Article

New highly polymorphic microsatellite loci for the Galápagos marine iguana, Amblyrhynchus cristatus

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

We describe the development and characterisation of six new dinucleotide motif microsatellite loci for populations of marine iguanas (Amblyrhynchus cristatus), endemic to the Galapagos archipelago. Primers were based on microsatellite-bearing sequences and initially developed using universally labelled primers. When analysed across 5 populations (representing 150 individuals), new loci displayed, on average, high levels of genetic diversity (range: 2-13 alleles, mean: 5.73) and values of heterozygosity (range: 0.0-0.906, mean: 0.605). No consistent deviations from Hardy-Weinberg equilibrium or significant linkage disequilibrium were observed, and all loci were shown to be free of common microsatellite errors. Utilising the 13 previously available microsatellite loci for this species, we describe here four multiplex combinations for the successful amplification of 19 microsatellite loci for marine iguanas. This powerful set of highly polymorphic markers will allow researchers to explore future questions regarding the ecology, evolution, and conservation of this unique species.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The 513 available samples from San Cristó bal were scored at 18 microsatellite loci [28] and any resampled animals or individuals with more than 6% missing data were removed (n ¼ 39). In order to identify occasional migrants from other islands, whose original population are not represented in the dataset, we used assignment tests [29] in GENECLASS [30]. ...
Article
Full-text available
The effects of the direct interaction between hybridization and speciation-two major contrasting evolutionary processes-are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island-ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Chapter
Ecosystem-based management (EBM) is an emerging tool that considers humans as an integral part of the ecosystem (Arkema et al. 2006). EBM is different from other marine management tools (i.e., marine protected areas (MPAs), fishing regulations, quotas) because it does not deal with only one sector, resource, or impact. These strategies are not suitable because they fail to acknowledge the complex dynamics that affect social–ecological interactions. Instead, EBM attempts to embrace the complexity that drives the interactions between humans, their multiple impacts, and their environment (McLeod et al. 2005; Tallis et al. 2010). EBM assesses how multiple sectors and cumulative impacts interact to affect the capacity of marine systems to deliver benefits to humans (Arkema et al. 2006; Ruckelshaus et al. 2008). The main goal of EBM is to build resilient social–ecological systems that can secure the long-term provision of ecosystem services and goods to humans (McLeod et al. 2005).
Article
Hybridization plays an important role in the evolution of some of the vertebrate taxa on the Galápagos Islands, such as the Darwin finches. Conversely, only a single possible hybrid between the Galápagos marine iguana (Amblyrhynchus) and the land iguana (Conolophus) has been reported from the island Plaza Sur. In this paper, the hybrid status of a morphologically unusual iguana from this island is confirmed, using restriction fragment length polymorphism (RFLP) analyses of the nuclear ribosomal DNA (rDNA). Sequencing of the hybrid's mitochondrial cytochrome b gene revealed that it was the offspring of a female land iguana and a male marine iguana. Preliminary molecular analyses of morphologically typical marine and land iguanas from Plaza Sur did not detect introgression of nuclear or mitochondrial markers between species. The potential significance of hybridization for the evolution of the Plaza Sur iguana populations is discussed.
Article
Full-text available
Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multilocus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
Article
Full-text available
Two foraging strategies were found in marine iguanas (Amblyrhynchus cristatus); (1) subtidal feeding: the animals swam out to sea and dived for algae in the subtidal zone; (2) intertidal feeding: the animals foraged around low tide in the intertidal zone on more or less exposed algae. Most marine iguanas were very consistent in their foraging strategy and so could be classified as subtidal feeders (SFs) or intertidal feeders (IFs). Feeding strategy was weight-related (Fig. 1), not sexspecific. Animals 1,200 g were IFs, animals >1,800 g SFs. Some iguanas in between followed a mixed foraging strategy. SFs foraged independently of the tides, IFs always around low tide (Figs. 2, 3). Feeding time patterns of IFs and SFs are described (Table 1). Sea motion seemed to have little effect on the foraging pattern of SFs, but strongly influenced that of IFs (Fig. 2). The smaller a marine iguana, the faster it cooled when immersed in water (Fig. 4). The difference between water temperature and core temperature of animals returning from foraging was significantly greater in IFs than SFs (Fig. 5). SFs swimming in very cold water regulated their body temperature to prevent excessive cooling. Possible costs and benefits of the two foraging strategies are discussed. Only part of a marine iguana population lives really amphibiously and only ca. 5% of a 24 h day is spent close to or in the water. All social activities, including mating, take place on land. These life history characteristics preclude those adaptations to an amphibious way of life that would at the same time reduce the iguanas' ability to be maximally active at their typical terrestrial body temperature of 35 C.
Article
Full-text available
Marine iguanas (Amblyrhynchus cristatus) inhabit the coastlines of large and small islands throughout the Galápagos archipelago, providing a rich system to study the spatial and temporal factors influencing the phylogeographic distribution and population structure of a species. Here, we analyze the microevolution of marine iguanas using the complete mitochondrial control region (CR) as well as 13 microsatellite loci representing more than 1200 individuals from 13 islands. CR data show that marine iguanas occupy three general clades: one that is widely distributed across the northern archipelago, and likely spread from east to west by way of the South Equatorial current, a second that is found mostly on the older eastern and central islands, and a third that is limited to the younger northern and western islands. Generally, the CR haplotype distribution pattern supports the colonization of the archipelago from the older, eastern islands to the younger, western islands. However, there are also signatures of recurrent, historical gene flow between islands after population establishment. Bayesian cluster analysis of microsatellite genotypes indicates the existence of twenty distinct genetic clusters generally following a one-cluster-per-island pattern. However, two well-differentiated clusters were found on the easternmost island of San Cristóbal, while nine distinct and highly intermixed clusters were found on youngest, westernmost islands of Isabela and Fernandina. High mtDNA and microsatellite genetic diversity were observed for populations on Isabela and Fernandina that may be the result of a recent population expansion and founder events from multiple sources. While a past genetic study based on pure FST analysis suggested that marine iguana populations display high levels of nuclear (but not mitochondrial) gene flow due to male-biased dispersal, the results of our sex-biased dispersal tests and the finding of strong genetic differentiation between islands do not support this view. Therefore, our study is a nice example of how recently developed analytical tools such as Bayesian clustering analysis and DNA sequence-based demographic analyses can overcome potential biases introduced by simply relying on FST estimates from markers with different inheritance patterns.
Article
Full-text available
Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
Article
Full-text available
Genetic stochasticity due to small population size contributes to population extinction, especially when population fragmentation disrupts gene flow. Estimates of effective population size (Ne) can therefore be informative about population persistence, but there is a need for an assessment of their consistency and informative relevance. Here we review the body of empirical estimates of Ne for wild populations obtained with the temporal genetic method and published since Frankham's (1995) review. Theoretical considerations have identified important sources of bias for this analytical approach, and we use empirical data to investigate the extent of these biases. We find that particularly model selection and sampling require more attention in future studies. We report a median unbiased Ne estimate of 260 (among 83 studies) and find that this median estimate tends to be smaller for populations of conservation concern, which may therefore be more sensitive to genetic stochasticity. Furthermore, we report a median Ne/N ratio of 0.14, and find that this ratio may actually be higher for small populations, suggesting changes in biological interactions at low population abundances. We confirm the role of gene flow in countering genetic stochasticity by finding that Ne correlates strongest with neutral genetic metrics when populations can be considered isolated. This underlines the importance of gene flow for the estimation of Ne, and of population connectivity for conservation in general. Reductions in contemporary gene flow due to ongoing habitat fragmentation will likely increase the prevalence of genetic stochasticity, which should therefore remain a focal point in the conservation of biodiversity.
Article
Full-text available
Large numbers of marine iguanas (Amblyrhynchus cristatus Bell) died on the Galapagos between December 1982 and August 1983. Gross and histopathological examination of five of these animals and comparison with three 1984 individuals indicated that the former had died of starvation. This was attributed to an inability to digest new species of algae which had flourished in the sea because of a rise in temperature associated with the El Niño-Southern Oscillation event in 1982 to 83. In 1984 to 85, after El Niño, conditions on the islands returned to normal; the original algal flora began to predominate and the iguana population showed a marked recovery, with increased rates of growth, survival and reproduction.
Article
Full-text available
A poor man's approach to genotyping for research and high-throughput diagnostics.
Article
Full-text available
Genotyping errors occur when the genotype determined after molecular analysis does not correspond to the real genotype of the individual under consideration. Virtually every genetic data set includes some erroneous genotypes, but genotyping errors remain a taboo subject in population genetics, even though they might greatly bias the final conclusions, especially for studies based on individual identification. Here, we consider four case studies representing a large variety of population genetics investigations differing in their sampling strategies (noninvasive or traditional), in the type of organism studied (plant or animal) and the molecular markers used [microsatellites or amplified fragment length polymorphisms (AFLPs)]. In these data sets, the estimated genotyping error rate ranges from 0.8% for microsatellite loci from bear tissues to 2.6% for AFLP loci from dwarf birch leaves. Main sources of errors were allelic dropouts for microsatellites and differences in peak intensities for AFLPs, but in both cases human factors were non-negligible error generators. Therefore, tracking genotyping errors and identifying their causes are necessary to clean up the data sets and validate the final results according to the precision required. In addition, we propose the outline of a protocol designed to limit and quantify genotyping errors at each step of the genotyping process. In particular, we recommend (i) several efficient precautions to prevent contaminations and technical artefacts; (ii) systematic use of blind samples and automation; (iii) experience and rigor for laboratory work and scoring; and (iv) systematic reporting of the error rate in population genetics studies.
Article
Full-text available
The El Niño-Southern Oscillation (ENSO) is a major source of climatic disturbance, impacting the dynamics of ecosystems worldwide. Recent models predict that human-generated rises in green-house gas levels will cause an increase in the strength and frequency of El Niño warming events in the next several decades, highlighting the need to understand the potential biological consequences of increased ENSO activity. Studies have focused on the ecological and demographic implications of El Niño in a range of organisms, but there have been few systematic attempts to measure the impact of these processes on genetic diversity in populations. Here, we evaluate whether the 1997-1998 El Niño altered the genetic composition of Galápagos marine iguana populations from eleven islands, some of which experienced mortality rates of up to 90% as a result of El Niño warming. Specifically, we measured the temporal variation in microsatellite allele frequencies and mitochondrial DNA diversity (mtDNA) in samples collected before (1991/1993) and after (2004) the El Niño event. Based on microsatellite data, only one island (Marchena) showed signatures of a genetic bottleneck, where the harmonic mean of the effective population size (N(e)) was estimated to be less than 50 individuals during the period between samplings. Substantial decreases in mtDNA variation between time points were observed in populations from just two islands (Marchena and Genovesa). Our results suggests that, for the majority of islands, a single, intense El Niño event did not reduce marine iguana populations to the point where substantial neutral genetic diversity was lost. In the case of Marchena, simultaneous changes to both nuclear and mitochondrial DNA variation may also be the result of a volcanic eruption on the island in 1991. Therefore, studies that seek to evaluate the genetic impact of El Niño must also consider the confounding or potentially synergistic effect of other environmental and biological forces shaping populations.
Article
Designing PCR and sequencing primers are essential activities for molecular biologists around the world. This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs. 1, 2, 3, 4.
Article
We describe here the cloning of 12 (7 dinucleotide, 1 trinucleotide and 4 tetranucleotide) microsatellite loci for the Galápagos marine iguana Amblyrhynchus cristatus. When tested for individuals from five different island populations on the Galápagos archipelago, high genetic diversities (9–20 alleles per locus) and heterozygosities (0.200–0.944) were observed. All loci showed no obvious deviations from Hardy–Weinberg equilibrium. The new set of microsatellite loci was able to assign individuals reliably to their island of origin, thus being able to discriminate between residents and migrants between islands.
Chapter
Designing PCR and sequencing primers are essential activities for molecular biologists around the world. This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs. 1–4.
Article
DNA degradation, low DNA concentrations and primer-site mutations may result in the incorrect assignment of microsatellite genotypes, potentially biasing population genetic analyses. MICRO-CHECKER is WINDOWS(R)-based software that tests the genotyping of microsatellites from diploid populations. The program aids identification of genotyping errors due to nonamplified alleles (null alleles), short allele dominance (large allele dropout) and the scoring of stutter peaks, and also detects typographic errors. MICRO-CHECKER estimates the frequency of null alleles and, importantly, can adjust the allele and genotype frequencies of the amplified alleles, permitting their use in further population genetic analysis.
Article
New geological findings suggest that volcanoes existed over the Galápagos hotspot long before today's islands emerged less than 5 million years ago. The evolution of some of Galápagos' biota might have taken place on these former islands. This study investigates the evolutionary history of two of the archipelagos' older vertebrate taxa, the endemic Galápagos marine and land iguana (genera Amblyrhynchus and Conolophus). Mitochondrial rDNA sequences (in total about one kilobase of the 12S and 16S genes) were obtained from all extant genera of the family Iguanidae and the outgroup Oplurus. The phylogenetic analyses suggest that the Galápagos iguanas are sister taxa. Rate comparisons between the iguanid sequences and a corresponding set of sequences from ungulates with known fossil ages date their separation time at 10 million years, or more. The results strengthen the hypothesis that extended speciation times in the Galápagos are possible and provide an estimate of the minimum time inhabited islands of the archipelago may have existed.
  • M Wikelski
  • K Nelson
Wikelski, M., Nelson, K. (2004): Conservation of Galapagos marine iguanas (Amblyrhynchus cristatus). Iguana 11: 191-197.