ArticlePDF Available

Estado de conservación del jaguar y el pecarí de labio blanco en el Ecuador occidental

Authors:

Abstract and Figures

Little is known about the conservation status of jaguar and white-lipped peccary populations west of the Andes in Ecuador. We surveyed the two species in the four largest forest remnants in western Ecuador, using interviews to local people, reconnaissance surveys, and camera traps. The two species were detected only in one of the remnants (Cotacachi-Cayapas Ecological Reserve and its buffer zone, an area of 2,500 km2). It appears, both species have been extirpated already from the other three large forest remnants in the region, and their long-term persistence depends on immediate conservation actions in Cotacachi-Cayapas Ecological Reserve.
Content may be subject to copyright.
21
Estado de conservación del jaguar y el pecarí de labio blanco
en el Ecuador occidental
Conservation status of the jaguar and the white-lipped peccary
in western Ecuador
Galo Zapata-Ríos1,2, Edison Araguillin1,3
Resumen
Poco se conoce sobre el estado de conservación de las poblaciones de jaguar y pecarí de labio blanco
al occidente de los Andes en el Ecuador. Muestreamos las dos especies en los cuatro remanentes de
bosque más grandes del Ecuador occidental, utilizando entrevistas a la gente local, senderos de reco-
nocimiento y trampas fotográficas. Las dos especies fueron detectadas únicamente en uno de los
remanentes (Reserva Ecológica Cotacachi-Cayapas y su zona de amortiguamiento un área de 2500
km2). Aparentemente, ambas especies han sido ya extirpadas de los otros tres remanentes grandes de
bosque en la región y su persistencia a largo plazo depende de acciones de conservación inmediatas
en la Reserva Ecológica Cotacachi-Cayapas.
Palabras clave: Carnívoros, Extinción local, Muestreos de reconocimiento,
Trampas fotográficas, Ungulados.
Abstract
Little is known about the conservation status of jaguar and white-lipped peccary populations west of the
Andes in Ecuador. We surveyed the two species in the four largest forest remnants in western Ecuador,
using interviews to local people, reconnaissance surveys, and camera traps. The two species were
detected only in one of the remnants (Cotacachi-Cayapas Ecological Reserve and its buffer zone, an
area of 2,500 km2). It appears, both species have been extirpated already from the other three large
forest remnants in the region, and their long-term persistence depends on immediate conservation
actions in Cotacachi-Cayapas Ecological Reserve.
Keywords: Carnivores, Camera traps, Local extinction, Reconnaissance surveys, Ungulates.
© Rev. Biodivers. Neotrop. 2013; 3 (1): 21-9
1Wildlife Conservation Society.Quito, Ecuador. e-mail: gzapata@wcs.org
2Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, USA.
3Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, España. e-mail: earaguillin@wcs.org
Fecha recepción: Abril 29, 2013 Fecha aprobación: Mayo 30, 2013
Introducción
En Ecuador, el jaguar (Panthera onca) y el pecarí
de labio blanco (Tayassu pecari) presentan una dis-
tribución disyunta a ambos lados de los Andes: en la
Amazonía y la Costa del Pacífico (Sanderson et al.
2002, Tirira 2007, Taber et al. 2008). Las poblacio-
nes de las dos especies, a ambos lados de la cordille-
ra, se encuentran aisladas geográficamente unas de
otras (Tirira 2007) y aunque los efectos negativos de
las actividades humanas (e.g. cacería, pérdida de
hábitat) amenazan las poblaciones de ambas espe-
cies en la Amazonía, ninguna de las dos se encuen-
tra en inminente riesgo de extinción. Por el contra-
rio, las poblaciones de la Costa, en el Ecuador occi-
dental, están desapareciendo rápidamente en todo su
ámbito de distribución geográfica y poco se conoce
sobre su estado de conservación actual (Tirira 2007,
2011).
La desaparición de ambas especies en la Costa
ecuatoriana tendría impactos ecológicos graves. Es
enorme la magnitud de los roles tróficos y ecológicos
del jaguar y el pecarí de labio blanco en el manteni-
miento de la estructura y funcionamiento de los
Rev. Biodivers. Neotrop.
2013; 3 (1): 21-9
22
ecosistemas que habitan. En el caso del jaguar, la
extirpación de los depredadores grandes de un
ecosistema produce una serie de efectos cascada por
la falta de regulación demográfica de las especies
presa (Terborgh 1988, Dirzo y Miranda 1990,
Terborgh et al. 1999, Dirzo y Mendoza 2007, Jorge
et al. 2013). Los pecaríes de labio blanco, por su
parte, son considerados «ingenieros de los ecosis-
temas» (Jones et al. 1994, Taber et al. 2008,
Altrichter et al. 2011), y juegan un papel irrem-
plazable en la dinámica de regeneración del suelo
del bosque, la dispersión de semillas y en la forma-
ción de saladeros (Painter y Rumiz 1999, Fragoso
2005, Beck 2006, Keuroghlian y Eaton 2008, 2009).
En este artículo reportamos los resultados de una
serie de muestreos para ambas especies realizados
en los cuatro remanentes de bosque más grandes del
Ecuador occidental. El objetivo de estos muestreos
fue determinar la distribución geográfica y el tama-
ño de la población de ambas especies. La Costa ecua-
toriana es una región gravemente amenazada por la
destrucción del hábitat, por lo que esta información
es esencial para planificar estrategias de conserva-
ción que garanticen la conservación a largo plazo de
jaguares, pecaríes de labio blanco, y otras especies
amenazadas.
Metodología
Área de estudio. En la Costa ecuatoriana, un área
de aproximadamente 70.000 km2, hace menos de un
siglo (ca. 1938) existían aproximadamente 60.000
km2 de bosque, incluyendo bosques secos, húmedos
y pluviales (Dodson y Gentry 1991). Esta gran va-
riedad de hábitats incluye, entre otros, al norte los
bosques pluviales de la sección meridional del Cho-
có Biogeográfico y los bosques secos de la sección
septentrional de la Región Tumbesina al sur. Ambas
regiones, Chocó y Tumbesina, están incluidas den-
tro de uno de los hotspots en términos de biodiver-
sidad (Tumbes-Chocó-Magdalena) y están conside-
radas ecoregiones de importancia global (Myers
1988, Dinerstein et al. 1995, Mittermeier et al. 1998,
Myers et al. 2000).
Los bosques del Ecuador occidental han sido
citados como una de las áreas más amenazadas del
planeta en términos de extinción biológica como re-
sultado principalmente de procesos de destrucción
del hábitat a gran escala (Myers 1988, Dodson y
Gentry 1991, Brooks et al. 2002). Para finales del
siglo XX, la superficie de bosques nativos se había
reducido en más de un 90% por causa del crecimien-
to poblacional, la tala de madera y la expansión de
la frontera agrícola. Como resultado de estos nive-
les de deforestación, los remanentes de bosque ac-
tualmente son muy pequeños y aislados, y existen
muy pocas áreas de bosque nativo mayores a 500
km2 (Parker III y Carr 1992, Sierra y Stallings 1998,
Sierra 1999a, Sierra et al. 2002).
Métodos de muestreo. Para determinar la pre-
sencia de jaguar y pecarí de labio blanco, realiza-
mos una serie de muestreos de ambas especies en
los principales remanentes de bosque del Ecuador
occidental (>500 km2). Utilizando un mapa de vege-
tación remanente del Ecuador (Sierra et al. 2002)
seleccionamos los remanentes de bosque más gran-
des de la región, los cuales representan cuatro áreas
de estudio independientes (distanciadas por al me-
nos 50 km entre una y otra). Los cuatro remanentes
se caracterizan por contener áreas continuas de bos-
que nativo >500 km2, donde el tipo de vegetación
dominante es el bosque húmedo tropical (Sierra
1999b). En términos de tenencia de la tierra, los re-
manentes se encuentran dentro del sistema nacional
de áreas protegidas, reservas comunitarias y priva-
das, y territorios indígenas. Los remanentes inclu-
yen: 1. La Reserva Étnica Awá, 2. La Reserva
Ecológica Mache-Chindul, 3. El Bosque Protector
Chongón-Colonche, 4. La Reserva Ecológica
Cotacachi-Cayapas y su área de amortiguamiento.
Con base en exploraciones en el campo, donde
constatamos que existían áreas con hábitat disponi-
ble en los cuatro remanentes, seleccionamos de for-
ma aleatoria nueve localidades de muestreo de
aproximadamente 50 km2 cada una (Tabla 1, Figura
1). En estas nueve localidades realizamos muestreos
de pecaríes y jaguares entre agosto de 2009 y agosto
de 2011. Los muestreos incluyeron entrevistas a ca-
zadores, trampeo fotográfico y senderos de recono-
cimiento. La duración de los muestreos en cada una
de las nueve localidades varió entre 29 y 39 días efec-
tivos de trabajo en el campo. Todas las localidades
muestreadas presentaron un rango altitudinal que
varió entre 200 y 900 m.
Las entrevistas se diseñaron para evaluar la pre-
sencia de jaguares y pecaríes en las localidades de
Rev. Biodivers. Neotrop. 2013; 3 (1): 21-9
23
Figura 1. Mapa de Ecuador occidental. Se incluyen las cuatro áreas de estudio. Los puntos negros indican las
localidades de muestreo: 1. Mataje, 2. Pambilar y 3. Río Bogotá en la Reserva Étnica Awá; 4. Estación Biológica Bilsa
y 5. San Salvador en la Reserva Ecológica Mache-Chindul; 6. Loma Alta en el Bosque Protector Chongón-Colonche;
7. Refugio de Vida Silvestre El Pambilar, 8. Playa de Oro, 9. Estero Vicente en la Reserva Ecológica Cotacachi-
Cayapas y su área de amortiguamiento.
Tabla 1. Áreas de estudio y localidades de muestreo de pecaríes de labio blanco y jaguares en el Ecuador
Occidental*
* Los muestreos se realizaron entre agosto de 2009 y agosto de 2011. Para cada localidad se indican los días de muestreo, el esfuerzo de muestreo
realizado con los tres métodos utilizados y si las dos especies fueron registradas en la localidad
Áreas de estudio/ Días de Entrevistas Cámaras Muestreos de Pecarí Jaguar
Localidades de muestreo muestreo (n) (trampas/noche) reconocimiento
(km)
i. Reserva Étnica Awá (1100 km2)
1. Centro Awá Mataje 31 30 900 460 No No
2. Centro Awá Pambilar 39 32 1029 350 No No
3. Centro Awá Río Bogotá 31 20 505 300 No No
ii. Reserva Ecológica Mache-
Chindul (1200 km2)
4. Estación Biológica Bilsa 29 12 600 199 No No
5. Comunidad Chachi San Salvador 35 30 837 329 No No
iii. Bosque Protecto Chongón-
Colonche (700 km2)
6. Comunidad Manteño-
Huancavilca Loma Alta 34 35 829 250 No No
iv. R.E. Cotacachi-Cayapas y área
de influencia (2500 km2)
7. Refugio de Vida Silvestre
El Pambilar 34 28 700 325 Sí Sí
8. Comunidad Afroecuatoriana
Playa de Oro 39 30 950 546
9. Comunidad Chachi Estero
Vicente 36 30 899 355 Sí Sí
Esfuerzo de muestreo total 308 247 7249 3114
Zapata-Ríos G, Araguillin E.
24
muestreo, determinar las principales amenazas para
la conservación, y la percepción de la gente sobre
los cambios en la abundancia de ambas especies du-
rante los últimos 10 años. Utilizamos además un pro-
medio de 45 trampas fotográficas en cada localidad
(CamTrakker equipadas con cámaras Canon), dis-
tanciadas al menos 500 m una de otra, en un área
aproximada de 50 km2. En cada una de las estacio-
nes de trampeo colocamos el perfume comercial
Chanel N° 5 (http://www.chanel.com) como atrayen-
te para felinos (Viscarra et al. 2011). El perfume se
untó en un trozo de tela y dentro de una caja peque-
ña de plástico con agujeros para proteger la tela de
la lluvia, y al mismo tiempo permitir que el aroma
del perfume se dispersara en el ambiente. La inde-
pendencia entre fotografías se basó en los parámetros
utilizados por O’Brien et al. (2003): 1. Fotografías
consecutivas de distintos individuos de la mismas
especie, 2. Fotografías consecutivas de individuos
de la misma especie tomadas con al menos 30 minu-
tos de diferencia, y 3. Fotografías no consecutivas
de individuos de la misma especie. Finalmente, los
muestreos de reconocimiento implicaron el registro
de observaciones directas e indirectas de fauna sil-
vestre a lo largo de senderos preexistentes en el área
de estudio.
Análisis de datos. El diseño de muestreo que
utilizamos no nos permitió estimar la abundancia y
densidad poblacional con el método tradicional de
captura-recaptura. Sin embargo, utilizando las tasas
de captura fotográficas, estimamos la densidad
poblacional para ambas especies con el Modelo del
Encuentro Aleatorio (MEA) propuesto por Rowcliffe
et al. (2008):
Dˆ = y/t *
π
/vr(2+
0
)
donde
y = número de fotografías independientes
t = esfuerzo de muestreo (trampas-noche)
v = rango aproximado de movimiento diario (km, Carbone et al. 2005)
r = distancia de detección (km, Rowcliffe et al. 2011)
0 = arco de detección (rad)
El modelo no requiere de la identificación de
individuos para estimar la densidad de una pobla-
ción de fauna silvestre y se basa en el modelamiento
de las tasas de encuentro de individuos que se asu-
me mantienen movimientos aleatorios e independien-
tes unos de otros, dentro de un espacio bidimensional
(Carbone et al. 2001, Hutchinson y Waser 2007,
Rowcliffe et al. 2008, Rovero y Marshall 2009,
Manzo et al. 2012, Zero et al. 2013). Los detalles
operativos utilizados para realizar las estimaciones
de densidad no se describen aquí porque existen pu-
blicaciones específicas para el efecto (e.g. Carbone
et al. 2005, Rowcliffe et al. 2008, 2011, 2012).
Resultados
Durante 308 días de trabajo de campo en las nue-
ve localidades de muestreo, realizamos 247 entre-
vistas, 7249 trampas/noche de trampeo fotográfico
y 3114 km en senderos de reconocimiento. En seis
de las nueve localidades no se registró ninguna de
las especies buscadas, a pesar del importante esfuer-
zo de muestreo (Tabla 1). Estas seis localidades se
encuentran en la Reserva Étnica Awá, la Reserva
Ecológica Mache-Chindul y el Bosque Protector
Chongón-Colonche. De acuerdo con las entrevistas,
son más de cinco años desde que se observaron los
últimos individuos de ambas especies (83% de los
entrevistados). Las personas entrevistadas conside-
ran que las causas principales para la desaparición
de las dos especies son la cacería (52%) y la des-
trucción del hábitat (31%). Otras causas, como la
construcción de carreteras, explotación minera, la tala
selectiva y cambios en el comportamiento de las es-
pecies representaron 17% restante de las respuestas.
En las otras tres localidades de muestreo, en la
Reserva Ecológica Cotacachi-Cayapas y su área de
amortiguamiento, sí se registraron pecaríes y jagua-
res (Tabla 1; Figura 2). Un total de 80 cazadores (91%
de los entrevistados) aseguraron haber visto pecaríes
y 50 (57%) aseguraron haber visto jaguares, durante
los últimos cinco años. Los resultados de las entre-
vistas fueron congruentes con el trampeo fotográfi-
co y los senderos de reconocimiento. Con las tram-
pas fotográficas obtuvimos un total de 58 eventos
independientes de pecarí (de un total de 76 fotogra-
fías) y nueve eventos independientes de jaguar (de
un total de 10 fotografías). Con los muestreos de re-
conocimiento, por otra parte, realizamos un total de
37 registros de pecarí (dos de ellos observaciones
directas) y cinco registros de huellas de jaguar.
Del total de cazadores entrevistados, 74% tie-
ne la percepción de que las poblaciones de ambas
especies están disminuyendo, y que ahora se ven con
mucha menor frecuencia que hace 5 y 10 años atrás.
Rev. Biodivers. Neotrop. 2013; 3 (1): 21-9
25
Las causas de esta reducción son atribuidas princi-
palmente a la cacería (61%) y a la construcción de
carreteras (37%). Hasta hace poco tiempo, en el área
no existían carreteras, y el único acceso era por vía
fluvial, a través de los ríos Santiago y Cayapas. Las
personas entrevistadas aseguraron también que la
cacería de ambas especies sucede periódicamente,
sobre todo fuera de los límites de las áreas protegi-
das. Solo en los últimos cinco años se informó que
se han cazado por lo menos cuatro jaguares por con-
flicto con la gente. Los motivos de este conflicto se
originan por la percepción de que los jaguares son
potencialmente peligrosos para los seres humanos,
más que por la existencia de individuos problema
que causan pérdidas en los animales domésticos.
Con base en el MEA, la densidad poblacional
estimada del pecarí fue de 23,65 ± 4,78 individuos/
100 km2 (Dˆ ± IC no paramétricos 95%; y = 58; t =
2549 trampas-noche; v = 8,22 km; r = 0,0169 km; 0
= 0,175 rad). La densidad poblacional del jaguar, en
cambio, fue de 2,63 ± 1,96 individuos/100 km2 (y =
9; t = 2549 trampas-noche; v = 9,57 km; r = 0,0202
km; 0 = 0,175 rad). El remanente de 2500 km2 donde
registramos los pecaríes y jaguares incluyó la parte
baja de la Reserva Ecológica Cotacachi-Cayapas (por
debajo de 2000 m), el Refugio de Vida Silvestre El
Pambilar, y el área contigua a ambas (actualmente
área no protegida y designada como Bloque 10 de
Patrimonio Forestal del Estado, Figura 3). Por otra
parte, uno de los jaguares que fueron capturados
fotográficamente en el Refugio de Vida Silvestre El
Pambilar (0°40’15,2" N-78°53’58,3" W; el 24 de
abril de 2011) fue recapturado dos meses después a
32 km de distancia, en línea recta, en la Reserva
Figura 2. Pecaríes de labio blanco y jaguar fotografiados en la Reserva Ecológica
Cotacachi-Cayapas y su área de amortiguamiento.
Zapata-Ríos G, Araguillin E.
26
Ecológica Cotacachi Cayapas (0°36’47,2" N-
79°10’51,6" W; el 22 de junio de 2011).
Discusión
Los métodos de muestreo de mamíferos grandes
utilizados en este estudio (entrevistas a cazadores,
trampas fotográficas y muestreos de reconocimien-
to) produjeron resultados congruentes entre sí. El
conocimiento tradicional se ha valorado mucho en
los últimos años, y las entrevistas a gente local re-
presentan un método de muestreo rápido y eficiente
para evaluar la presencia-ausencia de fauna silves-
tre y sus tendencias poblacionales, al mismo tiempo
que involucran directamente a la gente de las comu-
nidades locales en los esfuerzos de conservación
(Hellier et al. 1999, Kimmerer 2000, Moller et al.
2004). El trampeo fotográfico es una herramienta
efectiva para detectar especies raras y esquivas como
los jaguares y los pecaríes (e.g. Wallace et al. 2003,
Silver et al. 2004, Soisalo y Cavalcanti 2006). Aun-
que las trampas fotográficas se han utilizado princi-
palmente para estimar abundancia a través de mode-
los de captura-recaptura, la misma técnica puede ser
utilizada para estimar la densidad poblacional sin la
necesidad de identificar individuos (Rowcliffe et al.
2008, Rovero y Marshall 2009, Manzo et al. 2012,
Zero et al. 2013). En cuanto a los muestreos de reco-
nocimiento, la mayor crítica a esta metodología es
que la información obtenida tiene un sesgo por ser
colectada a lo largo de senderos preexistentes. Sin
embargo, en pruebas empíricas se ha demostrado que
Figura 3. Mapa del remanente de bosque más grande (2500 km2) y mejor conservado del Ecuador occidental. Los
números corresponden a las localidades de muestreo: 7. Refugio de Vida Silvestre Pambilar, 8. Playa de Oro, 9.
Estero Vicente en la Reserva Ecológica Cotacachi-Cayapas. Se indica la curva de nivel de 2000 m, el límite altitudinal
aproximado del ámbito de distribución para el pecarí de labio blanco y jaguar. Al sur de las tres áreas se puede
observar una red de carreteras de segundo orden que son utilizadas para la extracción de madera.
Rev. Biodivers. Neotrop. 2013; 3 (1): 21-9
27
existe una fuerte correlación entre datos colectados
en senderos de reconocimiento y en transectos en
línea (Fay 1991, Hall et al. 1998a, Hall et al. 1998b,
Blake et al. 2007).
Aunque no podemos asegurar con total certeza
que tanto el pecarí de labio blanco como el jaguar se
han extinguido a nivel local en la Reserva Étnica
Awá, la Reserva Ecológica Mache-Chindul, y el
Bosque Protector Chongón-Colonche, los datos su-
gieren fuertemente que ambas especies han sido ex-
tirpadas o existen en densidades sumamente bajas
por lo que probablemente han perdido su funcio-
nalidad ecológica (Dirzo y Miranda 1990, Terborgh
et al. 1999, Redford y Feinsinger 2001). Como re-
sultado de los niveles masivos de deforestación en
la Costa ecuatoriana, los remanentes de bosque ac-
tualmente son muy pequeños y aislados (<0,1 km2)
y muchas de las especies de fauna silvestre más sen-
sibles han sido extirpadas. En este contexto, la parte
baja de la Reserva Ecológica Cotacachi-Cayapas, El
Refugio de Vida Silvestre El Pambilar y el Bloque
10 de Patrimonio Forestal representan el remanente
de bosque mejor conservado y más extenso del Ecua-
dor occidental y la sección meridional del Chocó
Biogeográfico (Figura 3). Por otra parte, la recaptura
fotográfica de un individuo de jaguar destaca la im-
portancia del Bloque 10 de Patrimonio Forestal en
términos de provisión de conectividad entre el Re-
fugio de Vida Silvestre El Pambilar y la Reserva
Ecológica Cotacachi-Cayapas. Es así que el valor de
esta área para la conservación de la biodiversidad es
único. Además de pecaríes y jaguares en el área, re-
gistramos también varias especies de fauna silvestre
que en el Ecuador son consideradas en Peligro Críti-
co de extinción, y que tampoco se registraron en los
otros tres remanentes de bosque (e.g. pavón grande,
Crax rubra; guacamayo verde mayor, Ara ambigua;
tinamú de Berlepsch, Crypturellus berlepschi; y
mono araña de cabeza marrón, Ateles fusciceps; Gra-
nizo et al. 2002, Tirira 2011).
En el contexto socioeconómico actual es impro-
bable que los jaguares y pecaríes del Ecuador occi-
dental puedan persistir a largo plazo sin acciones de
conservación apropiadas y oportunas. Estas accio-
nes deben incluir el control de actividades ilegales
dentro de las áreas protegidas (e.g. control de la ca-
cería y tala selectiva); la implementación de progra-
mas de educación ambiental para reducir los niveles
de conflicto e incrementar la apreciación de la im-
portancia ecológica de estas especies para el mante-
nimiento de ecosistemas saludables; la implemen-
tación de programas participativos de monitoreo de
fauna silvestre para detectar tendencias poblacionales
negativas de jaguares, pecaríes y otras especies, so-
bre todo dentro de las áreas protegidas; e integrar
estas y otras estrategias de manejo y conservación
de fauna silvestre en los planes de desarrollo local y
los planes de ordenamiento territorial. En conjunto,
la implementación de estas acciones de conserva-
ción puede mantener y restaurar poblaciones viables
de jaguar y pecarí de labio blanco, en coexistencia
con las poblaciones humanas, como parte integral
de los ecosistemas y los paisajes humanos en el Ecua-
dor occidental.
Agradecimientos
Este proyecto de investigación se realizó gracias
al apoyo de la Agencia de los Estados Unidos para el
Desarrollo Internacional (USAID) y el Woodland
Park Zoo. Agradecemos al Ministerio del Ambiente
de Ecuador (MAE) por extendernos los permisos de
investigación (MAE-DPE-2010-039 y MAE-DPE-
2011-0137) y a Santiago García, José Eduardo
Narváez, Rosario Tene, Wellington Montenegro,
Fernando Morcillo y Víctor Tacuri, funcionarios del
MAE, por apoyar nuestro trabajo en el campo. Agra-
decemos también a Olindo Nastacuás, Presidente de
la Federación de Centros Awá del Ecuador (FCAE);
Egberto Tapuyo, Presidente de la Comunidad Chachi
de San Salvador y a Geovanny Catuto, Presidente de
la Comunidad Manteño-Huancavilca de Loma Alta
por permitirnos trabajar dentro de sus territorios
ancestrales. Los comentarios de Érika Cuellar, Alex
Jiménez Ortega y dos revisores anónimos, mejora-
ron las versiones iniciales de este manuscrito de for-
ma sustancial.
Literatura citada
Altrichter M, Taber A, Beck H, et al. 2011. Range-wide declines
of a key Neotropical ecosystem architect, the Near
Threatened white-lipped peccary Tayassu pecari. Oryx.
46: 87-98.
Beck H. 2006. A review of peccary-palm interactions and their
ecological ramifications across the Neotropics. J
Mammal. 87: 519-30.
Zapata-Ríos G, Araguillin E.
28
Blake S, Strindberg S, Boudjan P, et al. 2007. Forest elephant
crisis in the Congo Basin. PLOS Biol. 5: e111.
Brooks TM, Mittermeier RA, Mittermeier CG, et al. 2002.
Habitat loss and extinction in the hotspots of biodiversity.
Conserv Biol. 16: 909-23.
Carbone C, Christie S, Conforti K, et al. 2001. The use of
photographic rates to estimate densities of tigers and other
cryptic mammals. Anim Conserv. 4: 75-9.
Carbone C, Cowlishaw G, Isaac NJB, Rowcliffe JM. 2005. How
far do animals go? determinants of day range in mammals.
Am Nat. 165: 290-7.
Dinerstein E, Olson DM, Graham DJ, et al. 1995. A conservation
assessment of the terrestrial ecoregions of Latin America
and the Caribbean. Washington, DC: The World Bank.
Dirzo R, Mendoza E. 2007. Size-related differential seed
predation in a heavily defaunated Neotropical rain forest.
Biotropica. 39: 355-62.
Dirzo R, Miranda A. 1990. Contemporary Neotropical
defaunation and forest structure, function, and diversity:
a sequel to J.W. Terborgh. Conserv Biol. 4: 444-7.
Dodson CH, Gentry AH. 1991. Biological extinction in western
Ecuador. Ann Mo Bot Gard. 78: 273-95.
Fay JM. 1991. An elephant (Loxodonta africana) survey using
dung counts in the forests of the Central African Republic.
J Trop Ecol. 7: 25-36.
Fragoso JMV. 2005. The role of trophic interactions in
community initiation, maintenance and degradation. In:
Burslem DFRP, Pinard MA, Hartley SE (Eds.). Biotic
Interactions in the Tropics: their role in the maintenance
of species diversity. Cambridge: Cambridge University
Press. pp. 310-27.
Granizo T, Pacheco C, Rivadeneira MB, Guerrero M, Suárez L
(eds.). 2002. Libro Rojo de las Aves del Ecuador. Quito:
SIMBIOE, Conservación Internacional, EcoCiencia,
Ministerio del Ambiente, UICN.
Hall J, Saltonstall K, Inogwabini B, Omari I. 1998a.
Distribution, abundance and conservation status of
Grauer’s gorilla. Oryx. 32: 122-30.
Hall J, White L, Inogwabini B, et al. 1998b. A survey of gorillas
(Gorilla gorilla graueri) and chimpanzees (Pan
troglodytes schweinfurthi) in the Kahuzi-Biega National
Park lowland sector and adjacent forest in eastern
Democratic Republic of Congo. Int J Primatol. 19: 207-
35.
Hellier A, Newton AC, Ochoa-Gaona S. 1999. Use of indigenous
knowledge for rapidly assessing trends in biodiversity: a
case study from Chiapas, Mexico. Biodivers Conserv. 8:
869-89.
Hutchinson JMC, Waser PM. 2007. Use, misuse and extensions
of «ideal gas» models of animal encounter. Biol Rev. 82:
335-59.
Jones CG, Lawton JH, Shachak M. 1994. Organisms as
ecosystem engineers. Oikos. 69: 373-86.
Jorge MLSP, Galetti M, Ribeiro MC, Ferraz KMPMB. 2013.
Mammal defaunation as surrogate of trophic cascades in
a biodiversity hotspot. Biol Conserv. 163: 49-57.
Keuroghlian A, Eaton DP. 2008. Fruit availability and peccary
frugivory in an isolated Atlantic forest fragment: effects
on peccary ranging behavior and habitat use. Biotropica.
40: 62-70.
Keuroghlian A, Eaton DP. 2009. Removal of palms fruits and
ecosystem engineering in palms stands by white-lipped
peccaries (Tayassu pecari) and other frugivores in an
isolated Atlantic Forest fragment. Biodivers Conserv. 18:
1733-50.
Kimmerer RW. 2000. Native knowledge for native ecosystems.
J Forest. 98: 4-9.
Manzo E, Bartolommei P, Rowcliffe JM, Cozzolino R. 2012.
Estimation of population density of European pine marten
in central Italy using camera trapping. Acta Theriol. 57:
165-72.
Mittermeier RA, Myers N, Thomsen JB, da Fonseca GAB,
Olivieri S. 1998. Biodiversity hotspots and major tropical
wilderness areas: approaches to setting conservation
priorities. Conserv Biol. 12: 516-20.
Moller H, Berkes F, O’Brian Lyver P, Kislalioglu M. 2004.
Combining science and traditional ecological knowledge:
monitoring populations for co-management. Ecol Soc. 9:
2.
Myers N. 1988. Threatened biotas: hot-spots in tropical forests.
Environmentalist. 8: 1-20.
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB,
Kent J. 2000. Biodiversity hotspots for conservation
priorities. Nature. 403: 853-8.
O’Brien TG, Kinnaird MF, Wibisono HT. 2003. Crouching
tigers, hidden prey: Sumatran tiger and prey populations
in a tropical forest landscape. Anim Conserv. 6: 131-9.
Painter RLE, Rumiz DI. 1999 ¿Por qué son los herbívoros
terrestres importantes para los bosques de producción
forestal? Rev Boliv Ecol Conserv. 5:61-74.
Parker III TA, Carr JL. 1992. Status of forest remnants in the
cordillera de la costa and adjacent areas of southwestern
Ecuador. Washington DC: Conservation International.
Redford KH, Feinsinger KH. 2001. The half-empty forest:
sustainable use and the ecology of interactions. In:
Reynolds JD, Mace GM, Redford KH, Robinson JG
(eds.). Conservation of Exploited Species. Cambridge:
Cambridge University Press. pp 370-99.
Rovero F, Marshall AF. 2009. Camera trapping photographic
rate as an index of density in forest ungulates. J Appl
Ecol. 46: 1011-7.
Rowcliffe JM, Field J, Turvey ST, Carbone C. 2008. Estimating
animal density using camera traps without the need for
individual recognition. J Appl Ecol. 45: 1228-36.
Rowcliffe JM, Carbone C, Jansen PA, Kays R, Kranstauber B.
2011. Quantifying the sensitivity of camera traps: an
adapted distance sampling approach. Methods Ecol Evol.
2: 464-76.
Rowcliffe JM, Carbone C, Kays R, Kranstauber B, Jansen PA.
2012. Bias in estimating animal travel distance: the effect
of sampling frequency. Methods Ecol Evol. 3: 653-62.
Sanderson EW, Redford KH, Chetkiewicz CB, Medellín RA,
Rabinowitz AR, Robinson JG, Taber AB. 2002. Planning
to save a species: the jaguar as a model. Conserv Biol.
16: 58-72.
Sierra R. 1999a. Traditional resource-use systems and tropical
Rev. Biodivers. Neotrop. 2013; 3 (1): 21-9
29
deforestation in a multi-ethnic region in north-west
Ecuador. Environ Conserv. 26: 136-45.
Sierra R. 1999b. Propuesta preliminar de un sistema de
clasificación de vegetación para el Ecuador continental.
Quito: EcoCiencia, Ministerio del Ambiente.
Sierra R, Campos F, Chamberlin J. 2002. Assessing biodiversity
conservation priorities: ecosystem risk and representati-
veness in continental Ecuador. Landscape Urban Plan.
59: 95-110.
Sierra R, Stallings J. 1998. The dynamics and social organization
of tropical deforestation in Northwest Ecuador, 1983-
1995. Hum Ecol. 26: 135-61.
Silver SC, Ostro LET, March LK, et al. 2004. The use of camera
traps for estimating jaguar Panthera onca abundance and
density using capture/recapture analysis. Oryx. 38: 148-
54.
Soisalo MK, Cavalcanti SMC. 2006. Estimating the density of
a jaguar population in the Brazilian Pantanal using
camera-traps and capture-recapture sampling in
combination with GPS radio-telemetry. Biol Conserv. 129:
487-96.
Taber A, Chalukian SC, Altrichter M, et al. 2008. El destino de
los arquitectos de los bosques neotropicales: evaluación
de la distribución y el estado de conservación de los
pecaríes labiados y los tapires de tierras bajas. New York:
Wildlife Conservation Society, Tapir Specialist Group,
Wildlife Trust.
Terborgh JW. 1988. The big things that run the world: a sequel
to E.O. Wilson. Conserv Biol. 2: 402-3.
Terborgh JW, Estes JA, Paquet P, et al. 1999. The role of top
carnivores in regulating terrestrial ecosystems. In: Soulé
ME, Terborgh JW (eds.). Continental conservation:
scientific foundations of regional reserve networks.
Washington DC: Island Press. pp. 39-64.
Tirira D. 2007. Mamíferos del Ecuador: guía de campo. Quito:
Ediciones Murciélago Blanco.
Tirira D. 2011. Libro Rojo de los Mamíferos del Ecuador. Quito:
Fundación Mamíferos y Conservación, Pontificia Univer-
sidad Católica del Ecuador, Ministerio del Ambiente.
Viscarra ME, Ayala G, Wallace R, Nallar R. 2011. The use of
commercial perfumes for studying jaguars. Cat News. 54:
30-1.
Wallace RB, Gómez H, Ayala G, Espinoza F. 2003. Camera
trapping for jaguar (Panthera onca) in the Tuichi valley,
Bolivia. Mastozool Neotrop. 10: 133-9.
Zero VH, Sundaresan SR, O’Brien TG, Kinnaird MF. 2013.
Monitoring an endangered savannah ungulate, Grevy’s
zebra Equus grevyi: choosing a method for estimating
population densities. Oryx. 47: 410-9.
Zapata-Ríos G, Araguillin E.
... Palabras clave: Ateles fusciceps fusciceps, conectividad, escenarios futuros, especies amenazadas, nicho ecológico. been extirpated from most of the Ecuadorian coast (Zapata Ríos & Araguillin, 2013). ...
Article
Full-text available
The Ecuadorian Brown-headed Spider Monkey (Ateles fusciceps fusciceps) is one of the most threatened primates globally; recently, it was recorded in areas where it had been considered locally extinct. We used ecological niche models to generate potential suitable areas within its current distribution and assess its potential adaptation to future climate change scenarios by 2050. The potential suitable areas for its distribution total 9556 km2. Habitat loss has divided the current range of the species in two large areas (north and south), and the effects of climate change will likely divide the section in several ecological units by 2050. Under the influence of climate change, the environmentally suitable area will contract between 26 and 46%. This contraction affects landscapes outside protected areas where A. f. fusciceps is currently present. Our results show a high fragility of ecosystems where the species is present, and current conditions pose a high risk for the species in the short term. We recommend focusing conservation efforts in northern protected areas while improving connectivity between southern forest remnants, where ecological conditions will remain steady in the medium term.
... The historical range of jaguars has contracted by an estimated 55% (de la Torre et al. 2018) and their populations have been reduced due to hunting associated with animalhuman conflicts and the fur trade, depletion of prey populations, and habitat fragmentation and loss (Sanderson et al. 2002;Woodroffe et al. 2005;Zarza et al. 2007). In the Pacific Coastal region of Ecuador, human pressures have led to the near eradication of the species except in the humid northwest and Cerro Blanco Protected Forest in Guayas Province (Cervera et al. 2016;Saavedra-Mendoza et al. 2017;Zapata-Ríos and Araguillin 2013). In the Ecuadorian Amazon, hunting of jaguars and their prey have led to the species' population decline (Tirira 2017), so that it is now classified as Critically Endangered (CR) on Ecuador's National Red List (Tirira 2011). ...
Article
We report two records of jaguars ( Panthera onca ) registered with camera traps at 2300 and 2660 m a.s.l. in the Ecuadorian Andes, which represent the first verifiable records of the species above 2000 m in Ecuador. As the first records of jaguars from Río Negro-Sopladora National Park and Tapichalaca Reserve, these records raise important questions about the species’ ecology and conservation in Andean montane forests. From a regional perspective, these records may indicate connectivity between jaguar populations inhabiting both sides of the Andes. Sustained monitoring of wildlife populations is necessary to discern the significance of these records and help develop strategies to ensure the conservation of this highly mobile species across the increasingly fragmented Andean-Amazonian landscapes of southern Ecuador.
... The BPs discussed here extend protection into the critically endangered NW cloud forest zone and upper montane forests that occur between 900-2500 m. These are the habitats preferred by the most endangered species in our study, including the primates (Jack & Campos, 2012;Peck et al., 2010) cats (Zapata-Ríos & Araguillin, 2013), and bears (Castellanos, 2011), as well as the frogs (Arteaga et al., 2016;Tapia et al., 2017), birds (Jahn, 2008;Willig & Presley, 2016) and orchids (Endara et al. 2009). We recommend that the entire Bosque Protector system be extended the same protections as the SNAP system, particularly with regards to prohibition of mining. ...
Preprint
Full-text available
Ecuador has the world’s highest biodiversity, despite being a tiny fraction of the world’s land area. The threat of extinction for much of this biodiversity has dramatically increased since April 2016, during which time the Ecuadorian government has opened approximately 2.9 million hectares of land for mining exploration, with many of the concessions in previously protected forests. Herein, we describe the system of protected lands in Ecuador, their mining laws, and outline the scale of threat by comparing the mammals, amphibians, reptiles, birds, and orchids from several now threatened protected areas, classed as “Bosques Protectores” (BPs), in the NW montane cloud forests. We examine two large (>5,000 ha) BPs, Los Cedros and El Chontal, and two medium BPs, Mashpi (1,178 ha) and Maquipucuna (2,474 ha). Since BP El Chontal is so poorly explored, we used several other small reserves (<500 hectares) in the Intag Valley to gain an idea of its biodiversity. Together, these BPs and reserves form a buffer and a southern corridor for the still-protected Cotacachi-Cayapas Ecological Reserve, which is otherwise now surrounded by mining concessions. We gathered published literature, “gray literature”, information from reserve records and websites, and our previously unpublished observations to make comparative species tables for each reserve. Our results from these still incompletely known reserves reveal the astonishing losses that mining will incur: eight critically endangered species, including two primates (brown-headed spider monkey and white-fronted capuchin), 37 endangered species, 149 vulnerable and 85 near threatened and a large number of less threatened species Our data show that each of the reserves protects a unique subset of taxa in this land of highly localized endemics. Each of the reserves also generates sustainable income for the local people. The short-term national profits from mining will not compensate for the permanent biodiversity losses, and the long-term ecosystem service and economic losses at the local and regional level.
... Remoteness and high-quality habitat also explain why there are six species of cats, including the CR Jaguar, Panthera onca, the VU Oncilla, Leopardus tigrinus, and the NT Margay, Leopardus wiedii. Jaguars are now extremely endangered in western Ecuador due to habitat loss and need for large territories (de la Torre, González-Maya, Zarza, Ceballos, & Medellín, 2017;Mendoza, Cun, Horstman, Carabajo, & Alava, 2017;Zapata-Ríos & Araguillin, 2013). Jaguar has been reported from Los Cedros (BirdLife International, 2017), and a Jaguar was recently photographed in nearby (<5 km) Manduriacu Reserve (Jost, 2016) on the Manduriacu river, which originates in Los Cedros. ...
Article
Full-text available
Ecuador has among the world’s highest biodiversity, despite being a tiny fraction of the world’s land area. The threat of extinction for some of this biodiversity has dramatically increased since April 2016, during which time the Ecuadorian government has opened around 13% of the country to mining exploration, with many of the concessions in previously protected forests. Herein, we describe the system of protected lands in Ecuador, their mining laws, and outline the scale of threat by comparing the mammals, amphibians, reptiles, birds, and orchids from several now threatened protected areas, classed as “Bosques Protectores,” in the northwestern montane cloud forests. Together, these reserves form a buffer and a southern corridor for the still-protected Cotacachi-Cayapas Ecological Reserve, which is otherwise now surrounded by mining concessions. We gathered published literature, “gray literature,” information from reserve records and websites, and our previously unpublished observations to make comparative species tables for each reserve. Our results reveal the potential losses that mining could cause: eight critically endangered species, including two primates (brown-headed spider monkey and white-fronted capuchin), 37 endangered species, 153 vulnerable, 89 near threatened, and a large number of less threatened species. Our data show that each reserve protects a unique subset of taxa in this region of highly localized endemics and the reserves also generate sustainable income for local people. The short-term national profits from mining will not compensate for the permanent biodiversity losses, and the long-term ecosystem service and economic losses at the local and regional level.
Article
Full-text available
The Amazon forest has the highest biodiversity on earth. However, information on Amazonian vertebrate diversity is still deficient and scattered across the published, peer‐reviewed and grey literature and in unpublished raw data. Camera traps are an effective non‐invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazon regions to compile the most extensive dataset of inventories of mammal, bird and reptile species ever assembled for the area. The complete dataset comprises 154,123 records of 317 species (185 birds, 119 mammals and 13 reptiles) gathered from surveys from the Amazonian portion of eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname and Venezuela). The most frequently recorded species per taxa were: mammals ‐ Cuniculus paca (11,907 records); birds ‐ Pauxi tuberosa (3,713 records); and reptiles ‐ Tupinambis teguixin (716 records). The information detailed in this data paper opens‐up opportunities for new ecological studies at different spatial and temporal scales, allowing for a more accurate evaluation of the effects of habitat loss, fragmentation, climate change and other human‐mediated defaunation processes in one of the most important and threatened tropical environments in the world. The dataset is not copyright restricted; please cite this data‐paper when using its data in publications and we also request that researchers and educators inform us of how they are using this data.
Thesis
Full-text available
A better understanding of population density (i.e. the number of individuals per unit area) is essential for wildlife conservation and management. Despite the fact that a wide variety of methods with which to estimate population density have already been described and broadly used, there are still relevant gaps. In the last few decades, the use of remotely activated cameras (camera traps) has been established as an effective sampling tool when compared with alternative methods. Camera trapping could, therefore, be considered a reliable tool with which to monitor those situations in which classical methods have relevant limitations. It could, for example, be used with species whose behaviour is elusive and which have low detectability (as is the case of most mammals), or populations in which the animals can be identified individually by the spot patterns on their bodies. However, there is lack of information regarding those species for which it is not possible to identify individual animals (i.e. unmarked species). Some authors that have applied camera trapping originally considered relative abundance indexes in order to monitor unmarked populations. These indices were based on encounter rates (i.e. the number of animals detected per sampling unit) observed in camera trapping studies. Methods with which to estimate the population density of unmarked populations were later described, the first of which was the random encounter model (REM). The REM models the random encounters between moving animals and static cameras in order to estimate population density. The REM does this by employing three basic parameters: i) encounter rate, ii) detection zone (area in which the cameras effectively detect animals), and iii) day range (average daily distance travelled by each individual in the population). When this thesis was first started, it was broadly discussed that the application of the REM was limited by the difficulties involved in estimating the parameters required, especially the day range. In this context, the aim of this thesis was to develop and harmonise camera trapping methodologies so as to estimate the population density and movement parameters of unmarked populations, working principally in the REM framework. The first research carried out for this thesis comprised a review of published studies concerning REM, which found that i) wrong practices in the estimation of REM parameters were frequent, and ii) the REM has rarely been compared with reference densities in empirical studies. We, therefore, then went on to evaluate the main factors that affect the probability of detection and the trigger speed of camera traps, which are relevant for encounter rate and detection zone estimation. This is shown in Chapter 1. We subsequently evaluated and described new methodologies that use camera traps to estimate the movement parameters of unmarked populations. We also evaluated the seasonal and spatial variation in these parameters. The information regarding this is provided in Chapter 2. Finally, we assessed the performance of the REM in a wide range of scenarios, and we compared it with other recently described camera trapping methods used to estimate the population density of unmarked species, as detailed in Chapter 3. The results reported in Chapter 1 show that camera trap performance as regards trigger speed and detection probability are highly influenced by different factors, such as the period of the day, the camera trap model, deployment height or sensitivity, among others. We monitored the community of birds and mammals in the study area, and we discovered that a relevant proportion of the animals that entered the theoretical detection zone were not usually recorded. These missed detections introduce bias into the encounter rate, and consequently into density. However, several camera trapping methods with which to estimate effective detection zone have been described, and they should be applied to all the populations monitored. With regard to the day range, we considered the wild boar as a model species and showed that assuming straight-line distances between consecutive locations obtained by telemetry devices underestimates this parameter, while movement behaviours should be accounted when using camera traps to estimate day range, as shown in Chapter 2.1. We then explored the use of camera traps to monitor movement parameters in greater depth, and showed that they are a reliable method. We described a new procedure with which to estimate the day range that accounts for movement behaviour, and for the ratio between fast and slow speeds. The new procedure performed well in the wide range of scenarios that we simulated, and was also tested with populations of mammals around the world. In this respect, we also described a machine learning protocol with which to identify movement behaviour obtained from camera trap records. All of this is described in Chapter 2.2. We subsequently showed that geographical (e.g. altitude), environmental (e.g. habitat fragmentation), biological (e.g. species) and management (e.g. hunting) factors affect the day range, and we reported variable day ranges in ungulates and carnivores across Europe, as shown in Chapter 2.3. We use the combination of a literature review and an empirical study to compare REM densities with those obtained using reference methods. The results showed a strong correspondence between the REM and reference densities, especially when REM parameters are estimated accurately for the target population. We also showed that the precision of the REM is lower than that of the reference methods, and provided further insights into the survey design in order to increase precision. This information is provided in Chapter 3.1. Finally, and as shown in Chapter 3.2, we used ungulates and carnivores as a target in order to compare the REM, random encounter and staying time (REST), and camera trap distance sampling (CT-DS). The REST and CTDS are two recently described methods with which to estimate the population density of unmarked species using camera traps. The results showed that the performance of the three methods is similar in terms of accuracy and precision. We recommend a survey design that will make it possible to apply all the methods, as the final selection of one of them will be mediated by the number of animals recorded and the camera trap performance. In conclusion, the results of this thesis show the usefulness of camera trapping to monitor the movement parameters and population density of wildlife and contributes with a methodological practical step forwards. In summary, the REM approach, which was tuned in this thesis, proved to be a reliable method in a wide range of environmental scenarios. The REM can be firmly established as a reference method to be implemented in multispecies monitoring programmes in the coming years, considering that it does not need to identify individual animals or spatial autocorrelation in captures. However, future developments of the REM in particular, and camera trapping unmarked methods in general, should be focused on optimising surveys designs in order to increase precision. Before this thesis was begun, the main limitations of applying the REM were the estimation of REM parameters, along with its reliability. This has, however, already been dealt with, and the main gap now concerns the low precisions obtained.
Article
Full-text available
In Latin America, the jaguar Panthera onca is one of the most persecuted and hunted carnivores as a result of its depredation of livestock. In north-west Ecuador jaguar populations are highly threatened, and the largest known population (20–30 individuals) is in El Pambilar Wildlife Refuge, a wet tropical forest surrounded by degraded forests and an agricultural matrix. As the killing of jaguars is one of the main threats to this population, its conservation depends on the perceptions and behaviour of the people living in this region. We interviewed people from 159 households (64% of the total) in eight communities in the buffer zone of the Wildlife Refuge, to examine people's perceptions of any harm caused by jaguars, and to determine the factors that influence these perceptions. In general, people perceived that jaguars caused little harm to their domestic animals or to themselves. However, our models showed that young people with a low level of formal education are the demographic group most likely to hold negative attitudes towards the jaguar, suggesting this group could potentially benefit from involvement in environmental education and awareness programmes.
Article
The Coast Region of Ecuador has been dramatically deforested, and most of the remaining natural vegetation is formed of fragmented patches, in which there is little knowledge of wild mammal populations. The objective of this study was to assess the presence and detection rate (DR) of medium and large-size mammals by using camera-traps in fragmented forests located outside the protected areas comparing the two main types of forest: seasonal dry and evergreen. We registered 18 different species, of which four had greater DRs in dry forests ( Lycalopex sechurae, Odocoileus peruvianus, Simosciurus stramineus and Sylvilagus daulensis ), four were more detected in evergreen forests ( Cuniculus paca, Dasyprocta punctata, Dasypus novemcinctus and Procyon cancrivorus ), and the remaining 10 species had no significant habitat preference. The mean species richness was similar in both ecosystems, but the number of detections was greater in the evergreen forests. Finally, two of the region’s four threatened species had higher DRs in dry forests. These results suggest that it is necessary to conserve both types of ecosystems to ensure the conservation of all mammals’ species. However, since dry forests are less protected and their threatened fauna suggests that conservation efforts should be particularly focused on them.
Article
Full-text available
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non‐detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non‐governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peerreviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non‐detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio‐temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other largescale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data.
Chapter
Full-text available
In Ecuador, there are 12 recognized species and 16 taxa of neotropical ungulates. The tapirs (Tapiridae) include two species: Tapirus pinchaque and T. terrestris, present in highlands and humid tropical and subtropical forest in the Amazon, respectively; traditionally, a third species of tapir was added to the Ecuadorian fauna, Tapirus bairdii; however, there are no concrete records and its presence is not supported by any form of evidence. Within the peccaries (Tayassuidae), two species are recognized: Pecari tajacu and Tayassu pecari; both are sympatric in most of their range, and niche overlap is high. The camelids (Camelidae) have three species, two domesticated and with historical presence in the country for more than 500 years: Lama glama and Vicugna pacos; and Vicugna vicugna, a species that was considered extinct in Ecuador and initially treated as reintroduced; however, there is no evidence to confirm the historical presence of this species in Ecuador. The situation of deer (Cervidae) is more complex. This family includes three genera and five species, but with several unresolved taxonomic problems. The genus Mazama is widely distributed in Ecuador, and three species have been known to occur in Ecuador: M. americana, M. nemorivaga, and M. rufina. The taxonomic knowledge of the Mazama americana sensu lato in Ecuador is still incomplete, and a detailed revision is still pending, especially for the specimens west of the Andes. The taxonomic status of Odocoileus virginianus and its subspecies is also incomplete and needs a detailed review. In Ecuador, the two recognized subspecies (O. v. ustus and O. v. peruvianus) have been treated as valid species by some authors. Finally, Hippocamelus antisensis was a species reported in Ecuador since 1851, and with a series of records in the country in the following decades. It was excluded from Ecuadorian fauna in the absence of supporting evidence.
Article
Full-text available
Methods that accurately estimate animal abundance or density are crucial for wildlife management. Although numerous techniques are available, there have been few comparisons of the precision and cost-effectiveness of different approaches. We assess the precision and cost of three methods for estimating densities of the Endangered Grevy's zebra Equus grevyi. We compare distance sampling and photographic capture–recapture, and a new technique, the random encounter model (REM) that uses camera-trap encounter rates to estimate density. All three methods provide comparable density estimates for Grevy's zebra and are preferable to the common practice of raw counts. Photographic capture–recapture is the most precise and line-transect distance sampling the least precise. Line transects and photographic capture–recapture surveys are cost-effective in the first year and REM is most cost-effective in the long-term. The methods used here for Grevy's zebra may be applied to other rangeland ungulates. We suggest that for single species monitoring programmes in which individuals can be identified, photographic capture–recapture surveys may be the preferred method for estimating wildlife abundances. When encounter rates are low, distance sampling lacks the precision of the other methods but its cost advantage may make it appropriate for long-term or multi-species monitoring programmes. The REM is an efficient and precise method of estimating densities but has high initial equipment costs. We believe REM has the potential to work well for many species but it requires independent estimates of animal movements and group size.
Chapter
Tropical ecosystems house a significant proportion of global biodiversity. To understand how these ecosystems function we need to appreciate not only what plants, animals and microbes they contain, but also how they interact with each other. This volume, first published in 2005, synthesises the state of knowledge in this area, with chapters providing reviews or case studies drawn from research conducted in both Old and New World tropics and including biotic interactions among taxa at all trophic levels. In most chapters plants (typically trees) are the starting point, but, taken together, the chapters consider interactions of plants with other plants, with micro-organisms and with animals, and the inter-relationships of human-induced disturbance with interactions among species. An underlying theme of the volume is the attempt to understand the maintenance of high diversity in tropical regions, which remains one of the most significant unexplained observations in ecological studies.
Article
Interactions between organisms are a major determinant of the distribution and abundance of species. Ecology textbooks (e.g., Ricklefs 1984, Krebs 1985, Begon et al. 1990) summarise these important interactions as intra- and interspecific competition for abiotic and biotic resources, predation, parasitism and mutualism. Conspicuously lacking from the list of key processes in most text books is the role that many organisms play in the creation, modification and maintenance of habitats. These activities do not involve direct trophic interactions between species, but they are nevertheless important and common. The ecological literature is rich in examples of habitat modification by organisms, some of which have been extensively studied (e.g. Thayer 1979, Naiman et al. 1988).
Article
This paper documents the extent of deforestation in western Ecuador and what is known about its effect on biodiversity. Maps are provided comparing the extent of relatively undisturbed forested areas in aboriginal times, 1958, and 1988. Patterns of floristic diversity and endemism are discussed in light of the massive deforestation, and evidence of extinction of plant species from four florula sites is provided. The naturally fragmented nature of much of the western Ecuadorian forest is discussed, both in terms of evolutionary effects and implications for long-term conservation.