phylogenetic analyses resulted in four equally parsimonious trees with a consistency index of 0.70. Several well supported groups allowed us to test hypotheses of relationship within Polemoniaceae. The segregation of Ipomopsis and Allophyllum from Gilia was supported by the placement of each in distinct groups separate from a group of four species of Gilia. Several strongly supported groups include genera now placed in different tribes. There was no support for the current separation of temperate Polemoniaceae into two tribes. The tropical genera were resolved as basal and paraphyletic within the family. The family as a whole was monophyletic with no support for the segregate family Cobaeaceae. Sequences of matK, a gene that had not been used previously for phylogenetic analyses, provided a sufficient number of reliable characters for phylogenetic analysis within Polemoniaceae. Pairwise comparisons of matK and rbcL sequences of the same taxa were performed. Sequences of matK varied at an overall rate twice that of rbcL sequences. Substitutions at the third codon position predominated in rbcL sequences, while in matK substitutions were more evenly distributed across codon positions.
Article
Full-text available
Marantaceae are the second largest family in the order Zingiberales, with approximately 31 genera and 535 species. Earlier studies based on morphological and molecular characters could not confidently determine the relationships among major lineages of the family, nor could they identify the basal branch of the family tree. Phylogenetic analyses of DNA sequence data from all three genomic com- partments (chloroplast: matK, ndhF, rbcL, rps16 intron, and trnL-trnF intergenic spacer; mitochon- drion: cox1; nucleus: ITS region and the 5 -end of 26S) for a restricted set of taxa were conducted under parsimony criteria to define the root node and to assess geographical distribution patterns. Our results support the recognition of five major lineages, most of which are restricted to a single geo- graphical region (tropical America, tropical Africa, or tropical Asia). The phylogenies and character reconstructions (Fitch parsimony optimization, Bremer ancestral areas, and DIVA) support an African origin for the family, followed by a minimum of two dispersal events to the New World tropics and four or more dispersal events to the Asian tropics. Less likely are two alternative hypotheses: (1) vicariance of a western Gondwanan group (the Americas and Africa) followed by several dispersals to Asia and Africa, or (2) an American origin followed by several dispersals to Africa and Asia. The low specific diversity in Africa may be due to higher extinction rates as a result of shrinking lowland tropical forests during the Tertiary.
Article
The flowers of Marantaceae are known for their unique pollination mechanism mediated by an explosive style movement. The mechanism is based on the highly modified elements of the inner androecial whorl, i.e., the single half‐fertile anther and the fleshy and hooded staminodes. We investigated 67 species across 24 genera to elucidate which parts of the hooded staminode are shared by all species, thus likely under strong selection pressure, and which are allowed to vary. We treated hooded staminodes as character syndromes and grouped them based on gross similarities. We identified characters underlying the similarity and investigated their diversity and developmental pathways. All hooded staminodes correspond in their general morphology, development and vascularisation, suggesting they are homologous. Variable proportions, differential growth and the formation of secondary structures result in a diversity of morphologies. The hooded staminodes can be grouped into ten distinct types. These morphological types are in accordance with the accepted clades of the family indicating their phylogenetic significance. The early diverging clades are characterised by stiff and elaborate staminode structures whereas in more distantly diverging clades simplified forms appear. We conclude that elaborate structures are not essential to maintain the pollination mechanism and thus have been reduced in the course of evolution.