ArticlePDF Available

Influence of edaphic factors on the floristic composition of an area of cerradão in the Brazilian central-west

Authors:

Abstract and Figures

This study describes the influence of edaphic factors on the floristic composition of an area of cerradão (woodland savanna) in the city of Campo Grande, located in the Brazilian central-west. In 10 plots (5 × 20 m each), we evaluated all trees with a diameter at breast height > 4.77 cm. Soil samples were analyzed for each plot in order to determine edaphic variables correlated with species composition. We sampled 1180 individuals of 61 species. The evenness index was 0.74, which indicates uneven distribution of species, which was explained by a high abundance of Qualea parviflora, Curatella americana, Qualea grandiflora, Terminalia argentea and Astronium fraxinifolium. We registered more trees in the smallest diameter class and in the middle layer of the vertical structure. The soil was dystrophic with a clay texture, which explains the higher abundance of species related to dystrophic cerradão. However, we also found some trees typical of mesotrophic cerradão and deciduous forests, which could be attributable to the presence of patches of fertile soil within the dystrophic cerradão or could indicate that those mesotrophic species are tolerant of lower levels of soil nutrients.
Content may be subject to copyright.
1 Universidade Federal de Minas Gerais, Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Belo Horizonte, MG, Brazil
2 Universidade Estadual do Norte Fluminense Darcy Ribeiro, Departamento de Genética e Melhoramento, Campos dos Goytacazes, RJ, Brazil
3 Universidade Federal de Mato Grosso do Sul, Departamento de Biologia, Programa da Pós-Graduação em Biologia Vegetal, Campo Grande, MS, Brazil
4 Royal Botanic Garden Edinburgh, Scotland, UK
5 Author for correspondence: buenotanica@gmail.com
Submitted: 30 March, 2012. Accepted: 16 April, 2013
ABSTRACT
This study describes the influence of edaphic factors on the floristic composition of an area of cerradão (woodland
savanna) in the city of Campo Grande, located in the Brazilian central-west. In 10 plots (5 × 20 m each), we evaluated
all trees with a diameter at breast height ≥ 4.77 cm. Soil samples were analyzed for each plot in order to determine
edaphic variables correlated with species composition. We sampled 1180 individuals of 61 species. The evenness
index was 0.74, which indicates uneven distribution of species, which was explained by a high abundance of Qualea
parviflora, Curatella americana, Qualea grandiflora, Terminalia argentea and Astronium fraxinifolium. We registered
more trees in the smallest diameter class and in the middle layer of the vertical structure. The soil was dystrophic
with a clay texture, which explains the higher abundance of species related to dystrophic cerradão. However, we also
found some trees typical of mesotrophic cerradão and deciduous forests, which could be attributable to the presence
of patches of fertile soil within the dystrophic cerradão or could indicate that those mesotrophic species are tolerant
of lower levels of soil nutrients.
Key words: cerrado, dystrophic cerradão, mesotrophic cerradão, phytosociology, soil-plant interaction
Acta Botanica Brasilica 27(2): 445-455. 2013.
Influence of edaphic factors on the floristic composition
of an area of cerradão in the Brazilian central-west
Marcelo Leandro Bueno1,5, Danilo Rafael Mesquita Neves1, Anderson Fernandes Souza2, Elio Oliveira Junior3,
Geraldo Alves Damasceno Junior3, Vanessa Pontara1, Valdemir Antônio Laura3 and James Alexander Ratter4
Introduction
The Cerrado biome of Brazil possesses physiognomies
that comprise grassland, savanna and forest formations.
Edaphic factors such as effective depth, presence of con-
cretions in the soil profile, proximity of the water table to
the surface, drainage, and fertility are among the most im-
portant determinants of the floristic composition, structure
and productivity of the native vegetation (Haridasan 2000).
Of the forest formations, the woodland known as
the cerradão is distinct because of its low height and
xeromorphic features, corresponding to a “mesophilous
sclerophyllous forest”, with trees of 8-15 m, understory
composed of shrubs and treelets that can reach 3 m, and
a sparse herbaceous layer with low species richness. The
cerradão contains species that co-occur in the cerrado típico
(a savanna formation that constitutes the most widespread
physiognomy of the cerrado biome) and in several other
types of forests (Ribeiro & Walter 2008).
Haridasan (1992) argued that factors such as water
availability in the soil and soil composition might play
a role in phytophysiognomic differentiation, providing
higher nutrient availability, thus enabling the establish-
ment of vegetation with greater density and height, as in
the case of the cerradão. The author also argued that such
physiognomy could remain in dystrophic soils because of
the closed nutrient cycle.
Two types of cerradão with floristic and soil differences
have been described, one characteristics of mesotrophic
soils with higher pH and levels of Ca and Mg and the other
of dystrophic soils of lower pH, Ca and Mg (Ratter 1971,
Ratter et al. 1973, 1977, 1996, 2003, 2006, 2011; Furley &
Ratter 1988). In the earlier publications of the series these
communities were named after characteristics marker tree
species: Hirtella glandulosa Spreng and Emotum nitens
(Benth.) Miers for dystrophic and Magonia pubescens St.
Hill., and Callisthene fasciculata (Spreng) for mesotrophic,
but later the terms “dystrophic cerradão” and mesotrophic
cerradão” were used. The soils of dystrophic cerradão show
pH and minerals similar to these open forms of cerrado, but
higher clay content, indicating greater retention of water in
cases that have been analyzed (Assis et al. 2011).
446 Acta bot. bras. 27(2): 445-455. 2013.
Marcelo Leandro Bueno, Danilo Rafael Mesquita Neves, Anderson Fernandes Souza, Elio Oliveira Junior,
Geraldo Alves Damasceno Junior, Vanessa Pontara, Valdemir Antônio Laura and James Alexander Ratter
In keeping with the observations of many of the
previously cited authors, Assis et al. (2011) found no
correlation between soil fertility and cerradão. However,
those authors described the considerable correlation that
dystrophic cerradão displays with high levels of clay and
microporosity, resulting in greater water retention, thus
enabling the occurrence of a more exuberant vegetation
(i.e., cerradão). Therefore, considering the latest discus-
sions on this subject, it seems that soil texture determines
the vegetation structure, whereas soil fertility determines
the floristic type of cerradão (Ratter 1971; Ratter et al.
1973, 1977; Furley & Ratter 1988).
Because studies of soil-plant interaction are useful tools
to improve the understanding of the floristic patterns of the
cerrado biome and to aid in its preservation, in this study,
we evaluated the relationship between floristic composition
and edaphic variables in the cerradão in the municipality
of Campo Grande, in the state of Mato Grosso do Sul. We
hypothesized that the distribution and dominance of spe-
cies in the cerradão are related to chemical and physical
attributes of the soil.
Material and methods
Study site
The study was conducted in an urban cerrado fragment
of 36.5 hectares, located within the Reserva Particular do Pa-
trimônio Natural (RPPN, Private Nature Reserve) operated
by the Universidade Federal de Mato Grosso do Sul (UFMS,
Federal University of Mato Grosso do Sul), in the munici-
pality of Campo Grande (20°30’33.83”S; 54°36’57.07”W).
According to the Köppen climate classification system
(Köppen 1948), the climate is type Aw (rainy tropical savan-
na), characterized by a dry period during winter and a rainy
period during summer, with an average annual precipitation
of 1,532 mm (Embrapa 1985). According to the Brazilian
Agency for Agricultural Research (Embrapa 2006), the
predominant soil types in the region are dystroferric red
latosol and udorthent.
General aspects of the vegetation
Using the phytophysiognomic classification of the cer-
rado biome proposed by Ribeiro & Walter (2008) as a refe-
rence, we identified the following formations in the RPPN
of the UFMS: cerrado típico, gallery forest and cerradão.
Sampling
We used the plot method (Mueller-Dombois & Ellenberg
1974). The survey was conducted in one hectare, in ten 50
× 20 m plots, randomly distributed. We included all living
woody individuals with a diameter at breast height (DBH)
≥ 4.77 cm. The total height of trees was estimated visu-
ally, using a 5 m graduated measuring stick. All botanical
material was preserved and later deposited in the Campo
Grande-Mato Grosso do Sul Herbarium (code, CGMS).
We identified specimens by consulting the literature, by
comparing them with specimens deposited in the CGMS
Herbarium or by enlisting the aid of specialists. The plant
families were listed according to the Angiosperm Phylogeny
Group III guidelines (APG III 2009).
Soil collection
The collection of soils for the analysis of fertility was car-
ried out with a probe type auger. In each plot, we collected
a sample comprising 20 subsamples, randomly collected at
depths of 0 cm to 20 cm. The chemical and physical analy-
ses were conducted in the Soil Fertility Laboratory of the
Anhanguera University for the Development of the Pantanal
Region, following the methodology described by the Bra-
zilian Agency for Agricultural Research (Embrapa 1998).
Data analysis
We analyzed the following phytosociological parameters
(Mueller-Dombois & Ellenberg 1974): basal area, absolute
density, relative density, absolute frequency, relative fre-
quency, absolute dominance, relative dominance, cover
value, and importance value (IV). We evaluated floristic
diversity by calculating the Shannon index (H’) and Pielou’s
evenness index (J’), as described by Brower & Zar (1984). All
parameters were estimated with the software Mata Nativa
2 (Cientec 2007).
For the analysis of diametric classes, the individuals were
distributed in diameter classes with the ideal class interval
(CI=7.1) calculated according to the formulae put forth by
Spiegel (1976):
CI = A/NC
NC = 1+3.3 logN
where A is the amplitude of diameters, NC is the number
of classes, and N is the number of individuals.
Although there are several criteria for height stratifi-
cation to estimate the absolute sociological position per
species in the plant community, we used three height layers,
following the recommendation of Paula et al. (2004). A
posteriori, we applied the D’Agostino-Pearson normality
test, according to Zar (1999).
To establish the relationships between plots/species and
soil parameters, we performed canonical correspondence
analysis (CCA), as described by ter Braak (1988). The CCA
requires two matrices, one with the species per plot data
and another with the explanatory variables. The highest
correlations were found for the following variables: texture
(clay), organic matter, phosphorus, potassium, aluminium
447
Acta bot. bras. 27(2): 445-455. 2013.
In uence of edaphic factors on the  oristic composition of an area of cerradão in the Brazilian central-west
saturation, base saturation, sum of bases, cation exchange
capacity (CEC) and pH.
There are several advantages in the use of the CCA, the
greatest of which is the Monte Carlo test, which consists
in randomly permuting the lines of the matrix of environ-
mental variables to test the significance of the correlation
between the two matrices, identifying the probability that
the relationship observed between the two original ma-
trices is correct. The CCA and the Monte Carlo test were
processed by the program PC-ORD for Windows, version
5.0 (McCune & Mefford 2006).
Results and discussion
Floristics and structure
We recorded 61 species, belonging to 52 genera, dis-
tributed in 31 families (Tab. 1). Of the sampled families,
Fabaceae had the highest richness, with 11 species; followed
by Vochysiaceae (6 species); Erythroxylaceae (4 species);
Annonaceae, Anacardiaceae, and Myrtaceae (3 species
each); and Bignoniaceae, Chrysobalanaceae, Combretace-
ae, Connaraceae, Malpighiaceae, and Malvaceae (2 species
each). These families accounted for 68.85% of the species
observed at the study site. The remaining 19 families were
represented by only one species each.
The most prominent families in this study were the same
families found in other cerradão areas (Batalha & Mantovani
2001; Salis et al. 2006; Silva et al. 2008; Souza et al. 2008;
Araújo et al. 2011), especially Fabaceae and Vochysiaceae
in areas of dystrophic cerradão (Costa & Araújo, 2001;
Marimon Júnior & Haridasan, 2005; Araújo et al. 2011).
The H’ value obtained (3.03) was similar to those repor-
ted for other areas of cerradão in the state of Mato Grosso do
Sul, which have ranged from 2.90 to 3.36 (Salis et al. 2006),
and lower than those reported for areas of cerradão in the
southeast (range, 3.38-3.54; Gomes et al. 2004; Guimarães
et al. 2001), northeast (range, 3.31-3.32; Silva et al. 2008;
Alencar et al. 2007) and central-west (range, 3.42-3.84;
Andrade et al. 2002; Felfili & Silva Junior 1992; Marimon
Junior & Haridasan 2005). The J’ value obtained (0.74) in-
dicated an unequal distribution of individuals per species.
The high abundance of five species, Qualea parviflora Mart.,
Curatella americana L. Qualea grandiflora Mart., Ter m i na l ia
argentea Mart. and Anadenanthera peregrina var. falcata
(Benth.) Altschul, collectively accounting for 55.71% of the
relative density, contributed to the low evenness observed.
The variation in richness and diversity might be related
to factors such as the inclusion criterion for trees, basal
area, sample size (Pinheiro & Durigan 2012), soil (Assis et
al. 2011; Neri et al. 2013) and biogeography (Ratter et al.
1997). The cerrado areas in the Alto Araguaia region in the
state of Mato Grosso, the state of Tocantins and the Federal
District have a high species richness in comparison to the
marginal and disjunct areas of the cerrado biome (Ratter
et al. 1997). However, in marginal areas, floristic elements
from adjacent plant formations occur, adding to the richness
of the cerrado (Ratter et al. 2003).
Regarding the vertical structure (Fig. 1), 60.25% of
individuals belonged to the middle layer (height, 4.01-
7.88 m), 21.69% belonged to the lower layer (0-4 m), and
18.13% belonged to the upper layer (7.89-12 m). According
to Ratter (1986), the tallest species in the cerradão usually
reach 10-12 m, although taller individuals can occur. In
the present study, the tallest species were Andira cuyaben-
sis Benth., Bowdichia virgilioides Kunth, Callisthene minor
Mart., Curatella amer icana, Hymenaea stigonocarpa Mart. ex
Hayne, Lafoensia pacari A. St.-Hil., Luehea paniculata Mart.,
Qualea parviflora, Matayba guianensis Aubl., Stryphnoden-
dron obovatum Benth., Ta chigali aurea Tul., and Te r mi n al i a
argentea, with individuals between 10 and 12 m tall. Of the
61 species recorded, 30 had no individuals in the lower
layer, suggesting the existence of restrictions to the natural
processes of reproduction, dispersal and regeneration (Silva
& Soares 1999; Toppa 2004). An important factor that might
be related to this condition is the human impact on the areas
surrounding the study site. This impact causes the isolation
of the area, restricting the flux of pollinators, and is a major
negative factor in the regeneration process, considering that
most tree species depend on animals for their pollination
and dispersal (Reis et al. 1999).
The analysis of diametric distribution revealed that most
of the individuals belong to the smallest size classes (71.86%
for the first two classes) (Fig. 2), and that this community
has an inverted “J” pattern, which indicates the regenerative
capacity of the community. According to Silva Júnior & Sil-
va (1988), the concentration of individuals in the first two
diameter classes might indicate possible past disturbances,
natural or anthropic, such as timber harvesting, selective
logging, fires, deforestation and herbivory, and might also
be explained by the genetic potential of most cerrado species
for small size.
The absolute density in the cerradão was 1,180 ind.ha−1.
This result was lower than that observed for other areas of
dystrophic cerradão, such as those in the municipality of
Uberlândia, in the state of Minas Gerais (Costa & Araújo
2001), with 2,071 ind.ha−1; in the state of Mato Grosso, with
1,884 ind.ha−1 (Marimon Junior & Haridasan 2005); and in
the Federal District, with 2,231 ind.ha−1 (Ribeiro et al. 1985).
This difference demonstrates the effect of dominant species
on the structure, considering that the 10 species with the
largest IV accounted for 59.11% of the total density value
and covered 74.51% of the basal area (Tab. 2). Such numbers
might indicate the presence of a restricted group of species
with competitive advantages, high DBH and large number
of individuals, thus affecting the previously discussed values
of density, diversity and evenness.
The fact that the highest IV was obtained for Qualea
parviflora corroborates the patterns reported by Ratter et
al. (2003), in which Q. parviflora had the second highest
448 Acta bot. bras. 27(2): 445-455. 2013.
Marcelo Leandro Bueno, Danilo Rafael Mesquita Neves, Anderson Fernandes Souza, Elio Oliveira Junior,
Geraldo Alves Damasceno Junior, Vanessa Pontara, Valdemir Antônio Laura and James Alexander Ratter
Table 1. List of the species recorded in the cerradão of the Private Nature Reserve operated by the Federal University of Mato Grosso do Sul, in the city of Campo
Grande, Brazil.
Family Scientific name Herbarium record
Anacardiaceae
Astronium fraxinifolium Schott 24898
Myracrodruon urundeuva Allemão 24897
Tapirira guianensis Aubl.24894
Annonaceae
Annona coriacea Mart. 24932
Annona crassiflora Mart. 24931
Xylopia aromatica (Lam.) Mart. 24900
Araliaceae Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 24880
Asteraceae Piptocarpha rotundifolia (Less.) Baker 24896
Bignoniaceae Handroanthus ochraceus (Cham.) Mattos 24886
Tabebuia aurea (Manso) Benth. & Hook. f. ex S. Moore 24933
Caryocaraceae Caryocar brasiliense Cambess.24934
Chrysobalanaceae Hirtella hebeclada Moric. ex DC. 24890
Licania humilis Cham. & Schltdl. 24891
Clusiaceae Kielmeyera coriacea Mart. & Zucc. 24930
Combretaceae Terminalia argentea Mart. 24879
Buchenavia tomentosa Eichler 24927
Connaraceae Connarus suberosus Planch. 24893
Rourea induta Planch. 24929
Dilleniaceae Curatella americana L. 24926
Erythroxylaceae
Erythroxylum anguifugum Mart. 24887
Erythroxylum deciduum A. St.-Hil. 24889
Erythroxylum suberosum A. St.-Hil. 24888
Erythroxylum tor tuosum Mart. 24889
Fabaceae
Anadenanthera peregrina var. falcata (Benth.) Altschul 24905
Andira cuyabensis Benth. 24902
Bowdichia virgilioides Kunth 24906
Copaifera langsdorffii Desf. 24922
Dimorphandra mollis Benth. 24923
Dipteryx alata Vogel 24925
Diptychandra aurantiaca Tul. 24903
Hymenaea stigonocarpa Mart. ex Hayne 24920
Leptolobium dasycarpum Vogel 24924
Stryphnodendron rotundifolium Mart. 24904
Tachigali aurea Tul. 24921
Lauraceae Ocotea minarum (Nees & Mart.) Mez 24881
Lythraceae Lafoensia pacari A. St.-Hil. 24917
Malpighiaceae Byrsonima coccolobifolia Kunth 24883
Byrsonima verbascifolia (L.) DC. 24882
Malvaceae Eriotheca pubescens (Mart. & Zucc.) Schott & Endl. 24877
Luehea paniculata Mart. & Zucc. 24918
Melastomataceae Miconia albicans (Sw.) Triana 24916
Myrtaceae
Eugenia aurata O. Berg 24908
Eugenia egensis DC. 24909
Myrcia guianensis (Aubl.) DC. 24907
Continues
449
Acta bot. bras. 27(2): 445-455. 2013.
In uence of edaphic factors on the  oristic composition of an area of cerradão in the Brazilian central-west
Family Scientific name Herbarium record
Nyctaginaceae Guapira opposita (Vell.) Reitz. 24892
Opiliaceae Agonandra brasiliensis Miers ex Benth. & Hook. f. 24895
Primulaceae Myrsine guianensis Aubl. Kuntze 24919
Proteaceae Roupala montana Aubl. 24911
Rubiaceae Rudgea viburnoides (Cham.) Benth. 24884
Rutaceae Zanthoxylum rigidum Humb. & Bonpl. ex Willd. 24899
Salicaceae Casearia sylvestris Sw. 24912
Sapindaceae Matayba guianensis Aubl. 24878
Sapotaceae Chrysophyllum marginatum (Hook. & Arn.) Radlk. 24885
Styracaceae Styrax ferrugineus Nees & Mart. 24915
Verbenaceae Aegiphila verticilata Vell. 24901
Vochysiaceae
Callisthene minor Mart. 24874
Qualea grandiflora Mart. 24910
Qualea multiflora Mart. 24913
Qualea parviflora Mart. 24914
Salvertia convallariodora A. St.-Hil. 24875
Vochysia thyrsoidea Pohl 24876
Table 1. Continuation.
Figure 1. Distribution of the frequency of individuals, by height (m), in the plots in the tree community of an area of cerradão in the Private Nature Reserve ope-
rated by the Federal University of Mato Grosso do Sul, in the city of Campo Grande, Brazil. Lower layer (L1: 0-4.0 m), middle layer (L2: 4.01-7.88 m), and upper
layer (L3: 7.89-12 m) identified by horizontal lines.
1 L. dasycarpum; 2 A. klotzkiana; 3 A. brasiliensis; 4 A. peregrina; 5 A. cuyabensis; 6 A. coriaceae; 7 A. crassiflora; 8 A. fraxinifolium; 9 B. virgilioides; 10 B. tomen-
tosa; 11 B. coccolobifolia; 12 B.verbasifolia; 13 C. minor; 14 C. brasiliense; 15 C. sylvestris; 16 C. marginatum; 17 C. suberosus; 18 C. langsdorffii; 19 C. americana;
20 D. mollis; 21 D. alata; 22 D. aurantiaca; 23 E. pubescens; 24 E. anguifugum; 25 E. deciduum; 26 E. suberosum; 27 E. tortuosum; 28 E. aurata; 29 E. egensis; 30 G.
opposita.; 31 H. hebeclada; 32 H. stigonocarpa; 33 K. coriacea; 34 L. pacari; 35 L. humilis; 36 L. paniculata; 37 M. guianensis; 38 M. albicans; 39 M. urundeuva; 40 M.
guianensis; 41 O. minarum; 42 P. rotundifolia; 43 Q. grandiflora; 44 Q. multiflora; 45 Q. parviflora; 46 R. guianensis; 47 R. montana; 48 R. induta; 49 R. viburnoides;
50 S. convallariodora; 51 S. morototoni; 52 S. obovatum; 53 S. ferrugineus; 54 Tab. aurea; 55 H. ochraceus; 56 T. aurea; 57 T. argentea; 58 T. pallida; 59 V. thyrsoidea;
60 X. aromatica; 61 Z. hasslerianum.
450 Acta bot. bras. 27(2): 445-455. 2013.
Marcelo Leandro Bueno, Danilo Rafael Mesquita Neves, Anderson Fernandes Souza, Elio Oliveira Junior,
Geraldo Alves Damasceno Junior, Vanessa Pontara, Valdemir Antônio Laura and James Alexander Ratter
Figure 2. Distribution of the number of individuals by diameter class, with an ideal class interval
(CI) of 7.1 cm, in plots within the tree community of an area of cerradão in the Private Nature
Reserve operated by the Federal University of Mato Grosso do Sul, in the city of Campo Grande,
Brazil.
Table 2. Phytosociological parameters of the species recorded for the cerradão of the Private Nature Reserve operated by the Federal University of Mato Grosso do
Sul, in the city of Campo Grande, Brazil.
Scientific name N RD RF RDo CV% IV%
Qualea parviflora 291 24.66 4.17 24.78 24.72 17.87
Curatella americana 92 7.8 3.75 13.48 10.64 8.34
Qualea grandiflora 127 10.76 4.17 7.93 9.35 7.62
Terminalia argentea 112 9.49 4.17 8.63 9.06 7.43
Anadenanthera peregrina var. falcata 29 2.46 2.5 9.27 5.86 4.74
Astronium fraxinifolium 51 4.32 4.17 2.23 3.28 3.57
Salvertia convallariodora 24 2.03 4.17 1.49 1.76 2.56
Annona crassiflora 21 1.78 2.92 2.75 2.27 2.48
Callisthene minor 37 3.14 0.83 2.99 3.07 2.32
Tabebuia aurea 21 1.78 3.75 1 1.39 2.18
Vochysia thyrsoidea 17 1.44 2.5 1.6 1.52 1.85
Diptychandra aurantiaca 34 2.88 0.83 1.6 2.24 1.77
Xylopia aromatica 32 2.71 1.67 0.78 1.74 1.72
Bowdichia virgilioides 14 1.19 2.08 1.9 1.54 1.72
Matayba guianensis 22 1.86 2.5 0.63 1.25 1.67
Stryphnodendron rotundifolium 12 1.02 2.92 0.9 0.96 1.61
Andira cuyabensis 9 0.76 3.33 0.6 0.68 1.56
Connarus suberosus 17 1.44 2.5 0.66 1.05 1.53
Tachigali aurea 12 1.02 1.67 1.86 1.44 1.52
Lafoensia pacari 16 1.36 1.67 1.49 1.43 1.51
Luehea paniculata 19 1.61 2.08 0.58 1.1 1.42
Eriotheca pubescens 9 0.76 2.92 0.55 0.66 1.41
Continues
451
Acta bot. bras. 27(2): 445-455. 2013.
In uence of edaphic factors on the  oristic composition of an area of cerradão in the Brazilian central-west
Scientific name N RD RF RDo CV% IV%
Hymenaea stigonocarpa 5 0.42 0.83 2.94 1.68 1.4
Kielmeyera coriacea 16 1.36 1.67 1.01 1.18 1.34
Copaifera langsdorffii 17 1.44 0.83 1.47 1.46 1.25
Qualea multiflora 13 1.1 2.08 0.46 0.78 1.21
Caryocar brasiliense 8 0.68 2.08 0.83 0.76 1.2
Licania humilis 6 0.51 2.5 0.29 0.4 1.1
Miconia albicans 6 0.51 2.08 0.42 0.47 1.0
Myrcia guianensis 8 0.68 2.08 0.22 0.45 0.99
Erythroxylum suberosum 6 0.51 1.67 0.64 0.57 0.94
Roupala montana 6 0.51 1.25 0.4 0.46 0.72
Piptocarpha rotundifolia 10 0.85 0.83 0.33 0.59 0.67
Dipteryx alata 4 0.34 1.25 0.25 0.3 0.61
Annona coriacea 5 0.42 1.25 0.09 0.25 0.59
Rapanea guianensis 5 0.42 1.25 0.08 0.25 0.59
Myracrodruon urundeuva 4 0.34 1.25 0.06 0.2 0.55
Eugenia aurata 3 0.25 1.25 0.08 0.17 0.53
Chrysophyllum marginatum 3 0.25 1.25 0.06 0.16 0.52
Handroanthus ochraceus 3 0.25 1.25 0.05 0.15 0.52
Erythroxylum tortuosum 3 0.25 1.25 0.04 0.15 0.52
Rudgea viburnoides 2 0.17 0.83 0.44 0.31 0.48
Tapirira guianensis 3 0.25 0.83 0.31 0.28 0.46
Styrax ferrugineus 1 0.08 0.42 0.76 0.42 0.42
Byrsonima coccolobifolia 3 0.25 0.83 0.15 0.2 0.41
Dimorphandra mollis 3 0.25 0.83 0.11 0.18 0.4
Agonandra brasiliensis 3 0.25 0.83 0.05 0.15 0.38
Erythroxylum anguifugum 2 0.17 0.83 0.09 0.13 0.36
Byrsonima verbascifolia 2 0.17 0.42 0.33 0.25 0.3
Eugenia egensis 1 0.08 0.42 0.07 0.08 0.19
Rourea induta 1 0.08 0.42 0.05 0.07 0.18
Hirtella hebeclada 1 0.08 0.42 0.03 0.06 0.18
Buchenavia tomentosa 1 0.08 0.42 0.03 0.06 0.18
Zanthoxylum rigidum 1 0.08 0.42 0.01 0.05 0.17
Aegiphila verticilata 1 0.08 0.42 0.01 0.05 0.17
Casearia sylvestris 1 0.08 0.42 0.02 0.05 0.17
Erythroxylum deciduum 1 0.08 0.42 0.01 0.05 0.17
Guapira opposita 1 0.08 0.42 0.02 0.05 0.17
Leptolobium dasycarpum 1 0.08 0.42 0.02 0.05 0.17
Table 2. Continuation.
Continues
452 Acta bot. bras. 27(2): 445-455. 2013.
Marcelo Leandro Bueno, Danilo Rafael Mesquita Neves, Anderson Fernandes Souza, Elio Oliveira Junior,
Geraldo Alves Damasceno Junior, Vanessa Pontara, Valdemir Antônio Laura and James Alexander Ratter
Table 2. Continuation.
frequency (78%) in 376 areas within the cerrado biome.
The most common species was Q. grandiflora, which has
a wide distribution in the cerrado, occurring in 85% of the
areas listed by those same authors (Ratter et al. 1996; 2003).
Some of the species recorded at our study site also oc-
cur in semi-deciduous forests, although with different IVs
(Araújo & Haridasan 1997; Araújo et al. 1997): Matayba
guianensis, Rudgea viburnoides (Cham.) Benth., Tap i r ir a
guianensis Aubl., Copaifera langsdorffii Desf., Casearia syl-
vestris Sw., and Guapira opposita (Vell.) Reitz. Oliveira-Filho
& Ratter (1995) conducted a study of the forest formations
of central Brazil and demonstrated the high exchange of
species between the cerradão and other vegetation types. It
is evident that the flora of the cerradão has an intermediate
nature, with various aspects of savanna, forest and generalist
species and therefore no indication of exclusive species.
Some species sampled in this study require additional
comments. Astronium fraxinifolium Schott (with 51 indivi-
duals, IV% 4.74) is a common species in deciduous forests
and was classified as slightly mesotrophic by Ratter et al.
(2011); Terminalia argentea Mart. (112 individuals, IV%
7.62) belongs to the same category. In contrast, Luehea pa-
niculata (19 individuals, IV% 1.42) was classified as strongly
mesotrophic by those same authors, as was Dipteryx alata
Vog. (4 individuals, IV% 0.61); whereas Myracrodr uon
urundeuva Allemão, frequently referred as the archetype
calcicolous species, had 4 individuals and an IV% of 0.55.
The occurrence of Astronium fraxinifolium and Te r mi n al i a
argentea, which have a weak preference for mesotrophic
soils, is not surprising; however, the other species are cer-
tainly unexpected. These anomalies have been recorded in
other studies (Ratter, personal communication; Araújo et al.
2011; Neri et al. 2012), and it has been suggested that they
occur on mesotrophic soils within dystrophic landscapes.
Edaphic factors
Also in the state of Mato Grosso do Sul, Ratter et al.
(2003) found a higher frequency of cerrado areas on meso-
trophic soils: 20 of the 33 areas analyzed. However, consi-
dering base saturation as an indicator of soil fertility, base
saturation values < 50% being indicative of dystrophic soil
(Embrapa 2006), the soil at our study site was dystrophic
(base saturation, 9-29%). Aluminum saturation was 27-73%,
representing the proportion of aluminum in relation to
the sum of Ca²+, Mg²+, K+, Na+, and Al³ in the soil; higher
aluminum saturation values indicate soils with less fertility
and higher aluminum concentration.
In the CCA, the eigenvalues obtained for axes 1 and 2
were low (0.40 and 0.27; respectively), which implies low
floristic turnover between the plots (ter Braak 1995). Axes
1 and 2, respectively, explained 26.8% and 18.1% of the
variance (P < 0.001 for both), collectively accounting for
44.9% of the accumulated variance (Fig. 3). A considerable
proportion (65.1%) was not explained by the predictors or
was stochastic in nature (Hubbell, 2001). However, this high
level of noise is common in vegetation studies and does not
compromise the species-environment relationship (ter Braak
1988). In the diagram of the CCA (Fig. 3), axis 1 was efficient
in segregating plots 3 and 7. Those plots had lower CEC va-
lues and higher aluminum saturation (Tab. 3), which might
explain the differentiation in species composition. The fact
that Qualea parviflora and Qualea grandiflora were the most
abundant species in these plots corroborates those results,
because species of the family Vochysiaceae are classified as
Figure 3. Canonical correspondence analysis of sampled plots and edaphic
variables in the cerradão of the Private Nature Reserve operated by the Federal
University of Mato Grosso do Sul, in the city of Campo Grande, Brazil.
OM – organic matter; CEC –cation exchange capacity.
Scientific name N RD RF RDo CV% IV%
Schefflera morototoni 1 0.08 0.42 0.02 0.05 0.17
Ocotea minarum 1 0.08 0.42 0.02 0.05 0.17
Total 1180 100 100 100 100 100
N – number of individuals; RD – relative density; RF – relative frequency; RDo – relative dominance; CV% – cover value (proportional); IV% – importance
value (proportional).
453
Acta bot. bras. 27(2): 445-455. 2013.
In uence of edaphic factors on the  oristic composition of an area of cerradão in the Brazilian central-west
tolerant to and obligate accumulators of aluminum (Harida-
san 2000). Axis 2 was efficient in segregating plots 6, 9 and
10, with more fertile soils, higher values of CEC and lower
aluminum saturation. These three plots had species that co-
-occur in areas of cerradão with mesotrophic soils (Ratter et
al. 1977), such as Terminalia argentea, Luehea paniculata and
Astronium fraxinifolium. This demonstrates that soil fertility
is a determinant of species composition in the cerrado.
In general, the soil of the plots had a clay texture (Tab. 3).
According to Marimon-Junior & Haridasan (2005), clay
soils under cerradão vegetation have a higher water-reten-
tion capacity and are therefore more capable to support
the processes of biomass synthesis and maintain higher
fertility, because water availability regulates the dynamics of
nutrients in the soil, and consequently, their absorption by
the plants. Ribeiro (1983), comparing cerradão and cerrado
típico, found differences in the physical characteristics of
the soil: that of the cerradão had higher porosity and higher
water-retention capacity. This water regime, which is more
favorable to the community than is that of the cerrado típico,
might be an important factor restricting the distribution
of cerradão. It should be noted that many soils in Brazil,
although classified as clay soils, behave similarly to sandy
soils in terms of CEC. This is explained by the fact that these
clays are, predominantly, of low activity (kaolinite, iron
and aluminum sesquioxides, etc.), and most latosols under
cerrado are part of this category (Lopes & Guilherme 1992).
Conclusion
Our findings, together with those of the other studies
discussed, support the hypothesis of our study, that there
is a relationship between edaphic factors and species dis-
tribution in the cerradão. The clay soils favored the predo-
minance of tree species, whereas the dystrophic soils, with
considerable variation in aluminum saturation, influenced
the floristic turnover between the plots.
Although the study site is classified as an area of dystro-
phic cerradão, we recorded species that are characteristic
of mesotrophic soils and deciduous forests. The presence
of those species might be related to the existence of areas
with mesotrophic soils within a dystrophic landscape, as
has previously been suggested.
Acknowledgments
We thank the UFMS for authorizing the collection wi-
thin the RPPN. We are also grateful to professors Arnildo
Pott and Ângela Lúcia Bagnatori Sartori (curator of the
CGMS Herbarium), who assisted in the identification of
the botanical material, as well as to Carlos R. Lehn and the
two anonymous reviewers, for their essential suggestions
to improve the manuscript.
References
Alencar, A.L.; da Silva, M.A.P. & Barros, L.M. 2007. Florística e Fitossocio-
logia de uma Área de Cerradão na Chapada do Araripe – Crato – CE.
Revista Brasileira de Biociências 5: 18-20.
Andrade, L.A.Z.; Felfili, J.M. & Violatti, L. 2002. Fitossociologia de uma
área de cerrado denso na Recor-IBGE, Brasília-DF. Acta Botanica
Brasilica 16: 225-240.
APG III. 2009. An update of the Angiosperm Phylogeny Group classifica-
tion for the orders and families of flowering plants. Botanical Journal
of the Linnaean Society 161: 105-202.
Araújo, G.M. & Haridasan, M. 1997. Estrutura fitossociológica de duas
matas mesófilas semidecíduas, em Uberlândia, Triângulo Mineiro.
Naturalia 22: 115-129.
Table 3. Chemical and physical characteristics of the soil (depth, 0-20 cm) of the 10 plots evaluated in the cerradão of the Private Nature Reserve operated by the
Federal University of Mato Grosso do Sul, in the city of Campo Grande, Brazil.
Plot
pH P K+Ca2+ Mg2+ Al3+ H++Al3+ SB CEC OM m V Clay Silt Sand
H2O mg/dm3cmolc/dm3mg/
dm3% g/kg
1 5.25 2 72 0.7 1.6 0.9 8.25 2.5 10.7 49.2 27 23 525 244 231
2 5.09 2 58 0.5 1.3 1.8 9.74 1.9 11.7 39.1 48 17 544 270 186
3 5.11 1 58 0.3 0.3 2 7.76 0.7 8.5 35.3 73 9 504 298 198
4 5.22 1 58 0.2 1.4 1.4 7.43 1.7 9.2 32.4 44 19 540 274 186
5 5.24 1 58 0.3 1.3 1.5 8.09 1.7 9.8 33.9 46 18 522 304 174
6 5.44 1 87 0.6 2.3 1.5 8.91 3.1 12 33.8 32 26 472 321 207
7 5.18 1 58 0.5 1.2 2 7.43 1.8 9.3 33.1 52 20 526 300 174
8 5.26 2 87 0.6 1.2 1.5 8.25 2.0 10.3 34.9 43 20 506 292 202
9 5.17 1 87 0.9 1.4 1.6 8.91 2.5 11.4 33.2 39 22 470 315 215
10 5.28 1 79 1.6 1.4 1.4 7.92 3.2 11.1 34.6 30 29 479 346 175
SB – sum of bases; CEC – cation exchange capacity; OM – organic matter; m – aluminum saturation; V – base saturation.
454 Acta bot. bras. 27(2): 445-455. 2013.
Marcelo Leandro Bueno, Danilo Rafael Mesquita Neves, Anderson Fernandes Souza, Elio Oliveira Junior,
Geraldo Alves Damasceno Junior, Vanessa Pontara, Valdemir Antônio Laura and James Alexander Ratter
Araújo, G.M.; Guimarães, A.J.M. & Nakajima, J.N. 1997. Fitossociologia
de um remanescente de mata mesófila semidecídua urbana, Bosque
Jonh Kennedy, Araguari, MG, Brasil. Revista Brasileira de Botânica
20: 67-77.
Araújo, G.M.; Nascimento, A.R.T.; Lopes, S.F.; Rodrigues, R.F. & Ratter,
J.A. 2011. Structure and floristics of the arboreal component of a
dystrophic cerradão and comparison with other cerrados in Central
Brazil. Edinburgh Journal of Botany 68: 401-418.
Assis, A.C.C.; Coelho, R. M.; Pinheiro, E. da S. & Durigan, G. 2011. Water
availability determines physiognomic gradiente in an area of low-
fertility soils under Cerrado vegetation. Plant Ecology 212:1135-1147.
Batalha, M.A. & Mantovani, W. 2001. Floristic composition of the cerrado
in the Pé-de-Gigante Reserve (Santa Rita do Passa Quatro, southeast-
ern Brazil). Acta Botanica Brasilica 15: 289-304.
Brower, J.E. & Zar, J.H. 1984. Field & laboratory methods for general
ecology. Boston, W.C. Brown Publishers.
Cientec. 2007. Mata Nativa 2: sistema para análise fitossociológica e
elaboração de planos de manejo de florestas nativas. Viçosa, Cientec
– consultoria e desenvolvimento de sistemas.
Costa, A.A. & Araújo, G.M. 2001. Comparação da vegetação arbórea de
cerradão e de cerrado na reserva do Panga, Uberlândia, Minas Gerais.
Acta Botanica Brasilica 15: 63-72.
Embrapa – CNPGC. 1985. Boletim Agrometeorológico. Campo Grande,
Editora Embrapa.
Embrapa. 2006. Centro Nacional e Pesquisa em Solos. Sistema Brasileiro
de Classificação de Solos. Brasília: Embrapa-SPI; Rio de Janeiro,
Embrapa-Solos.
Embrapa. 1998. Centro Nacional de Pesquisa de Solos. Manual de aná lise
quí mica e fí sica do solo. Rio de Janeiro, Embrapa Solos.
Felfili, J.M. & Silva Júnior, M.C. 1992. Floristic composition, phytosociol-
ogy and comparison of cerrado and gallery forests at Fazenda Água
Limpa, Federal District, Brazil. Pp: 393-407. In: Furley, P.A.; Proctor,
J. & Ratter, J.A. (Eds.). Nature and Dynamics of Forest: savanna
boundaries London, Chapman & Hall.
Furley P.A. & Ratter, J.A. 1988. Soil resources and plant communities of
the central Brazililian cerrado and their development. Journal of
Biogeography 15: 97-108.
Gomes, B.Z.; Martins, F.R. & Tamashiro, J.Y. 2004. Estrutura do cerradão
e da transição entre cerradão e floresta paludícola num fragmento da
International Paper do Brasil Ltda., em Brotas, SP. Revista Brasileir a
de Botânica 27: 249-262.
Guimarães, A.J.M.; Corrêa, G.F. & Araújo, G.M. 2001. Características
da vegetação e do solo em duas comunidades vegetais contíguas no
Triângulo Mineiro. Boletim do Herbário Ezechias Paulo Heringer
7: 113-127.
Haridasan, M. 1992. Observations on soils, foliar nutrient concentra-
tion snd floristic composition of cerrado sensu stricto and cerradão
communities in central Brazil. Pp: 171-184. In: Furley, P. A.; Proctor,
J. & Ratter, J. A. (Eds.). Nature and Dynamics of Forest: savanna
boundaries London, Chapman & Hall.
Haridasan, M. 2000. Nutrição mineral de plantas nativas do cerrado.
Revista Brasileira de Fisiologia Vegetal 12: 54-64.
Hubbell, S.P. 2001. The Unified Neutral Theory of Biodiversity and
Biogeography. Princeton, Princeton University Press.
Köppen, W. 1948. Climatologia: con un estudio de los climas de la tierra.
México. Fondo de Cultura Econômica.
Lopes, A.S. & Guilherme, L.R.G. 1992. Interpretação de análise de solo,
conceitos e aplicações. In: ANDA (Associação Nacional para Difusão
de Adubos). São Paulo, Boletim técnico nº2.
Marimon-Junior, B.H. & Haridasan, M. 2005. Comparação da vegetação
arbórea e características edáficas de um cerradão e um cerrado sensu
stricto em áreas adjacentes sobre solo distrófico no leste de Mato
Grosso, Brasil. Acta Botanica Brasilica 19: 913-926.
Mccune, B. & M. J. Mefford. 2006. PC-ORD. Multivariate Analysis of Eco-
logical Data. Version 5.10 MjM Software, Oregon, Gleneden Beach.
Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegeta-
tion ecology. New York, John Wiley & Sons.
Neri, A.V.; Schaefer, C.E.G.R.; Silva, A.F.; Souza, A.L.; Ferreira Junior,
W.F. & Meira Neto, J.A.A. 2012. The influence of soils on the floristic
composition and community structure of an area of Brazilian cerrado
vegetation. Edinbrugh Journal of Botany 69: 1-27.
Neri, A.V.; Schaefer, C.E.G.R.; Souza, A.L.; Ferreira-Junior, W.G. & Meira-
Neto, J.A.A. 2013. Pedology and plant physiognomies in the cerrado,
Brazil. Anais da Academia Brasileira de Ciências 85: 87-102.
Oliveira-Filho, A.T. & Ratter, J.A. 1995. A study of the origin of Central
Brazilian forests by the analysis of plant species distribution patterns.
Edinburgh Journal of Botany 52: 141-194.
Paula, A.; Silva, A.F.; Marco Júnior, P.; Santos, F.A.M. & Souza, A.L. 2004.
Sucessão ecológica da vegetação arbórea em uma floresta estacional se-
midecidual, Viçosa, MG, Brasil. Acta Botanica Brasilica 18: 407-423.
Pinheiro, E.S; Durigan, G. 2012. Diferenç as Florí sticas e Estruturais entre
Fitofisionomias do Cerrado em Assis, SP, Brasil. Revista Á rvore,
Viç osa-MG. 36: 181-193.
Ratter, J.A. 1971. Some notes on two types of cerradão occurring in north
eastern Mato Grosso. Pp: 100-102. In: In: Ferri, M. G. (Coord.). III
Simpósio sobre o cerrado. Universidade de São Paulo.
Ratter, J.A. 1986. Notas sobre a vegetação da Fazenda Água Limpa (Bra-
sília, DF, Brazil). Brasília, Editora UnB (Textos Universitários n. 3).
Ratter, J.A.; Richard, P.W.; Argent, G.T. & Gifford, D.R. 1973. Obser-
vations on the vegetation of north eastern Mato Grosso. I. The
woody vegetation types of the Xavantina-Cachimbo Philosophical
Transaction for the Royal Society of London, Series Biological
Sciences 226: 44-492.
Ratter, J.A.; Askew, G.P.; Montgomery, R.F. & Gifford, D.R. 1977.
Observações adicionais sobre o cerradão de solos mesotróficos
no Brasil central. Pp: 303-316. In: Ferri, M.G. (Ed.). IV Simpósio
sobre o Cerrado: Bases para a Utilização Agropecuária. EDUSP,
São Paulo.
Ratter, J.A.; Bridgewater, S; Atkinson, R. & Ribeiro, J.F. 1996. Analysis
of the floristic composition of the Brazilian Cerrado vegetation II:
comparison of the woody vegetation of 98 areas. Edinburgh Journal
of Botany 53: 153-180.
Ratter, J.A.; Ribeiro, J.F. & Bridgewater, S. 1997. The brazilian cerrado veg-
etation and threats to its biodiversity. Annals of Botany 80: 223-230.
Ratter, J.A.; Bridgewater, S. & Ribeiro, J.F. 2003. Analysis of the floristic
composition of the Brazilian cerrado vegetation III: comparison of
the woody vegetation of 376 areas. Edinburgh Journal of Botany
60: 57-109.
Ratter, J.A.; Bridgewater, S. & Ribeiro, F. 2006. Biodiversity patterns of the
woody vegetation of the Brazilian Cerrado. Pp.31-65. In: Pennington,
R.T.; Lewis G.P. & Ratter, J.A. (Eds.). Neotropical savannas and sea-
sonally dry forests: plant diversity, biogeography and conservation.
Taylor & Francis, London.
Ratter, J.A.; Bridgewater, S., Ribeiro, J.F., Fonseca-Filho, J., Rodrigues da
Silva, M., Milliken, W., Pott, A., Oliveira-Filho, A.T., Durigan, G. &
Pennington, R.T. 2011. Analysis of the floristic composition of the
Brazilian Cerrado vegetation IV: revision of the comparison of
the woody vegetation of 367 areas and presentation of a revised
data-base of 367 areas. Disponível em http://www.cerrado.rbge.org.
uk. (Acesso em 20/03/2012).
Reis, A.; Zambonin, R.M. & Nakazono, E. M. 1999. Recuperação de áreas
florestais degradadas utilizando a sucessão e as interações planta-
-animal. Série Cadernos da Biosfera 14. São Paulo, Conselho Nacional
da Reserva da Biosfera da Mata Atlântica.
Ribeiro, J.F. & Walter, B.M.T. 2008. As principais fitofisionomias do Bio-
ma Cerrado. Pp: 151-212. In: Sano, S.M.; Almeida, S.P. & Ribeiro,
J.F. (Eds.). Cerrado: Ecologia e Flora. Brasília, Embrapa Cerrados.
Ribeiro, J.F. 1983. Comparação da concentração de nutrientes na
vegetação arbórea e nos solos de um Cerrado e um Cerradão no
Distrito Federal, Brasil. Dissertação de Mestrado, Universidade de
Brasília, Brasília.
Ribeiro, J.F.; Silva, J.C.S. & Batmanian, G.J. 1985. Fitossociologia de tipos
fisionômicos de cerrado em Planaltina, DF. Revista Brasileira de
Botânica 8: 131-142.
Salis, S.M.; Assis, M.A.; Crispim, S.M.A. & Casagrande, J.C. 2006. Distri-
buição e abundância de espécies arbóreas em cerradões no Pantanal,
Estado do Mato Grosso do Sul, Brasil. Revista Brasileira de Botânica
29: 339-352.
455
Acta bot. bras. 27(2): 445-455. 2013.
In uence of edaphic factors on the  oristic composition of an area of cerradão in the Brazilian central-west
Online version: www.scielo.br/abb and http://www.botanica.org.br/acta/ojs
Silva Jú nior, M.C. & Silva, A.F. 1988. Distribuiç ã o dos diâ metros dos troncos das
espé cies mais importantes do cerrado na estaç ã o florestal de experimentaç ã o
de Paraopeba (EFLEX)- MG. Acta Botanica Brasilica 2: 107-126.
Silva, D.W. & Soares, J.J. 1999. Estrutura etária das principais populações
arbóreas em uma área de cerradão na Fazenda Canchim, São Carlos,
SP. Revista de Ciências Exatas e Naturais 1: 57-65.
Silva, H.G.; Figueiredo, N. & Andrade, G.V.A. 2008. Estrutura de um
Cerradão no nordeste do Maranhão foi avaliada visando contribuir
para a caracterização da heterogeneidade da vegetação no Estado.
Revista Á rvore, Viç osa-MG. 32: 921-930.
Souza, P. B.; Alves, J. A.; Silva, A. F. & Souza, A. L. 2008. Composição
Florística da Vegetação Arbórea de um Remanescente de Cerradão,
Paraopeba, MG. Revista Á rvore, Viç osa-MG. 32: 781-790.
Spiegel, M.P. 1976. Estatística. São Paulo, McGraw-Hill do Brasil.
ter Braak, C.J.F. & Prentice, I. C. 1988. A theory of Gradient Analysis.
Advances in Ecological Research 18: 271-317.
ter Braak, C.J.F. 1995. Ordination. Pp: 91-173. In: Jongman, R.H.G.; ter
Braak, C.J.F.; & van Tongeren, O.F.R. (Eds.). Data analysis in commu-
nity and landscape ecology. Cambrigde, Cambrigde University Press.
Toppa, R.H. 2004. Estrutura e diversidade florística das diferentes
fisionomias de cerrado e suas correlações com o solo na Estação
Ecológica de Jataí, Luiz Antônio, SP. Tese (Programa de Pós-
-Graduação em Ecologia e Recursos Naturais). Universidade Federal
de São Carlos, São Carlos.
Zar, J.H. 1999. Biostatistical analysis. New Jersey, Prentice Hall.
... O padrão de distribuição diamétrica da comunidade foi verificado por meio da distribuição dos diâmetros, empregando-se intervalo ideal de classe, conforme metodologia adotada por Bueno et al. (2013b). A distribuição diamétrica ideal para a comunidade foi obtida com o ajuste do modelo exponencial de Meyer (Souza & Soares, 2013). ...
... Florística A maior expressividade de Fabaceae é comum em comunidades vegetais, já que o clado é o terceiro maior em número de espécies em todo mundo (LPWG, 2013), ocupando a primeira posição no Brasil (Souza et al., 2018). A predominância de espécies deste grupo no fragmento estudado segue a tendência cosmopolita da família, que é reportada entre as de maior riqueza no estrato arbóreo-arbustivo de diversas fitofisionomias do Cerrado (Carvalho et al., 2008;Matos & Felfili, 2010;Bueno et al., 2013a;Giácomo et al., 2013), incluindo as formações de Cerradão (Bueno et al., 2013a;2013b;Giácomo et al., 2015). ...
... No Cerradão, o fator edáfico tem se mostrado preponderante na determinação da similaridade florística, ocorrendo mudanças no perfil florístico, conforme a variação da acidez do solo (Araújo et al., 2011;Bueno et al., 2013a;2013b;Rodrigues & Araújo, 2013). Assim, formações vegetais sobre uma área com as mesmas características edáficas tendem a compartilhar boa parte das espécies, enquanto formações encontradas em diferentes tipos de solos apresentam floras pouco similares (Araújo et al., 2011;Solórzano et al., 2012;Rodrigues & Araújo, 2013). ...
Article
Full-text available
A fragmentação de habitats causa diversos impactos ecossistêmicos. A resposta da vegetação às mudanças ambientais a tornam um bom indicador do estado de conservação da biodiversidade. O objetivo deste trabalho foi avaliar a conservação de um fragmento de Cerradão no município de Cáceres, MT, pela análise da estrutura horizontal e da diversidade de espécies do estrato arbóreo-arbustivo. O levantamento foi baseado em dois conglomerados aleatorizados, totalizando 8 parcelas em 0,8 ha. O critério de inclusão foi o diâmetro a 1,30 m do solo ≥ 10 cm. Foram amostrados 411 indivíduos, 44 espécies e 21 famílias botânicas. As famílias Fabaceae e Bignoniaceae apresentaram as maiores riquezas. Os valores dos índices de diversidade de Shannon-Weaver e de equabilidade de Pielou foram considerados elevados (3,18 e 0,84, respectivamente). A similaridade florística entre os conglomerados foi alta (índice de Sørensen = 74,63%), indicando homogeneidade no fragmento. A distribuição diamétrica apresentou o padrão J-invertido. A comunidade apresentou tendência ao agregamento, com índice de agregação de Payandeh médio (1,40). A riqueza e estrutura da vegetação indicaram bom estado de conservação do estrato arbóreo-arbustivo, pois não foram observadas alterações florístico-estruturais no fragmento oriundas das pressões antrópicas do entorno da área.
... Sua tendência cosmopolita proporciona a maior riqueza do grupo no estrato arbóreo-arbustivo de diversas fitofisionomias do Cerrado, como no Cerrado stricto sensu (Silva et al. 2016, Gama et al. 2018, Matas de Galeria (Matos & Felfili 2010, Loschi et al. 2013), e em campo sujo (Giácomo et al. 2013). Em ambiente de Cerradão, diversos estudos revelam a ocorrência de uma ampla diversidade de táxons desta família (Gomes et al. 2004, Bueno et al. 2013, Otoni et al. 2013, Giácomo et al. 2015. ...
... Grande parte dos gêneros com duas ou mais espécies no fragmento estudado também foram amostrados entre os mais importantes em outros estudos no Cerrado: Bauhinia (Siqueira et al. 2006), Aspidosperma (Stefanello et al. 2009, Cândido et al. 2018, Astronium Jacq. (Souza et al. 2010, Maria et al. 2018, Erythroxylum (Siqueira et al. 2006, Bueno et al. 2013, Casella & Silva Júnior 2013, Otoni et al. 2013, Handroanthus (Matos & Felfili 2010, Casella & Silva Júnior 2013, Otoni et al. 2013, Machaerium (Loschi et al. 2013, Cândido et al. 2018), e Pouteria (Stefanello et al. 2009). Por outro lado, Qualea Aubl., que comumente é registrado entre os gêneros mais ricos no Cerrado (Siqueira et al. 2006, Casella & Silva Júnior 2013, Cândido et al. 2018, Gama et al. 2018, foi representado apenas por Qualea grandiflora. ...
... Vegetation structure and plant diversity are influenced by soil traits across landscape formations [86][87][88]. This vegetation relationship with elevation is important for execution of proactive plans for the maintenance of biodiversity as water availability in water held in soil determines physiognomic gradient [1,89,90]. ...
Article
Full-text available
This present work deals with the research of some difficulties that we encounter in the evaluation processing of aesthetic pollution. Experimental economics techniques, such as answering a questionnaire (including quantitative indicators in the form of Willingness to Pay/Accept), have been incorporated into the FTS/A (Fault Tree Synthesis/Analysis) methodology. Such a methodological application is presented in the present document with reference to the archaeological site of Eleusis, where the visual & aesthetic pollution is apparent due to the heavy anthropogenic impact that takes place in the major area. It has been proved that EAP (Extended Aesthetic Pleasure), used as an indicator of "visual exterior", can contribute to the conceptual determination of the optimal value in the intensification effort and the resources expended (I opt) to achieve a particular aesthetic result. According to this analysis, I opt decreases in the short run (due to lack of dissemination of information, mainly to the public) and increases in the long run, due to the accumulation/transfer/dissemination of knowledge. The methodology presented herein has been successfully applied in the case of the archaeological site of Eleusis, where the corresponding extensive aesthetic enjoyment of EAP is reduced by the ongoing intensified industrial activities.
... Vegetation structure and plant diversity are influenced by soil traits across landscape formations [86][87][88]. This vegetation relationship with elevation is important for execution of proactive plans for the maintenance of biodiversity as water availability in water held in soil determines physiognomic gradient [1,89,90]. ...
Article
Full-text available
This present work deals with the research of some difficulties that we encounter in the evaluation processing of aesthetic pollution. Experimental economics techniques, such as answering a questionnaire (including quantitative indicators in the form of Willingness to Pay/Accept), have been incorporated into the FTS/A (Fault Tree Synthesis/Analysis) methodology. Such a methodological application is presented in the present document with reference to the archaeological site of Eleusis, where the visual & aesthetic pollution is apparent due to the heavy anthropogenic impact that takes place in the major area. It has been proved that EAP (Extended Aesthetic Pleasure), used as an indicator of "visual exterior", can contribute to the conceptual determination of the optimal value in the intensification effort and the resources expended (I opt) to achieve a particular aesthetic result. According to this analysis, I opt decreases in the short run (due to lack of dissemination of information, mainly to the public) and increases in the long run, due to the accumulation/transfer/dissemination of knowledge. The methodology presented herein has been successfully applied in the case of the archaeological site of Eleusis, where the corresponding extensive aesthetic enjoyment of EAP is reduced by the ongoing intensified industrial activities.
... It is interesting to note, however, that even within the same vegetation type, there is evidence for gradients in soil nutrient status influencing species composition. Mews et al. (2016) observed soil nutrients as significant factors associated with floristic composition among savannas and Bueno et al. (2013) found an increase in the abundance of Al-tolerant species such as Qualea parviflora and Q. grandiflora within areas of dystrophic cerradão with increments in soil Al. ...
Article
Full-text available
Background The Cerrado of central Brazil—the world’s largest Neotropical savanna – is comprised of a mosaic of highly heterogeneous vegetation growing on an extremely diverse geologic and geomorphologic background. Geomorphic processes under stable tectonic and climatic conditions facilitated the development of diverse edaphic properties, which interact with disturbance events to form unique vegetation types. Scope In this review, we detail how the geophysical environment affects soil formation and evaluate the mechanisms through which edaphic conditions control vegetation structure, floristic diversity and functional diversity. Conclusion The influence of geomorphic processes on edaphic properties has a marked impact on the ecology and evolution of plant communities. Species exhibit morphological and physiological adaptations that optimise their successful establishment in particular soil conditions. Furthermore, fire disturbance alters these soil-vegetation associations further regulating the structural nature of these communities. Therefore, we propose an integrative view where edaphic, chemical and physical properties act as modulators of vegetation stands, and these conditions interact with the fire regime. The knowledge of plant edaphic niches, their functional traits related to resource acquisition and use, as well as the interaction of edaphic properties and disturbance regimes is paramount to research planning, conservation, and successful restoration of the full diversity of Cerrado vegetation types.
... First, the greater availability of nutrients and their ease of uptake (higher CTC) in areas with high intensity of extraction of giant earthworms may have favored a greater diversification of species. In the Cerrado stricto sensu, stress factors such as the low availability of soil nutrients act filtering in lower-sized tree species, with slow growth and reduced specific leaf area (Westoby et al. 2002;Hoffmann et al. 2012;Bueno et al. 2013b). In this way, improvements in soil nutritional quality in these areas, even if transient, may have allowed the establishment of other species typical of less dystrophic formations of the Cerrado, such as Cerrado woodland (Cerradão) and seasonal forests (Bueno et al. 2013a;Neri et al. 2013;Meira-Neto et al. 2017). ...
... Vegetation structure and plant diversity are influenced by soil traits across landscape formations [86][87][88]. This vegetation relationship with elevation is important for execution of proactive plans for the maintenance of biodiversity as water availability in water held in soil determines physiognomic gradient [1,89,90]. ...
... Esto implica que, aunque hubo una consistencia en la riqueza de especies en la formación sabánica, la composición de especies varió significativamente entre cada transecto. A partir de la comparación de composición de especies hecha en este análisis, se corrobora la disimilitud florística típica entre las formaciones forestales y sabánicas del Cerrado en el área de estudio (3,36) , derivada de la combinación de la estacionalidad de las lluvias, las condiciones del suelo, el régimen del fuego y el factor de tolerancia a la sombra de las plantas (3,(41)(42)(43)(44) , lo que sugiere un buen estado de conservación del área protegida. No obstante, debido al tipo de evaluación que se realizó, y dado que los indicadores analizados no se contrastaron con factores como la frecuencia de la perturbación ocasionada por el fuego y la presencia de plantas exóticas con potencial de invasión observadas, se recomienda monitorear de forma continua el área, y establecer investigaciones que exploren estos elementos, de manera a avanzar hacia una mejor comprensión de la dinámica vegetacional local y una mejor valoración de su biodiversidad. ...
Article
Full-text available
El objetivo de este estudio fue realizar una evaluación ecológica rápida de la flora nativa de la formación forestal y sabánica del Cerrado Aguará Ñu, Reserva Natural del Bosque Mbaracayú de Paraguay, determinando la riqueza de especies y las diferencias de composición entre las mismas, de manera a complementar los levantamientos florísticos ya existentes. Se registró in situ la flora vascular nativa del Cerrado mediante diez transectos de 50 m x 2 m (1000 m2) en cada formación vegetal (forestal y sabánica). Se obtuvo un total de 171 especies en 61 familias. La formación sabánica presentó la mayor riqueza de especies en relación a la formación forestal, con 106 especies en 40 familias y 81 especies en 40 familias, respectivamente. Las especies más frecuentes en la formación sabánica fueron Axonopus cfr. siccus (Nees) Kuhlm., Butia paraguayensis (Barb. Rodr.) L.H. Bailey, Duguetia furfuracea (A. St.-Hil.) Benth. & Hook. f., Campomanesia adamantium (Cambess.) O. Berg, y Pradosia brevipes (Pierre) T.D. Penn. En cuanto a la formación forestal, las especies más frecuentes fueron Copaifera langsdorffii Desf. var. langsdorfii, Didymopanax morototoni (Aubl.) Decne. & Planch., Protium heptaphyllum (Aubl.) Marchand, y Vochysia tucanorum C. Mart. Ambas formaciones vegetales sólo compartieron 14 especies de plantas. La familia Fabaceae registró el mayor número de especies. Por otro lado, se evidenció la disimilitud florística típica entre las formaciones forestales y sabánicas del Cerrado en el área de estudio, lo que sugiere un buen estado de conservación del área protegida. No obstante, dadas las características y limitaciones de la evaluación ecológica rápida, se recomienda seguir monitoreando el área de manera a avanzar hacia una mejor comprensión de la dinámica vegetacional local y una mejor valoración de su biodiversidad.
... We conducted the study at a Private Natural Heritage Reserve (RPPN-"Reserva Particular do Patrimônio Natural") of the Universidade Federal de Mato Grosso do Sul (UFMS; Campo Grande, Mato Grosso do Sul, Brazil; 20.4990S, 54.6134W; WGS84). The RPPN has an area of 50.11 ha (Imasul 2014), composed of a mosaic of savannah sensu stricto gallery forest and dense savannah forest (Bueno et al. 2013). The RPPN is enclosed by a continuous wire fence, separating it from the surrounding urban area (Fig. 1). ...
Article
Studying how different variables influence the size and shape of animals’ home ranges helps our understanding of the ecology of individuals and populations. This study aims to assess the effects of sex and body mass on home range size and the sexual differences in the use of terrestrial habitats of a population of aquatic turtles Phrynops geoffroanus from an urban area in Mato Grosso do Sul, Brazil. Turtles were captured along a river by active search, occasional encounter and hoop traps. Using individual VHF radio transmitters, 13 individuals (7 females and 6 males) were radio-tracked by homing in on the signal strength of the transmitter. Home ranges were estimated by 95% and 50% core one-dimensional fixed kernel and linear distance method. Home ranges were similar for both sexes (t = -0.50, DF = 12, p = 0.62) and independent of body mass (t = -0.53, DF = 12, p = 0.60). However, females seemed to use terrestrial habitats more than males (females = six recorded locations out of 767 points; males = none), probably to nest. To gain insight on how males and females use their space, it would be useful to focus future studies on the influence of sex in microhabitat selection of Phrynops geoffroanus. Finally, as sex did not influence home range, studying the contribution of other variables – both intrinsic, as age or personality, and extrinsic, as habitat composition or distribution of trophic resources – shaping the home ranges of the species is proposed.
... Soil granulometry is also a key factor in the emergence of species richness and composition patterns in the plant community (Bueno et al. 2013, Decker & Boerner 2003. Soil texture directly influences porosity and consequently the availability of water, the status of P, N, Al and organic matter, as well as the activity of edaphic microorganisms (Galantini & Suñer 2008, Galantini et al. 2004). ...
Article
Full-text available
Unlike well-known global patterns of plant species richness along altitudinal gradients, in the mountainous areas of the Brazilian Caatinga, species richness and diversity reach their maxima near mountain tops. The causes of this unusual pattern are not well understood, and in particular the role of edaphic factors on plant community assembly along these gradients has not been investigated. Our goal was to assess the role of edaphic factors (fertility and soil texture) on plant community composition and structure on two mountains of the Brazilian semi-arid region. In 71 plots (Bodocongó site, twenty-one 200-m 2 plots, 401-680 m asl; Arara site, fifty 100-m 2 plots, 487-660 m asl) we recorded 3114 individuals representing 61 plant species; in addition, at each plot we collected composite soil samples from 0-20 cm depth. Significant altitude-related changes were observed both for community structure and composition, and edaphic variables. A canonical correspondence analysis allowed the distinction of two groups of plots according to species abundances, indicating a preferential habitat distribution of species depending both on altitude and soil variables. Although soil fertility was lowest at the highest altitudes, these areas had high richness and diversity. Conversely, the more fertile foothills were characterized by the dominance of generalist pioneer species. Despite the relatively short alti-tudinal range that characterizes the studied mountains, this study elucidates the role of edaphic factors on the floristic composition and species richness patterns on the mountains of the Brazilian semi-arid region.
Chapter
Full-text available
Este capítulo analisa e descreve as principais fitofisionomias ocorrentes no bioma (ou domínio) do Cerrado. São descritos 11 tipos de vegetação principais, enquadrados em formações florestais (4 tipos), savânicas (4 tipos) e campestres (3 tipos). Considerando também os subtipos, neste sistema são reconhecidas 25 fitofisionomias.
Article
Full-text available
A revised and updated classification for the families of flowering plants is provided. Many recent studies have yielded increasingly detailed evidence for the positions of formerly unplaced families, resulting in a number of newly adopted orders, including Amborellales, Berberidopsidales, Bruniales, Buxales, Chloranthales, Escalloniales, Huerteales, Nymphaeales, Paracryphiales, Petrosaviales, Picramniales, Trochodendrales, Vitales and Zygophyllales. A number of previously unplaced genera and families are included here in orders, greatly reducing the number of unplaced taxa; these include Hydatellaceae (Nymphaeales), Haptanthaceae (Buxales), Peridiscaceae (Saxifragales), Huaceae (Oxalidales), Centroplacaceae and Rafflesiaceae (both Malpighiales), Aphloiaceae, Geissolomataceae and Strasburgeriaceae (all Crossosomatales), Picramniaceae (Picramniales), Dipentodontaceae and Gerrardinaceae (both Huerteales), Cytinaceae (Malvales), Balanophoraceae (Santalales), Mitrastemonaceae (Ericales) and Boraginaceae (now at least known to be a member of lamiid clade). Newly segregated families for genera previously understood to be in other APG-recognized families include Petermanniaceae (Liliales), Calophyllaceae (Malpighiales), Capparaceae and Cleomaceae (both Brassicales), Schoepfiaceae (Santalales), Anacampserotaceae, Limeaceae, Lophiocarpaceae, Montiaceae and Talinaceae (all Caryophyllales) and Linderniaceae and Thomandersiaceae (both Lamiales). Use of bracketed families is abandoned because of its unpopularity, and in most cases the broader circumscriptions are retained; these include Amaryllidaceae, Asparagaceace and Xanthorrheaceae (all Asparagales), Passifloraceae (Malpighiales), Primulaceae (Ericales) and several other smaller families. Separate papers in this same volume deal with a new linear order for APG, subfamilial names that can be used for more accurate communication in Amaryllidaceae s.l., Asparagaceace s.l. and Xanthorrheaceae s.l. (all Asparagales) and a formal supraordinal classification for the flowering plants.
Article
Full-text available
Este trabalho foi realizado na Floresta Nacional de Paraopeba - FLONA, Município de Paraopeba, Estado de Minas Gerais (19º16'19"S e 44º24' 06"W), com os objetivos de conhecer a composição florística do estrato arbóreo de uma formação florestal (cerradão) e avaliar sua semelhança com outros levantamentos florísticos realizados em cerradões de Minas Gerais e São Paulo. Foram encontradas 78 espécies, pertencentes a 66 gêneros, representados em 31 famílias. As famílias mais representativas em números de espécies foram Fabaceae-Leguminosae (22), Myrtaceae (10) e Vochysiaceae (3). Floristicamente, os cerradões são mais próximos às formações florestais que aos Cerrados e poderiam, formalmente, ser classificados como um subtipo dessas formações florestais, visto que 83% das espécies são acessórias e apenas 17%, peculiares.
Article
Cerrado is the natural vegetation of the poorer soils in central Brazil and covers approximately 23% of the land area of the country. It has a marked seasonal climate and posseses a large characteristic flora of fire-resistant plants including about 800 species of trees and large shrubs. The soils are acidic with low CEC and high levels of Al saturation. They are well drained and the majority are Oxisols (ferrallitic soils). The vegetation ranges from treeless grasslands to closed xeromorphic forests. Attempts have been made to correlate increased density of the woody vegetation with gradients in soil nutrients but the relationship is complex. Two floristically different types of cerrad $\tilde {a}$ o (closed savanna woodland) are associated with mesotrophic and dystrophic soils respectively. Fire is also an important factor in influencing the density of woody vegetation. A distinct commununity of cerrado trees and shrubs occurs in areas where the water table is periodically high. Aluminium is an important factor in cerrado soils and frequently occurs at levels toxic to cultivated plants. On the other hand, the native species are adapted to high Al levels and a number are Al accumulators. Much of the cerrado area is now cultivated. The strategy has been to neutralize the effects of soil acidity and build up soil fertility, mainly by adding P and Ca. Extensive areas have also been turned over to cattle pasture and pine or eucalypt plantations. A plea is made for greater conservation of cerrado areas since, at present, only a small fraction of this vegetation lies within protected reserves.