Article

Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis

University of California, Irvine, United States of America
PLoS Computational Biology (Impact Factor: 4.62). 04/2014; 10(4):e1003599. DOI: 10.1371/journal.pcbi.1003599
Source: PubMed

ABSTRACT

Myelodysplastic syndromes (MDS) are triggered by an aberrant hematopoietic stem cell (HSC). It is, however, unclear how this clone interferes with physiologic blood formation. In this study, we followed the hypothesis that the MDS clone impinges on feedback signals for self-renewal and differentiation and thereby suppresses normal hematopoiesis. Based on the theory that the MDS clone affects feedback signals for self-renewal and differentiation and hence suppresses normal hematopoiesis, we have developed a mathematical model to simulate different modifications in MDS-initiating cells and systemic feedback signals during disease development. These simulations revealed that the disease initiating cells must have higher self-renewal rates than normal HSCs to outcompete normal hematopoiesis. We assumed that self-renewal is the default pathway of stem and progenitor cells which is down-regulated by an increasing number of primitive cells in the bone marrow niche - including the premature MDS cells. Furthermore, the proliferative signal is up-regulated by cytopenia. Overall, our model is compatible with clinically observed MDS development, even though a single mutation scenario is unlikely for real disease progression which is usually associated with complex clonal hierarchy. For experimental validation of systemic feedback signals, we analyzed the impact of MDS patient derived serum on hematopoietic progenitor cells in vitro: in fact, MDS serum slightly increased proliferation, whereas maintenance of primitive phenotype was reduced. However, MDS serum did not significantly affect colony forming unit (CFU) frequencies indicating that regulation of self-renewal may involve local signals from the niche. Taken together, we suggest that initial mutations in MDS particularly favor aberrant high self-renewal rates. Accumulation of primitive MDS cells in the bone marrow then interferes with feedback signals for normal hematopoiesis - which then results in cytopenia.

Download full-text

Full-text

Available from: Julia Fröbel, Apr 28, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.
    No preview · Article · Dec 2014 · Advances in Experimental Medicine and Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute myeloid leukemia is a heterogeneous disease in which a variety of distinct genetic alterations occur. Recent studies to identify the leukemia stem-like cells (LSCs) have also indicated heterogeneity of these cells. Based on mathematical modeling and computer simulations we have provided evidence that proliferation and self-renewal rates of the LSC population have greater impact on the course of disease than proliferation and self-renewal rates of leukemia blast populations, i.e. leukemia progenitor cells. The modeling approach has enabled us to estimate the LSC properties of 31 individuals with relapsed AML and to link them to patient survival. Based on the estimated LSC properties the patients can be divided into two prognostic groups which differ significantly with respect to overall survival after first relapse. The results suggest that high LSC self-renewal and proliferation rates are indicators of poor prognosis. Nevertheless, high LSC self-renewal rate may partially compensate for slow LSC proliferation and vice versa. Thus, model-based interpretation of clinical data allows estimation of prognostic factors that cannot be measured directly. This may have clinical implications for designing treatment strategies. Copyright © 2015, American Association for Cancer Research.
    Full-text · Article · Jan 2015 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic regeneration after high dose chemotherapy necessitates activation of the stem cell pool. There is evidence that serum taken after chemotherapy comprises factors stimulating proliferation and self-renewal of CD34+ hematopoietic stem and progenitor cells (HSPCs) - however, the nature of these feedback signals is yet unclear. Here, we addressed the question if specific microRNAs (miRNAs) or metabolites are affected after high dose chemotherapy. Serum taken from the same patients before and after chemotherapy was supplemented for in vitro cultivation of HSPCs. Serum taken after chemotherapy significantly enhanced HSPC proliferation, better maintained a CD34+ immunophenotype, and stimulated colony forming units. Microarray analysis revealed that 23 miRNAs changed in serum after chemotherapy - particularly, miRNA-320c and miRNA-1275 were down-regulated whereas miRNA-3663-3p was up-regulated. miRNA-320c was exemplarily inhibited by an antagomiR, which seemed to increase proliferation. Metabolomic profiling demonstrated that 44 metabolites were less abundant, whereas three (including 2-hydroxybutyrate and taurocholenate sulphate) increased in serum upon chemotherapy. Nine of these metabolites were subsequently tested for effects on HSPCs in vitro, but none of them exerted a clear concentration dependent effect on proliferation, immunophenotype and colony forming unit formation. Taken together, serum profiles of miRNAs and metabolites changed after chemotherapy. Rather than individually, these factors may act in concert to recruit HSPCs into action for hematopoietic regeneration. © 2015 Walenda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Full-text · Article · May 2015 · PLoS ONE
Show more