Conference Paper

Controllable pulse parameter transcranial magnetic stimulator with enhanced pulse shaping

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Commercially available transcranial magnetic stimulation (TMS) devices provide very limited control over the pulse parameters. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel full-bridge circuit topology with two energy storage capacitors and incorporates a number of implementation and functionality advantages over conventional TMS devices and previous cTMS devices. cTMS3 is implemented with transistors with lower voltage rating than previous cTMS devices. It provides more flexible pulse shaping since the circuit topology allows four coil voltage levels during a pulse, including zero voltage. The zero coil voltage level enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse bursts (

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Furthermore, we speculate that individualizing the TMS pulse widths to achieve similar recruitment gains across subjects would reduce the inter-individual variability of MEP amplitude. Future studies should test this hypothesis which is possible using a controllable TMS system [44][45][46]. One of the main limitations of our study is that we estimated MEP amplitude at 120% RMT from the Boltzmann equation rather than measuring it experimentally. ...
Article
Full-text available
d Variability in the response of individuals to various non-invasive brain stimulation protocols is a major problem that limits their potential for clinical applications. Baseline motor-evoked potential (MEP) amplitude is the key predictor of an individual’s response to transcranial magnetic stimulation protocols. However, the factors that predict MEP amplitude and its variability remain unclear. In this study, we aimed to identify the input–output curve (IOC) parameters that best predict MEP amplitude and its variability. We analysed IOC data from 75 subjects and built a general linear model (GLM) using the IOC parameters as regressors and MEP amplitude at 120% resting motor threshold (RMT) as the response variable. We bootstrapped the data to estimate variability of IOC parameters and included them in a GLM to identify the significant predictors of MEP amplitude variability. Peak slope, motor threshold, and maximum MEP amplitude of the IOC were significant predictors of MEP amplitude at 120% RMT and its variability was primarily driven by the variability of peak slope and maximum MEP amplitude. Recruitment gain and maximum corticospinal excitability are the key predictors of MEP amplitude and its variability. Inter-individual variability in motor output may be reduced by achieving a uniform IOC slope.
... Intervention pulse parameters such as the amplitude, frequency, and duration have not been fully accessed in the conventional TMS devices [25]. These parameters change the induced electric field and the characteristics of the neural response and behavior [26]. In this research, a novel structure is introduced which can adjust pulse parameters over a wide range. ...
Article
Full-text available
This research was performed to investigate the ability of transcranial magnetic stimulation (TMS) to evoke the deeper areas of the brain with a minimal impact on non-target areas. To reach this goal, a novel core design in a semi-hexagonal shape with the arrow tips was utilized to collect a magnetic field in the selected target region. In addition, a new circuit topology was presented to generate stimulative pulses with optimal amplitude, frequency, and duration. For the first time in this research voxel resolution was proposed and exploited to evaluate the TMS system accuracy. To study the induced potential in different parts of the brain and its related resolution, a custom-made recording electrode and a micromanipulator were employed. They provided the linear movement in all Rostral/Caudal, Dorsal/Ventral, and Medial/Lateral orientations. The ARM cortex-M microcontroller managed the stimulation and recording sessions. After performing the finite element analysis, the researcher developed a prototype of the proposed system and tested it in vivo on the intact WAG/Raj rat. The results showed that spatial resolution could be significantly enhanced by employing the proposed TMS concept. The outcomes of animal trials have raised some hopes to apply the knowledge of this article in the clinical contexts.
Conference Paper
Transcranial magnetic stimulation (TMS) is a form of non-invasive brain stimulation commonly used to modulate neural activity. Despite three decades of examination, the generation of flexible magnetic pulses is still a challenging technical question. It has been revealed that the characteristics of pulses influence the bio-physiology of neuromodulation. In this study, a second-generation programmable TMS (xTMS) equipment with advanced stimulus shaping is introduced that uses cascaded H-bridge inverters and a phase-shifted pulse-width modulation (PWM). A low-pass RC filter model is used to estimate stimulated neural behavior, which helps to design the magnetic pulse generator, according to neural dynamics. The proposed device can generate highly adjustable magnetic pulses, in terms of waveform, polarity and pattern. We present experimental measurements of different stimuli waveforms, such as monophasic, biphasic and polyphasic shapes with peak coil current and the delivered energy of up to 6 kA and 250 J, respectively. The modular and scalable design idea presented here is a potential solution for generating arbitrary and highly customizable magnetic pulses and transferring repetitive paradigms.
Article
Full-text available
Background Previous research suggested that anterior-posterior (AP) directed currents induced by TMS in motor cortex (M1) activate different interneuron circuits than posterior-anterior currents (PA). The present experiments provide evidence that pulse duration also determines the activation of specific interneuron circuits. Objective To use single motor unit (SMU) recordings to confirm the difference in onset latencies of motor-evoked potentials (MEPs) evoked by different current directions and pulse durations: AP30, AP120, PA30 and PA120. To test whether the amplitude of the MEPs is differentially influenced by somatosensory inputs from the hand (short-latency afferent inhibition, SAI), and examine the sensitivity of SAI to changes in cerebellar excitability produced by direct current stimulation (tDCSCb). Methods Surface electromyograms and SMUs were recorded from the first dorsal interosseous muscle. SAI was tested with an electrical stimulus to median or digital nerves ~20-25ms prior to TMS delivered over the M1 hand area via a controllable pulse parameter TMS (cTMS) device. SAI was also tested during the application of anodal or sham tDCSCb. Because TMS pulse specificity is greatest at low stimulus intensities, most experiments were conducted with weak voluntary contraction to reduce stimulus threshold. Results AP30 currents recruited the longest latency SMU and surface MEP responses. During contraction SAI was greater for AP30 responses versus all other pulses. Online anodal tDCSCb reduced SAI for the AP30 currents only. Conclusions AP30 currents activate an interneuron circuit with different functional properties to those activated by other pulse types. Pulse duration and current direction determine what is activated in M1 with TMS.
Chapter
This chapter provides overview of the state of the art of transcranial magnetic stimulation (TMS) devices, including pulse sources with flexible control of the output waveform parameters and a wide variety of coil designs. It discusses technologies for accurate TMS targeting, including electric field models, frameless stereotaxy, and robotic coil holders. The chapter addresses technological aspects of ancillary coil effects such as heating, noise, vibration, and scalp stimulation. TMS requires high energy pulses that present a technical challenge for the design of practical, flexible, and efficient pulse sources. The chapter covers technical considerations for the integration of TMS and neuroimaging devices. It discusses various coil configurations and their electric field characteristics as well as technical advances in coil field modelling, positioning systems, efficiency and cooling, noise and scalp stimulation, and sham. The chapter summarizes technical considerations for the integration of TMS and neuroimaging devices.
Article
Objective: This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach: We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results: cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (< 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance: The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.
Article
Background Currently available TMS stimulators have a single channel operating a single coil. Objective To outline and present physical and physiological benefits of a novel convenient multi-channel stimulator, comprising five channels, where the stimulation parameters of each channel are independently controllable. Methods Simultaneous and sequential operation of various channels was tested in healthy volunteers. Paired pulses schemes with various inter-stimulus intervals (ISIs) were studied for the hand APB and the leg AH muscles. Energy consumption and coil heating rates with simultaneous operation of 4 channels was compared to a single figure-8 coil. Results Repetitive operation of separate channels with different stimulation parameters is demonstrated. The operations of various channels can be combined simultaneously or sequentially to induce multiple pulses with ISIs of μs resolution. A universal pattern of inhibition and facilitation as a function of ISI was found, with some dependence on coils configurations and on pulse widths. A strong dependence of the induced inhibition on the relative orientation of the conditioning and test pulses was discovered. The ability of this method to induce inhibition in shallow brain region but not in deeper region, thus focusing the effect in the deep brain region, is demonstrated. A significant saving in energy consumption and a reduction in coil heating were demonstrated for several channels operated simultaneously compared to a standard single channel figure-8 coil. Conclusions The multi-channel stimulator enables the synchronized induction of different excitability modulations to different brain regions using different stimulation patterns in various channels. Multiple pulses operation with coils with various depth profiles can increase the focality of TMS effect in deep brain regions.
Article
Full-text available
Somatic treatments for mood disorders represent a class of interventions available either as a stand-alone option, or in combination with psychopharmacology and/or psychotherapy. Here, we review the currently available techniques, including those already in clinical use and those still under research. Techniques are grouped into the following categories: (1) seizure therapies, including electroconvulsive therapy and magnetic seizure therapy, (2) noninvasive techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and cranial electric stimulation, (3) surgical approaches, including vagus nerve stimulation, epidural electrical stimulation, and deep brain stimulation, and (4) technologies on the horizon. Additionally, we discuss novel approaches to the optimization of each treatment, and new techniques that are under active investigation.
Article
Full-text available
Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses.
Conference Paper
We compare half-bridge and full-bridge circuit topologies for controllable pulse parameter transcranial magnetic stimulation (cTMS) devices. The full bridge can generate two more distinct coil voltage levels for enhanced pulse shaping, does not need an active snubber circuit, and requires lower semiconductor switch voltage ratings, at the cost of necessitating four semiconductor switches and associated drivers compared to two in the half bridge. In cTMS devices it may be beneficial to use coils with higher number of turns and, hence, higher inductance than that optimal in conventional TMS, since this reduces the required capacitance, stored energy, coil current, and, potentially, conduction losses and heating. However, increasing the number of coil turns raises the required capacitor voltage which presents practical limits on the number of turns, especially for very brief pulses.
Article
Objective: To demonstrate the use of a novel controllable pulse parameter TMS (cTMS) device to characterize human corticospinal tract physiology. Methods: Motor threshold and input-output (IO) curve of right first dorsal interosseus were determined in 26 and 12 healthy volunteers, respectively, at pulse widths of 30, 60, and 120 μs using a custom-built cTMS device. Strength-duration curve rheobase and time constant were estimated from the motor thresholds. IO slope was estimated from sigmoid functions fitted to the IO data. Results: All procedures were well tolerated with no seizures or other serious adverse events. Increasing pulse width decreased the motor threshold and increased the pulse energy and IO slope. The average strength-duration curve time constant is estimated to be 196 μs, 95% CI [181 μs, 210 μs]. IO slope is inversely correlated with motor threshold both across and within pulse width. A simple quantitative model explains these dependencies. Conclusions: Our strength-duration time constant estimate compares well to published values and may be more accurate given increased sample size and enhanced methodology. Multiplying the IO slope by the motor threshold may provide a sensitive measure of individual differences in corticospinal tract physiology. Significance: Pulse parameter control offered by cTMS provides enhanced flexibility that can contribute novel insights in TMS studies.
Article
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Article
To compare half sine transcranial magnetic stimuli (TMS) with conventional monophasic and biphasic stimuli, measuring resting and active motor threshold, motor evoked potential (MEP) input/output curve, MEP latency, and silent period duration. We stimulated the dominant hand representation of the motor cortex in 12 healthy subjects utilising two different MagPro stimulators to generate TMS pulses of distinct monophasic, half sine and biphasic shape with anteriorly or posteriorly directed current flow. The markedly asymmetric monophasic pulse with a posterior current flow in the brain yielded a higher motor threshold, a less steep MEP input/output curve and a longer latency than all other TMS types. Similar but less pronounced results were obtained with a less asymmetric half sine pulses. The biphasic stimuli yielded the lowest motor threshold and a short latency, particularly with the posterior current direction. The more asymmetric the monophasic pulse, the stronger the difference to biphasic pulses. The 3rd and 4th quarter cycle of the biphasic waveform make it longer than any other waveform studied here and likely contribute to lowering motor threshold, shortening MEP latency and reversing the influence of current direction. This systematic comparison of 3 waveforms and two current directions allows a better understanding of the mechanisms of TMS.
Conference Paper
The authors present measured turn-off losses in IGBTs (insulated-gate bipolar transistors) from six different manufacturers. The rated breakdown-voltage and on-state current are 600 V and 75 A, respectively, for all transistors tested, except the IR-transistor which has 55 A as rate current. Hard switching and switching with a capacitive turn-off snubber are analyzed, both at 25 degrees C and 125 degrees C. The influence of variations in the gate resistance is covered. Conclusions from a similar set of measurements on 1000-1200 V IGBTs are also given. The loss reduction when using a turn-off snubber is larger than expected from experience with bipolar junction transistors. This is mainly due to the fact that the first part of the current fall time until the current tail is reached is shorter when a capacitive snubber is used than in hard switching. The turn-off losses increase strongly with temperature and also with the transistor current at turn-off. There is a significant increase in turn-off losses with increasing gate resistance.< >
Article
The turn-off of IGBTs in hard- and soft-switching converters is analyzed using nonquasi-static analysis. It is shown that while the turn-off current waveform for hard-switching is governed solely by the device for a particular value of on-state current and bus voltage, turn-off current waveform for soft-switching is strongly dependent on device-circuit interactions, so that a trade-off between turn-off loss and switching time can be made using external circuit elements. Models are developed to explain IGBT turn-off for both hard- and soft-switching conditions. Hard-switching considers both inductive and resistive loads. Calculated results are validated by comparison with results of measurements and two-dimensional (2-D) numerical simulations
Article
A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near-rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 6 kA, enabling PW control from 5 mus to over 100 mus. The near-rectangular induced electric field pulses use 2%-34% less energy and generate 67%-72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 mus, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications.
Snubber Circuits for Power Electronics. SMPS Technol-ogy
  • R Severns
R. Severns, Snubber Circuits for Power Electronics. SMPS Technol-ogy, 2008, [E-book] Available: http://www.snubberdesign.com/snubber-book.html.
  • R Severns
R. Severns, Snubber Circuits for Power Electronics. SMPS Technology, 2008, [E-book] Available: http://www.snubberdesign.com/snubberbook.html.