ArticlePDF Available

Abstract and Figures

We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10−6 mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.
Content may be subject to copyright.
A preview of the PDF is not available
... In addition to the simulation of vacuum conditions, since the 1960s, there have been numerous developments of simulation chambers around the world to simulate the planetary environment, mainly for Mars. Starting from the chamber to study the behavior of terrestrial microorganisms under artificial Martian conditions [86] and continuing with multiple simulating facilities for planetary and space research [87][88][89][90][91][92][93][94][95][96]. The design of this kind of facility is still an active area of interest, as each one is generally built with a few specific objectives. ...
Thesis
Full-text available
The water processes that affect the upper layers of the surface of Mars are not yet fully understood. Describing the processes that may induce changes in the water content of the surface is critical to determine the present-day habitability of the Martian surface, understanding the atmospheric water cycle, and estimate the efficiency of future water extraction procedures from the regolith for In-Situ-Resource-Utilization (ISRU). This PhD thesis describes the design, development, and plausible uses of a Martian environmental facility ‘SpaceQ chamber’ which allows to simulate the near-surface water cycle. This facility has been specifically designed to investigate the effect of water on the Martian surface. SpaceQ has been used to investigate the material curation and has demonstrated that the regolith when mixed with super absorbent polymer (SAP), water, and binders exposed to Martian conditions, can form a solid block, and retain more than 80% of the added water, which may be of interest to screen radiation while maintaining a low weight. The thesis also includes the testing of HABIT operation, of the ESA/IKI ExoMars 2022 robotic mission to Mars, within the SpaceQ chamber, under martian conditions similar to those expected at Oxia Planum. The tests monitor the performance of the brine compartment, when deliquescent salts are exposed to atmospheric water. In this thesis, a computational model of the SpaceQ using COMSOL Multiphysics has been implemented to study the thermal gradients and the near-surface water cycle under Martian temperature and pressure experimental conditions. The model shows good agreement with experiments on the thermal equilibration time scales and gradients. The model is used to extrapolate the one-point relative humidity measurement of the experimental to each grid points in the simulation. This gives an understanding of the gradient in atmospheric water relative humidity to which the experimental samples such as deliquescent salts and Martian regolith simulants are exposed at different time intervals. The comparison of the thermal simulation and the experimental behavior of HABIT instrument tests, shows an extra internal heating source of about 1 W which can be attributed to the hydration and deliquescence of the salts exposed to Martian conditions when in contact with atmospheric moisture. Finally, this thesis experimentally demonstrates that pure liquid water can persist for 3.5 to 4.5 hours at Mars surface conditions. The simulated ground captured 53% of the atmospheric water either as pure liquid water, hydrate, or brine. The result concludes that the relative humidity values at night-time on Mars may allow for significant water absorption by the ground, which is released at sunrise. The water cycle dynamics near the surface is therefore always out of equilibrium. After frost formation, thin films of water may survive for a few hours. The results of this thesis about the water cycle on Mars, and about the interaction of atmospheric water with regolith and salts, have implications for the present-day habitability of the Martian surface and planetary protection policies.
... Space simulation chambers, capable of reaching high levels of vacuum to simulate the low-pressure environment in deep space, have been developed since the 1960 ′ s, and numerous space simulating facilities have been built for planetary and space research. They have been used for simulating different planetary environments mainly under Martian conditions to test instrumentation and perform research related to its application to astrobiology [1,2,3,4,5]. These chambers are used to perform qualification tests such as Thermal Vacuum Tests (TVT), and outgassing and sterilization through the Dry Heat Microbial reduction (DHMR) tests as defined in the standards [6,7]. ...
Article
Full-text available
Environmental chambers are used to test the expected performance of space instrumentation and to investigate certain processes which are relevant in space or other planetary environments. In this study, a computational model of an existing Martian experimental facility is investigated numerically using COMSOL Multiphysics. For this purpose, we consider the near surface water cycle under Martian temperature and pressure experimental conditions tested inside the chamber to compare and validate the model. The model shows good agreement with experiments on the equilibration time scales and thermal gradients. Due to the limitation on placing sensors at multiple location inside the chamber, we use the model to extrapolate the one-point relative humidity of the experimental data to each grid points in the simulation. This model gives an understanding of the gradient in atmospheric water relative humidity to which the experimental samples such as deliquescent salts and Martian regolith simulants are exposed at different time intervals. The thermal behavior of HABIT instrument, of the ESA/IKI ExoMars 2022 robotic mission to Mars, in the model shows an extra internal heating source of about 1 W which can be attributed to the hydration and deliquescence of the salts exposed to Martian conditions when in contact with atmospheric moisture. In addition, the presented model is used to predict the thermal gradients and understand the time response when the chamber is heated in vacuum conditions. Our analysis shows that for thermal vacuum tests, the chamber will take about 2.5 hours to reach the test temperature of 420 K.
... (in-flight calibration mode).The tests aimed at characterizing thermal gradients in the nominal mode were performed in the MARTE simulation chamber of the Centro de Astrobiologia in Madrid, Spain(Sobrado et al. 2014). By recreating the thermal conditions shown in ...
Article
Full-text available
NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.
... Laboratory astrochemistry encompasses diverse topics related to the chemistry of different regions of the Universe comprising among others, the gas-phase chemistry of species relevant to the chemical evolution in space [1][2][3][4][5] , the simulation of planetary atmospheres 6,7 , the spec-troscopic characterization of radicals and ions [8][9][10][11][12][13][14][15][16][17] and the simulation of the circumstellar envelopes (CSEs) of asymptotic giant branch stars (AGBs) [18][19][20][21] as well as of the different interstellar environments. [22][23][24][25][26][27][28][29][30][31] . ...
Article
Full-text available
Laboratory astrochemistry aims at simulating, in the laboratory, some of the chemical and physical processes that operate in different regions of the universe. Amongst the diverse astrochemical problems that can be addressed in the laboratory, the evolution of cosmic dust grains in different regions of the interstellar medium (ISM) and its role in the formation of new chemical species through catalytic processes present significant interest. In particular, the dark clouds of the ISM dust grains are coated by icy mantles and it is thought that the ice–dust interaction plays a crucial role in the development of the chemical complexity observed in space. Here, we present a new ultra-high vacuum experimental station devoted to simulating the complex conditions of the coldest regions of the ISM. The INFRA-ICE machine can be operated as a standing alone setup or incorporated in a larger experimental station called Stardust, which is dedicated to simulate the formation of cosmic dust in evolved stars. As such, INFRA-ICE expands the capabilities of Stardust allowing the simulation of the complete journey of cosmic dust in space, from its formation in asymptotic giant branch stars to its processing and interaction with icy mantles in molecular clouds. To demonstrate some of the capabilities of INFRA-ICE, we present selected results on the ultraviolet photochemistry of undecane (C11H24) at 14 K. Aliphatics are part of the carbonaceous cosmic dust, and recently, aliphatics and short n-alkanes have been detected in situ in the comet 67P/Churyumov–Gerasimenko.
... Laboratory astrochemistry encompasses diverse topics related to the chemistry of different regions of the Universe comprising among others, the gas-phase chemistry of species relevant to the chemical evolution in space 1-5 , a) Authors to whom correspondence should be addressed: gonzalo.santoro@icmm.csic.es; gago@icmm.csic.es the simulation of planetary atmospheres 6,7 , the spectroscopic characterization of radicals and ions [8][9][10][11][12][13][14][15][16][17] and the simulation of the circumstellar envelopes (CSEs) of asymptotic giant branch stars (AGBs) [18][19][20][21] as well as of the different interstellar environments. [22][23][24][25][26][27][28][29][30][31] . ...
Preprint
Full-text available
Laboratory astrochemistry aims at simulating in the laboratory some of the chemical and physical processes that operate in different regions of the Universe. Amongst the diverse astrochemical problems that can be addressed in the laboratory, the evolution of cosmic dust grains in the different regions of the interstellar medium (ISM) and its role in the formation of new chemical species through catalytic processes present significant interest. In particular, in the dark clouds of the ISM dust grains are coated by icy mantles and it is thought that the ice-dust interaction plays a crucial role in the development of the chemical complexity observed in space. Here, we present a new ultra-high vacuum experimental station devoted to simulate the complex conditions of the coldest regions of the ISM. The INFRA-ICE machine can be operated as a standing alone setup or incorporated in a larger experimental station called Stardust, which is dedicated to simulate the formation of cosmic dust in evolved stars. As such, INFRA-ICE expands the capabilities of Stardust allowing the simulation of the complete journey of cosmic dust in space, from its formation in asymptotic giant branch stars (AGBs) to its processing and interaction with icy mantles in molecular clouds. To demonstrate some of the capabilities of INFRA-ICE, we present selected results on the UV photochemistry of undecane (C$_{11}$H$_{24}$) at 14 K. Aliphatics are part of the carbonaceous cosmic dust and, recently, aliphatics and short n-alkanes have been detected in-situ in the comet 67P/Churyumov-Gerasimenko.
... We used the MARTE vacuum chamber of the CAB ("Centro de Astrobiología" or Astrobiology Center) [51] as a platform [52][53][54]. We used this vacuum chamber for its versatility in the integration of many environmental variables. ...
Article
Full-text available
Liquid water is well known as the life ingredient as a solvent. However, so far, it has only been found in liquid state on this planetary surface. The aim of this experiment and technological development was to test if a moss sample is capable of surviving in Martian conditions. We built a system that simulates the environmental conditions of the red planet including its hydrological cycle. This laboratory facility enables us to control the water cycle in its three phases through temperature, relative humidity, hydration, and pressure with a system that injects water droplets into a vacuum chamber. We successfully simulated the daytime and nighttime of Mars by recreating water condensation and created a layer of superficial ice that protects the sample against external radiation and minimizes the loss of humidity due to evaporation to maintain a moss sample in survival conditions in this extreme environment. We performed the simulations with the design and development of different tools that recreate Martian weather in the MARTE simulation chamber.
... Since the 1960s, there have been numerous developments of simulation chambers around the world, including the chamber to study the behavior of terrestrial microorganisms under artificial Martian conditions [2] and other multiple simulating facilities for planetary and space research [3][4][5][6][7][8][9][10][11][12][13][14][15][16][17]. The design of this kind of facilities is still an active area of interest, as each one is generally built with a few specific objectives. ...
Article
Full-text available
We describe a versatile simulation chamber that operates under representative space conditions (pressures from < 10−5 mbar to ambient and temperatures from 163 to 423 K), the SpaceQ chamber. This chamber allows to test instrumentation, procedures, and materials and evaluate their performance when exposed to outgassing, thermal vacuum, low temperatures, baking, dry heat microbial reduction (DHMR) sterilization protocols, and water. The SpaceQ is a cubical stainless-steel chamber of 27,000 cm3 with a door of aluminum. The chamber has a table which can be cooled using liquid nitrogen. The chamber walls can be heated (for outgassing, thermal vacuum, or dry heat applications) using an outer jacket. The chamber walls include two viewports and 12 utility ports (KF, CF, and Swagelok connectors). It has sensors for temperature, relative humidity, and pressure, a UV–VIS–NIR spectrometer, a UV irradiation lamp that operates within the chamber as well as a stainless-steel syringe for water vapor injection, and USB, DB-25 ports to read the data from the instruments while being tested inside. This facility has been specifically designed for investigating the effect of water on the Martian surface. The core novelties of this chamber are: (1) its ability to simulate the Martian near-surface water cycle by injecting water multiple times into the chamber through a syringe which allows to control and monitor precisely the initial relative humidity inside with a sensor that can operate from vacuum to Martian pressures and (2) the availability of a high-intensity UV lamp, operating from vacuum to Martian pressures, within the chamber, which can be used to test material curation, the role of the production of atmospheric radicals, and the degradation of certain products like polymers and organics. For illustration, here we present some applications of the SpaceQ chamber at simulated Martian conditions with and without atmospheric water to (i) calibrate the ground temperature sensor of the Engineering Qualification Model of HABIT (HabitAbility: Brines, Irradiation and Temperature) instrument, which is a part of ExoMars 2022 mission. These tests demonstrate that the overall accuracy of the temperature retrieval at a temperature between −50 and 10 °C is within 1.3 °C and (ii) investigate the curation of composite materials of Martian soil simulant and binders, with added water, under Martian surface conditions under dry and humid conditions. Our studies have demonstrated that the regolith, when mixed with super absorbent polymer (SAP), water, and binders exposed to Martian conditions, can form a solid block and retain more than 80% of the added water, which may be of interest to screen radiation while maintaining a low weight.
... The definition of the reference scenario for future space missions, and an analysis of the evolutionary trend of current space systems is the starting point for the development of a coherent and effective space technologies and testing facilities Roadmap. CIRA, in order to develop the Mars research project feasibility study, has performed a preliminary assessment of the existing European and international artificial analogues and has identified several facilities, distributed throughout the world [4][5][6][7][8][9][10][11][12][13][14][15][16][17]. ...
Article
Full-text available
Human and robotic exploration is foreseen to be one of the next steps in human space colonization, and it is growing the common vision that Moon, on the pathway to Mars, is the outpost to extend human presence in deep space. At the same time, technologies and knowledge derived from space exploration tests, key factors for a more affordable, easier and quicker access to Space, will expand our understanding of the Universe, and create economic opportunities. In this scenario, CIRA intends to support the national community, involved in space colonization projects, through the Mars research project. The project is conceived as a technology-driven effort aimed at maturing a number of technologies and engineering tools necessary to enable future space exploration and colonization missions. Indeed, the project goal is to develop experimental infrastructures and necessary competences for future human and robotic Martian, Lunar and cis-Lunar exploration and colonization missions, supporting industries, universities and national research centres, to meet the challenges of this extremely promising and competitive sector. The present paper gives an overview of CIRA development plan related to Moon and Mars exploration and colonization, focusing on the design and realization of test analogue facilities and the development of enabling technologies. In the definition of the roadmap, a particular emphasis will be given to the facilities concept proposed and constituted by the following research areas: Environmental facility, Robotic laboratory, Aeolic Tunnel and Life Support System area.
Article
This article describes a comprehensive testing method for the thermal calibration of the Thermal InfraRed Sensor (TIRS) onboard NASA's Perseverance rover. Ground-based IR detectors operating at the surface of Mars are subjected to inaccuracies caused by the inclusion of thermal gradients in their packages. To reduce such uncertainties, it is necessary to compensate for their effects. Here, details of the TIRS thermo-mechanical design and a simplified thermal mathematical model (TMM) that accounts for the presence of thermal gradients in the detector's package are provided. Then, a set of equations for the estimation and compensation of thermal gradients are proposed based on the results of the TMM. Thermal calibration tests to identify the mathematical estimators are analyzed, providing details of the test setups and highlighting their limitations and restrictions. Finally, experimental results of the calibration tests are presented, along with the uncertainty sources and potential systematic errors associated with the estimation of the gradients. The results presented here show a significant improvement in the accuracy of TIRS versus previous work, thus fulfilling of the radiometer scientific requirements set by the Mars 2020 science team.
Article
Full-text available
In order to measure the wind speed in Mars rover thermal vacuum test correctly, a low-pressure wind speed calibration system need to be developed. The purpose of this paper is to establish a low pressure-wind speed calibration system, and give an error analysis of it. In this paper, the Hot-bulb Probe calibration scheme, calibration conditions are introduced. The errors caused by length measurement and speed measurement, disturbance of low field, measuring instrument are fully analyzed.
Article
Full-text available
Aims: We present the novel InterStellar Astrochemistry Chamber (ISAC), designed for studying solids (ice mantles, organics, and silicates) in interstellar and circumstellar environments: characterizing their physico-chemical properties and monitoring their evolution as caused by (i) vacuum-UV irradiation; (ii) cosmic ray irradiation; and (iii) thermal processing. Experimental study of thermal and photodesorption of the CO ice reported here simulates the freeze-out and desorption of CO on grains, providing new information on these processes. Methods: ISAC is an UHV set-up, with base pressure down to P = 2.5 × 10-11 mbar, where an ice layer is deposited at 7 K and can be UV-irradiated. The evolution of the solid sample was monitored by in situ transmittance FTIR spectroscopy, while the volatile species were monitored by QMS. Results: The UHV conditions of ISAC allow experiments under extremely clean conditions. Transmittance FTIR spectroscopy coupled to QMS proved to be ideal for in situ monitoring of ice processes that include radiation and thermal annealing. Thermal desorption of CO starting at 15 K, induced by the release of H2 from the CO ice, was observed. We measured the photodesorption yield of CO ice per incident photon at 7, 8, and 15 K, respectively yielding 6.4 ± 0.5 × 10-2, 5.4 ± 0.5 × 10-2, and 3.5 ± 0.5 × 10-2 CO molecules photon (7.3-10.5 eV)-1. Our value of the photodesorption yield of CO ice at 15 K is about one order of magnitude higher than the previous estimate. We confirmed that the photodesorption yield is constant during irradiation and independent of the ice thickness. Only below ~5 monolayers ice thickness the photodesorption rate decreases, which suggests that only the UV photons absorbed in the top 5 monolayers led to photodesorption. The measured CO photodesorption quantum yield at 7 K per absorbed photon in the top 5 monolayers is 3.4 molecules photon-1. Conclusions: Experimental values were used as input for a simple model of a quiescent cloud interior. Photodesorption seems to explain the observations of CO in the gas phase for densities below 3-7 × 104 cm-3. For the same density of a cloud, 3 × 104 cm-3, thermal desorption of CO is not triggered until T = 14.5 K. This has important implications for CO ice mantle build up in dark clouds.
Article
Full-text available
Perchlorate salts (mostly magnesium and sodium perchlorate) have been detected on Mars' arctic soil by the Phoenix lander, furthermore chloride salts have been found on the Meridiani and Gusev sites and on widespread deposits on the southern Martian hemisphere. The presence of these salts on the surface is not only relevant because of their ability to lower the freezing point of water, but also because they can absorb water vapor and form a liquid solution (deliquesce). We show experimentally that small amounts of sodium perchlorate (˜ 1 mg), at Mars atmospheric conditions, spontaneously absorb moisture and melt into a liquid solution growing into ˜ 1 mm liquid spheroids at temperatures as low as 225 K. Also mixtures of water ice and sodium perchlorate melt into a liquid at this temperature. Our results indicate that salty environments make liquid water to be locally and sporadically stable on present day Mars.
Article
Full-text available
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (∼23 months), and drive capability of at least 20 km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck.
Article
Full-text available
The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.
Article
Full-text available
We have built a versatile environmental simulation chamber capable of reproducing atmospheric compositions and surface temperatures for most of the planetary objects. It has been especially developed to make feasible in situ irradiation and characterization of the sample under study. The total pressure in the chamber can range from 5 to 5 × 10−9 mbar. The required atmospheric composition is regulated via a residual gas analyser with ca ppm precision. Temperatures can be set from 4 K to 325 K. The sample under study can be irradiated with ion and electron sources, a deuterium ultraviolet (UV) lamp and a noble-gas discharge UV lamp. One of the main technological challenges of this device is to provide the user the possibility of performing ion and electron irradiation at a total pressure of 0.5 mbar. This is attained by means of an efficient differential pumping system. The in situ analysis techniques implemented are UV spectroscopy and infrared spectroscopy (IR). This machine is especially suitable for following the chemical changes induced in a particular sample by irradiation in a controlled environment. Therefore, it can be used in different disciplines such as planetary geology, astrobiology, environmental chemistry, materials science and for instrumentation testing.
Article
Full-text available
A database of statistics which describe the climate and surface environ-ment of Mars has been constructed directly on the basis of output from multiannual integrations of two general circulation models developed jointly at Laboratoire de Météorologie Dynamique du Centre National de la Recherche Scientifique, France, and the University of Oxford, United Kingdom, with support from the European Space Agency. The models have been developed and validated to reproduce the main features of the meteorology of Mars, as observed by past spacecraft missions. As well as the more standard statistical measures for mission design studies, the Mars Climate Database includes a novel representation of large-scale variability, using empirical eigenfunctions derived from an analysis of the full simulations, and small-scale variability using parameterizations of processes such as gravity wave propagation. The database may be used as a tool for mission planning and also provides a valuable resource for scientific studies of the Martian atmosphere. The database is described and critically compared with a representative range of currently available observations.
Article
The Mars Pathfinder lander carried two magnet arrays, each containing five small permanent magnets of varying strength. The magnet arrays were passively exposed to the wind borne dust on Mars. By the end of the Mars Pathfinder mission a bull's-eye pattern was visible on the four strongest magnets of the arrays showing the presence of magnetic dust particles. From the images we conclude that the dust suspended in the atmosphere is not solely single phase particles of hematite (α-Fe2O3) and that single phase particles of the ferrimagnetic minerals maghemite (γ-Fe2O3) or magnetite (Fe3O4) are not present as free particles in any appreciable amount. The material on the strongest magnets seems to be indistinguishable from the bright surface material around the lander. From X-ray fluorescence it is known that the soil consists mainly of silicates. The element iron constitutes about 13% of the soil. The particles in the airborne dust seem to be composite, containing a few percent of a strongly magnetic component. We conclude that the magnetic phase present in the airborne dust particles is most likely maghemite. The particles thus appear to consist of silicate aggregates stained or cemented by ferric oxides, some of the stain and cement being maghemite. These results imply that Fe2+ ions were leached from the bedrock, and after passing through a state as free Fe2+ ions in liquid water, the Fe2+ was oxidized to Fe3+ and then precipitated. It cannot, however, be ruled out that the magnetic particles are titanomagnetite (or titanomaghemite) occurring in palagonite, having been inherited directly from the bedrock.
Article
Predictions and measurements of the temperature along a fin cooled by natural convection and radiation are reported. The physical situation considered is a horizontal fin with a cylindrical cross-section. One end of the fin is maintained at a constant elevated temperature, and the fin is sufficiently long so that heat loss from the tip is negligible. Heat is transferred by conduction along the fin and dissipated from the surface via natural convection and radiation. The effect of natural convection is described with a published correlation for a horizontal cylinder, and a simple model is used for the radiative heat transfer. A finite difference formulation that allows for variable fluid property effects is used to determine the temperature distribution along the fin. A comparison is made to experimental results, and the agreement between the model and experiment is very good. Results show that the heat loss due to radiation is typically 15–20% of the total.
Article
An unique and compact design of environmental simulation wind tunnel is presented, which can reproduce conditions typical of the Martian surface, specifically atmospheric composition, pressure, wind speed, temperature, and, importantly dust aerosol suspension using Mars analogue materials. Crucial design features and how these impact the scientific goals of studying wind-induced transport of granular material on Mars will be presented. Examples are presented of the application of the facility to the development, testing and calibration of flight instrumentation which make use of characterization techniques for wind flow and dust loading. This work will be set in the context of current and future missions to the Martian surface.