ArticlePDF Available

The relation between the Y-chromosomal variation and the clan structure: the gene pool of the steppe aristocracy and the steppe clergy of the Kazakhs

Authors:

Abstract and Figures

Aim: to study the possible connection between of Y-chromosomal variability and the genealogical structure of Kazakhs to analyze the relationship between biological and social kinship. In the study, besides the descendants of the steppe aristocracy and steppe clergy (sample size N = 94), other clans of Kazakhs and Mongols (N = 359) were analyzed. All samples were analyzed by 17 Y-chromosomal STR markers, addressing to haplogroups was confirmed by direct analysis of haplogroup-defining SNPs. In the clan of Tore, eight haplogroups were identified, among which there were three major haplogroups: C3 * – M217 (xM48) (35%), R1a * – M198 (xM458) (22%) and R2a – M124 (17%). In the clan of Kozha, there were 14 Y-chromosome haplogroups, only three of which had frequencies higher than 10 percent: R1a1a-M198 (37%), J2-M172 (12%), R2a-M124 (11%). The major haplogroups of Kozha (R1a, J2, R2a) are typical for gene pool of South-West Asia, Iran and Tajikistan, which marks possible homelands of the missionaries which brought Islam into Kazakhstan. In the comparative analysis of the Tore and Kozha, it was revealed that there are similarities in the two major haplogroups – R1a1a-M198 and R2a-M124, which can indicate the genealogical links between the socially privileged groups, which is consistent with historical sources. The clan of Tore (Genghis Khan descendants in Kazakhstan) is similar to the clan of Bordzhigin (Genghis Khan descendants in Mongolia) by frequency of the major haplogroup C3* (35% in Tore and 39% in Bordzhigin); this haplogroup is presumably attributed to Genghis Khan. The phylogenetic analysis of the haplogroup C3* allowed us to reveal three new clusters of haplotypes. One of them includes members of Konirat clan only; the age of the cluster is 1100±400 years. The corrected age of the star-cluster (including the so-called “Genghis Khan haplotype”) was estimated to be 1000 +/- years. We revealed the partial positive relation between social and biological kinship in Kazakh clans, which can serve as source of information, additional to the written records.
No caption available
… 
Content may be subject to copyright.
Вестник Московского университета. Серия XXIII АНТРОПОЛОГИЯ № 1/2014: 96–101
СВЯЗЬ ИЗМЕНЧИВОСТИ YХРОМОСОМЫ И РОДОВОЙ
СТРУКТУРЫ: ГЕНОФОНД СТЕПНОЙ АРИСТОКРАТИИ
И ДУХОВЕНСТВА КАЗАХОВ
М.К. Жабагин1,2, Х.Д. Дибирова2,3, С.А. Фролова3, Ж.М. Сабитов4, Ю.М. Юсупов 2,5,
О.М. Утевская 2,6, П.В. Тарлыков3,7, И.М. Тажигулова3,8, О.А. Балаганская3, П. Нимадава9,
И.А. Захаров2, О.П. Балановский2,3
1 Центр наук о жизни, Назарбаев университет, Астана, Казахстан
2 Институт общей генетики им. Н.И. Вавилова РАН, Москва, Россия
3 Медико#генетический научный центр РАМН, Москва, Россия
4 Евразийский национальный университет им. Л.И. Гумилева, Астана, Казахстан
5 Институт гуманитарных исследований Республики Башкорстан (Уфа, Россия)
6 Харьковский национальный университет им. В.Н. Каразина, Харьков, Украина
7 Национальный центр биотехнологии Республики Казахстан, Астана, Казахстан
8 Центр судебной экспертизы Республики Казахстан, Астана, Казахстан
9 Монгольская академия медицинских наук,Улан#Батор, Монголия
Öåëü ðàáîòû: äàòü õàðàêòåðèñòèêó ãåíîôîíäà êàçàõñêèõ ðîäîâ è èçó÷èòü ñâÿçü èçìåí÷èâîñ-
òè Y-õðîìîñîìû (ìàðêèðóþùåé áèîëîãè÷åñêîå ðîäñòâî) ñ ðîäîâîé ñòðóêòóðîé (ñîöèàëüíîå ðîä-
ñòâî).
Ìàòåðèàëû è ìåòîäû. Êðîìå ïîòîìêîâ ñòåïíîãî äóõîâåíñòâà (ðîä Êîæà, îáúåì âûáîðêè N=71)
è ñòåïíîé àðèñòîêðàòèè (ðîä Òîðå, N=23), áûëè òàê æå èçó÷åíû äðóãèå ðîäà êàçàõîâ è ìîíãîëîâ,
ñóììàðíàÿ âûáîðêà ñîñòàâèëà N=359. Âñå îáðàçöû ïðîàíàëèçèðîâàíû ïî ïàíåëè èç 17 ìèêðîñàòåë-
ëèòíûõ ìàðêåðîâ Y-õðîìîñîìû, ïðèíàäëåæíîñòü îáðàçöîâ ê ãàïëîãðóïïàì ïîäòâåðæäåíà ìàðêåðà-
ìè îäíîíóêëåîòèäíîãî ïîëèìîðôèçìà.
Ðåçóëüòàòû è îáñóæäåíèå. Ó ðîäà Òîðå âûÿâëåíî 8 ãàïëîãðóïï, èç êîòîðûõ ìàæîðíûìè ÿâëÿ-
þòñÿ òðè – Ñ3* – M217(xM48) (35%), R1a* – M198(xM458) (22%) è R2a – M124 (17%). Ó ðîäà Êîæà
áûëî âûÿâëåíî 14 ãàïëîãðóïï Y-õðîìîñîìû, ëèøü òðè èç êîòîðûõ èìåþò ÷àñòîòó áîëåå 10 ïðî-
öåíòîâ: R1a1a-Ì198 (37%), J2-Ì172 (12%), R2a-M124 (11%). Ïðèíàäëåæíîñòü ìàæîðíûõ ãàïëîã-
ðóïï Êîæà (R1a, J2, R2a) ê ãåíîôîíäàì Ïåðåäíåé Àçèè, Èðàíà è Òàäæèêèñòàíà ïîçâîëÿåò ñ÷èòàòü
ýòè ðåãèîíû âîçìîæíûì àðåàëîì ïðîèñõîæäåíèÿ ìèññèîíåðîâ, ïðèíåñøèõ ìóñóëüìàíñòâî â Êàçàõ-
ñòàí. Ñðàâíåíèå ðîäîâ Òîðå è Êîæà âûÿâèëî ñõîäñòâî ïî äâóì ìàæîðíûì ãàïëîãðóïïàì – R1a1a-
M198 è R2a-M124, êîòîðîå ìîæåò áûòü âûçâàíî ãåíåàëîãè÷åñêèìè ñâÿçÿìè ìåæäó ñîöèàëüíî ïðè-
âèëåãèðîâàííûìè ðîäàìè, ÷òî ñîãëàñóåòñÿ ñ èñòîðè÷åñêèìè èñòî÷íèêàìè. Ãåíîôîíä ðîäà Òîðå
(êàçàõñêèå ÷èíãèçèäû) ïî ÷àñòîòå ìàæîðíîé ãàïëîãðóïïû Ñ3* (35%) áëèçîê ê ìîíãîëüñêèì ÷èíãèçè-
äàì (ðîä Áîðäæèãèí, ÷àñòîòà Ñ3* 39%). Íîñèòåëåì ýòîé ãàïëîãðóïïû, êàê ñ÷èòàåòñÿ, áûë èõ ðî-
äîíà÷àëüíèê ×èíãèñõàí. Àíàëèç ôèëîãåíåòè÷åñêèõ ñåòåé ãàïëîãðóïïû C3* âûÿâèë òðè íîâûõ êëàñ-
òåðà ãàïëîòèïîâ. Îäèí èç ñóáêëàñòåðîâ ñîñòîèò òîëüêî èç ðîäà Êîíûðàò ñ äàòèðîâêîé 1100±400
ëåò. Óòî÷íåííàÿ äàòèðîâêà ñòàð-êëàñòåðà (ê êîòîðîìó îòíîñèòñÿ ïðåäïîëàãàåìûé «ãàïëîòèï
×èíãèñõàíà») ñîñòàâëÿåò 1000 +/- 200 ëåò.
Âûâîäû. Âûÿâëåíà ÷àñòè÷íàÿ ïîëîæèòåëüíàÿ ñâÿçü ìåæäó ñîöèàëüíûì è áèîëîãè÷åñêèì ðîä-
ñòâîì ó êàçàõñêèõ ðîäîâ, äîïîëíÿþùàÿ èñòîðè÷åñêèå ñâåäåíèÿ.
Êëþ÷åâûå ñëîâà: Y-õðîìîñîìà, ãåíîãåîãðàôèÿ, ðîäîâàÿ ñòðóêòóðà êàçàõîâ, ïîïóëÿöèîííàÿ ãå-
íåòèêà, ÷èíãèçèäû
97
Вестник Московского университета. Серия XXIII АНТРОПОЛОГИЯ № 1/2014: 96–101
Связь изменчивости Y$хромосомы и родовой структуры: генофонд степной аристократии и духовенства казахов
Введение
 ñîâðåìåííûõ èññëåäîâàíèÿõ ãåíåòè÷åñêî-
ãî ðàçíîîáðàçèÿ íàðîäîâ ìèðà îñîáåííî àêòèâíî
èçó÷àþòñÿ ìàðêåðû Y-õðîìîñîìû, íàñëåäóþùèåñÿ
ïî ìóæñêîé ëèíèè. Ïîêàçàíà èõ èíôîðìàòèâíîñòü
â ðåêîíñòðóêöèè ãåíåòè÷åñêîé èñòîðèè ïîïóëÿöèé –
îò íàñåëåíèÿ öåëûõ êîíòèíåíòîâ äî îòäåëüíûõ
ðîäîâ. Òàê, â ìàñøòàáíîì èññëåäîâàíèè èçìåí-
÷èâîñòè Y-õðîìîñîìû â 50 ïîïóëÿöèÿõ Åâðàçèè
[Zerjal et al., 2003] áûëà âûÿâëåíà ëèíèÿ Y-õðîìî-
ñîìû ñ âîçðàñòîì îêîëî 1000 ëåò, øèðîêîå ðàñ-
ïðîñòðàíåíèå êîòîðîé îáúÿñíÿëîñü ñîöèàëüíûì
îòáîðîì, ñâÿçàííûì ñ ïðåäïî÷òèòåëüíûì âîñïðî-
èçâîäñòâîì ïîòîìêîâ ×èíãèñõàíà.
Íåñìîòðÿ íà ñòðåìèòåëüíî ðàñòóùèé îáúåì
èíôîðìàöèè î ãåíîôîíäàõ ìèðà, Êàçàõñòàí îñòà-
åòñÿ áåëûì ïÿòíîì íà êàðòå èçó÷åííîñòè Y-õðî-
ìîñîìû: èññëåäîâàíû ëèøü îòäåëüíûå ðîäà è
ðåãèîíû Êàçàõñòàíà, ïðè÷åì ñóììàðíàÿ âûáîðêà
âêëþ÷àåò ëèøü 186 îáðàçöîâ [Karafet et al., 2001;
Wells et al., 2001; Zerjal et al., 2003; Biro et al., 2009;
Abilev et al., 2012]. Ïîýòîìó èçó÷åíèå ãåíîôîíäà
êàçàõîâ â òåñíîé ñâÿçè ñ èõ ðîäîâîé ñòðóêòóðîé
îñòàåòñÿ ïðèîðèòåòíîé çàäà÷åé. Íàøå èññëåäî-
âàíèå ñòàâèò öåëüþ äàòü õàðàêòåðèñòèêó ãåíîôîí-
äà êàçàõñêèõ ðîäîâ, âåðèôèöèðîâàòü èñòîðè÷å-
ñêèå ãèïîòåçû îá èõ ïðîèñõîæäåíèè è âûÿâèòü ñòå-
ïåíü ñâÿçè ìåæäó èõ áèîëîãè÷åñêèì è ñîöèàëüíûì
ðîäñòâîì.
Материалы и методы
Îáúåêòîì èññëåäîâàíèÿ âûáðàíû äâà îñîáûõ
êàçàõñêèõ ðîäà – Êîæà è Òîðå. Ðîä Êîæà îòíîñèò-
ñÿ ê ñòåïíîìó äóõîâåíñòâó è ïî ãåíåàëîãè÷åñêèì
ëåãåíäàì âåäåò ñâîå ïðîèñõîæäåíèå îò ìèññèî-
íåðîâ – ïîòîìêîâ ïðîðîêà Ìóõàììåäà. Ðîä Òîðå
âåäåò ñâîå ïðîèñõîæäåíèå îò ×èíãèñõàíà, ÿâëÿ-
ÿñü ñòåïíîé àðèñòîêðàòèåé, èç êîòîðîé âûáèðà-
ëèñü êàçàõñêèå õàíû. Ïî ïðè÷èíå èõ âûñîêîãî ñî-
öèàëüíîãî ñòàòóñà â èñòîðè÷åñêîì ïðîøëîì, ýòè
äâà ðîäà íå âõîäÿò â òðè æóçà – ýòíîòåððèòîðè-
àëüíûå îáúåäèíåíèÿ êàçàõîâ.
Êðîìå ïîòîìêîâ ñòåïíîé àðèñòîêðàòèè è ñòåï-
íîãî äóõîâåíñòâà (îáúåì âûáîðêè N=94), èçó÷åíû
äðóãèå ðîäà êàçàõîâ è ìîíãîëîâ (òàáë. 1), ñóììàð-
íàÿ âûáîðêà ñîñòàâèëà N=359. Îáðàçöû ñîáðàíû
ñîàâòîðàìè ñòàòüè – ðîññèéñêèìè, êàçàõñêèìè è
ìîíãîëüñêèìè ãåíåòèêàìè – â ðàìêàõ ìåæäóíàðîä-
íîãî ïðîåêòà «Genographic». Äëÿ êàæäîãî îáñëå-
äîâàííîãî ñîñòàâëåíà ðîäîñëîâíàÿ êàê ìèíèìóì
íà òðè ïîêîëåíèÿ, ïîäòâåðæäàþùàÿ åãî îòíåñå-
íèå ê äàííîìó ðîäó.
Îáðàçöû ãåíîòèïèðîâàíû ïî 17 STR-ìàðêå-
ðàìè è 27 SNP-ìàðêåðàì ñ èñïîëüçîâàíèåì íà-
áîðà Y-filer è TaqMan çîíäîâ (Applied Biosystems).
 ðåçóëüòàòå îïðåäåëåíû ÷àñòîòû âñòðå÷àåìîñ-
òè ðàçíûõ ãàïëîãðóïï (âàðèàíòîâ) Y-õðîìîñîìû ó
èçó÷åííûõ ðîäîâ; â ïðåäåëàõ êàæäîé ãàïëîãðóï-
ïû âûÿâëåí ñïåêòð êîíêðåòíûõ ìèêðîñàòåëëèòíûõ
(STR) ãàïëîòèïîâ.
Результаты и обсуждение
 ãåíîôîíäå ñòåïíîãî äóõîâåíñòâà (Êîæà)
âûÿâëåíî çíà÷èòåëüíîå ðàçíîîáðàçèå ãàïëîãðóïï
Y-õðîìîñîìû (òàáë. 1). Îáíàðóæåíî14 ãàïëîãðóïï,
èç íèõ òðè ìàæîðíûõ: R1à* (37%), J2 (12%) è R2a
(11%). Ïîñêîëüêó âñå òðè ãàïëîãðóïïû ðàñïðîñò-
ðàíåíû ó íàðîäîâ Èðàíà è Òàäæèêèñòàíà, ìîæíî
ñ÷èòàòü ýòè ðåãèîíû âîçìîæíûì àðåàëîì ïðîèñ-
õîæäåíèÿ ìèññèîíåðîâ, ïðèíåñøèõ ìóñóëüìàí-
ñòâî â Êàçàõñòàí è ñòàâøèõ ïðåäêàìè îñíîâíîé
÷àñòè ðîäà Êîæà.
Ó ðîäà ñòåïíîé àðèñòîêðàòèè (Òîðå) âûÿâëå-
íî ïî÷òè â äâà ðàçà ìåíüøåå ðàçíîîáðàçèå. Èç 8
îáíàðóæåííûõ ãàïëîãðóïï ìàæîðíûìè ÿâëÿþòñÿ
òðè – Ñ3* (35%), R1a* (22%) è R2a (17%). Âûÿâ-
ëåííîå ñõîäñòâî ðîäîâ Êîæà è Òîðå ïî äâóì ìà-
æîðíûì ãàïëîãðóïïàì (R1a* è R2a) ìîæåò áûòü
ñâÿçàíî ñî ñìåøåíèåì ãåíîôîíäîâ ðîäîâ ñ âû-
ñîêèì ñîöèàëüíûì ñòàòóñîì.
Ïîëîæåíèå ðîäîâ Êîæà è Òîðå â îáùåé ñòðóê-
òóðå ãåíîôîíäà êàçàõîâ îïðåäåëåíî ñ ïîìîùüþ
ãðàôèêà ìíîãîìåðíîãî øêàëèðîâàíèÿ, ïîñòðîåí-
íîãî ïî ìàòðèöå ãåíåòè÷åñêèõ ðàññòîÿíèé ìåæäó
èçó÷åííûìè ïîïóëÿöèÿìè: â ãåíåòè÷åñêîì ïðî-
ñòðàíñòâå âûÿâëÿåòñÿ õàðàêòåðíûé òðåóãîëüíèê,
â êîòîðîì ñòåïíîå äóõîâåíñòâî (Êîæà) óäàëåíî îò
âñåõ òðåõ æóçîâ êàçàõîâ. Ýòî ñîãëàñóåòñÿ ñ âåð-
ñèåé ïðîèñõîæäåíèÿ Êîæà îò íåðîäñòâåííûõ êà-
çàõàì íàðîäîâ. Ñòåïíàÿ àðèñòîêðàòèÿ (Òîðå) íà
ãðàôèêå ãåíåòè÷åñêè ïðèáëèæåíà ê ãåíîôîíäó
ñòàðøåãî æóçà.
Äëÿ âåðèôèêàöèè ãèïîòåçû ïðîèñõîæäåíèÿ
ðîäà Òîðå îò ÷èíãèçèäîâ ìû èçó÷èëè ðîä ÷èíãèçè-
äîâ Ìîíãîëèè (Áîðäæèãèí), â êîòîðîì ñðåäè 13
îáíàðóæåííûõ ãàïëîãðóïï ìàæîðíûìè ÿâëÿþòñÿ
äâå – C3* (39%) è C3c (18%). Òàêèì îáðàçîì, ãåíî-
ôîíäû êàçàõñêèõ è ìîíãîëüñêèõ ÷èíãèçèäîâ ïåðåêðû-
âàþòñÿ ïî òîé ñàìîé ãàïëîãðóïïå C3*, íîñèòåëåì
êîòîðîé, êàê ñ÷èòàåòñÿ, áûë èõ ðîäîíà÷àëüíèê
Òåìó÷èí (×èíãèñõàí) [Zerjal et al., 2003]. Ãàïëî-
ãðóïïà C3* ñîñòàâëÿåò è ó êàçàõñêèõ, è ó ìîíãîëü-
98
Вестник Московского университета. Серия XXIII АНТРОПОЛОГИЯ № 1/2014: 96–101
Жабагин М.К., Дибирова Х.Д., Фролова С.А., Сабитов Ж.М., Юсупов Ю.М., Утевская О.М., Тарлыков П.В. и др.
Òàáëèöà 1. ×àñòîòû ãàïëîãðóïï Y-õðîìîñîìû ó êàçàõñêèõ è ìîíãîëüñêèõ ðîäîâ
Ïðèìå÷àíèå. Ìàæîðíûå ãàïëîãðóïïû äëÿ êàæäîãî ðîäà âûäåëåíû æèðíûì øðèôòîì íà ñåðîì ôîíå
99
Вестник Московского университета. Серия XXIII АНТРОПОЛОГИЯ № 1/2014: 96–101
Связь изменчивости Y$хромосомы и родовой структуры: генофонд степной аристократии и духовенства казахов
ñêèõ ÷èíãèçèäîâ áîëåå òðåòè Y-õðîìîñîìíîãî ãå-
íîôîíäà.  òî æå âðåìÿ, ãåíîôîíäû ÷èíãèçèäîâ
îáîèõ ðåãèîíîâ ãåòåðîãåííû, îáíàðóæèâàÿ ðàçëè-
÷èÿ ìåæäó ñîöèàëüíûì è áèîëîãè÷åñêèì ðîäñòâîì
â ðÿäå ãåíåàëîãè÷åñêèõ ëèíèé.
Òàêæå âûÿâëåíî, ÷òî ãàïëîãðóïïà Ñ3* ÿâëÿ-
åòñÿ ìàæîðíîé òàêæå ó êàçàõñêèõ ðîäîâ Êåðåé
(65%) è Æàëàéûð (38%), ÷òî ñáëèæàåò èõ ñ ðîäîì
Òîðå, ïîäòâåðæäàÿ èñòîðè÷åñêèå ñâèäåòåëüñòâà
òîãî, ÷òî Êåðåè è Æàëàéûðû âîñõîäÿò ê äðåâíåìîí-
ãîëüñêèì ðîäàì [Òûíûøïàåâ, 1925], êîòîðûå áûëè
â òåñíîé èñòîðè÷åñêîé ñâÿçè ñ ÷èíãèçèäàìè.
Ïîèñê STR ãàïëîòèïîâ â ñîñòàâå êëþ÷åâîé
ãàïëîãðóïïû Ñ3* ó êàçàõîâ, ìîíãîëîâ è äðóãèõ íà-
ðîäîâ Åâðàçèè îáíàðóæèë 783 ãàïëîòèïîâ ïî 17
STR-ìàðêåðàì (èíôîðìàöèÿ íàøåé áàçû äàííûõ
Y-base). Ñåòü, îòîáðàæàþùàÿ ôèëîãåíåòè÷åñêèå
âçàèìîîòíîøåíèÿ ýòèõ ãàïëîòèïîâ, ïîñòðîåíà ñ
èñïîëüçîâàíèåì àëãîðèòìà median-joining â ïðî-
ãðàììå Network 4.1.1.2. Ñåòü âûÿâèëà çâåçäîîá-
ðàçíóþ ñòðóêòóðó: ìàæîðíûé ãàïëîòèï (âñòðå÷åí
ó 97 ÷åëîâåê) â öåíòðå è ìåíåå ÷àñòûå ãàïëîòèïû
âîêðóã íåãî (ðèñ. 1). Ýòîò ìàæîðíûé ãàïëîòèï ïîë-
íîñòüþ ñîâïàäàåò ñ áàçîâûì ãàïëîòèïîì ïîäðî-
äà Àøàìàéëû ðîäà Êåðååâ [Abilev et al., 2012]. Äëÿ
òðåõ âûÿâëåííûõ êëàñòåðîâ STR ãàïëîòèïîâ (α,
β, γ, ðèñ. 1), ñ èñïîëüçîâàíèåì ãåíåàëîãè÷åñêîé
[Gusmao et al., 2005] è ýâîëþöèîííîé [Zhivotovsky
et al., 2004] ñêîðîñòåé ìóòèðîâàíèÿ, ðàññ÷èòàíû
äàòèðîâêè èõ âîçíèêíîâåíèÿ (òàáë. 2). Ïðåäñòà-
âèòåëè ðîäà Òîðå îêàçàëèñü â êëàñòåðå α, óêàçû-
âàÿ íà ðàñïðîñòðàíåííîñòü ó ñòåïíîé àðèñòîêðàòèè
ïðåäïîëàãàåìîãî ãàïëîòèïà ×èíãèñõàíà. Âîçðàñò
êëàñòåðà (ïðè èñïîëüçîâàíèå ãåíåàëîãè÷åñêîé
ñêîðîñòè ìóòèðîâàíèÿ) ñîñòàâëÿåò 1000±300 ëåò,
÷òî ñîâïàäàåò ñ äàííûìè â ëèòåðàòóðå [Zerjal et al.,
2003; Abilev et al., 2012; Malyarchuk et al., 2009].
Êëàñòåð β âêëþ÷àåò òîëüêî ìîíãîëîâ; åãî âîçðàñò –
600±300 ëåò. Êëàñòåð γ ñîñòîèò èñêëþ÷èòåëüíî èç
êàçàõîâ ðîäà Êîíûðàò ñ äàòèðîâêîé êëàñòåðà
1100±400 ëåò, ÷òî ñîãëàñóåòñÿ ñ èñòîðè÷åñêèìè
äàííûìè: ðàííèå óïîìèíàíèÿ îá ýòîì ðîäå îòíî-
ñÿòñÿ ê X âåêó (îêîëî 1100 ëåò íàçàä), à êî âðåìå-
íè ×èíãèñõàíà Êîíûðàòû óæå ïðåäñòàâëÿëè ñîáîé
êðóïíûé ðîä.
Выводы
Ñîçäàíû ãåíåòè÷åñêèå ïîðòðåòû ðîäîâ Òîðå
(êàçàõñêèå ÷èíãèçèäû) è Êîæà (äóõîâíàÿ àðèñòîê-
ðàòèÿ) ïî äàííûì îá Y-õðîìîñîìå. Ìàæîðíûìè
ãàïëîãðóïïàìè Òîðå ÿâëÿþòñÿ Ñ3* (35%), R1a*
(22%) è R2a (17%), ìàæîðíûìè ãàïëîãðóïïàìè
Êîæà ÿâëÿþòñÿ R1à* (37%), J2 (12%) è R2a (11%).
Ðèñ. 1. Ôèëîãåíåòè÷åñêàÿ ñåòü ãàïëîãðóïïû C3(xC3ñ)-Ì217(õÌ48) â ïîïóëÿöèÿõ Åâðàçèè. Ïðåäñòàâëåíû
òîëüêî ãàïëîòèïû, âñòðå÷åííûå 2 è áîëåå ðàç. Îáíàðóæåííûå êëàñòåðû îáîçíà÷åíû ïóíêòèðíîé ëèíèåé,
ïîäïèñàíû èõ îáîçíà÷åíèÿ, äàòèðîâêè êëàñòåðîâ ïðèâåäåíû â òåêñòå
100
Вестник Московского университета. Серия XXIII АНТРОПОЛОГИЯ № 1/2014: 96–101
Жабагин М.К., Дибирова Х.Д., Фролова С.А., Сабитов Ж.М., Юсупов Ю.М., Утевская О.М., Тарлыков П.В. и др.
Ïðèíàäëåæíîñòü ìàæîðíûõ ãàïëîãðóïï Êîæà
(R1a, J2, R2a) ê ãåíîôîíäàì Ïåðåäíåé Àçèè, Èðà-
íà è Òàäæèêèñòàíà ïîçâîëÿåò ñ÷èòàòü ýòè ðåãèî-
íû âîçìîæíûì àðåàëîì ïðîèñõîæäåíèÿ ìèññèî-
íåðîâ, ïðèíåñøèõ ìóñóëüìàíñòâî â Êàçàõñòàí.
Âûÿâëåíî ñõîäñòâî ðîäîâ Òîðå è Êîæà ïî äâóì
ìàæîðíûì ãàïëîãðóïïàì – R1a è R2a ìîæåò áûòü
ñâÿçàíî ñ ïåðåìåøèâàíèåì ãåíîôîíäîâ ìåæäó
ïðåäñòàâèòåëÿìè ðîäîâ ñ âûñîêèì ñîöèàëüíûì ñòà-
òóñîì (ñòåïíàÿ àðèñòîêðàòèÿ, ñòåïíîå äóõîâåíñòâî).
Ãåíîôîíäû ðîäîâ Òîðå (35%) è Áîðäæèãèí
(39%) ïåðåêðûâàþòñÿ ïî ìàæîðíîé ãàïëîãðóïïå
Ñ3* – M217(xM48), íîñèòåëåì êîòîðîé, êàê ñ÷èòà-
åòñÿ, áûë èõ ðîäîíà÷àëüíèê Òåìó÷èí (×èíãèñõàí).
Îäíàêî ñòîèò îòìåòèòü âûÿâëåííóþ ðåçêóþ ãåòå-
ðîãåííîñòü, îáíàðóæèâàþùóþ ðàçëè÷èÿ ìåæäó
ñîöèàëüíûì è áèîëîãè÷åñêèì ðîäñòâîì â ðÿäå
ãåíåàëîãè÷åñêèõ ëèíèé. Ðîä Òîðå òàêæå êëàñòå-
ðèçóåòñÿ ñ êàçàõñêèìè ðîäàìè Êåðåé, Êîíûðàò,
Æàëàèð.
Àíàëèç ôèëîãåíåòè÷åñêèõ ñåòåé ãàïëîãðóïïû
C3 (õÑ3ñ) âûÿâèë òðè íîâûõ êëàñòåðà ãàïëîòèïîâ.
Îäèí èç ñóáêëàñòåðîâ ñîñòîèò òîëüêî èç ðîäà Êî-
íûðàò ñ äàòèðîâêîé 1100±400 ëåò. Óòî÷íåííàÿ äà-
òèðîâêà ñòàð-êëàñòåðà ñîñòàâëÿåò 1000±200 ëåò,
÷òî ñîâïàäàåò ñ ëèòåðàòóðíûìè äàííûìè è íå ïðî-
òèâîðå÷èò ãèïîòåçå, ÷òî ýêñïàíñèÿ ñòàð-êëàñòåðà
áûëà âûçâàíà ñîöèàëüíûì ïîëîæåíèåì ïîòîìêîâ
×èíãèñõàíà.
Òàêèì îáðàçîì, áûëà âûÿâëåíà ÷àñòè÷íàÿ
ïîëîæèòåëüíàÿ ñâÿçü ìåæäó ñîöèàëüíûì è áèî-
ëîãè÷åñêèì ðîäñòâîì ó ðîäîâ Êîæà è Òîðå, äîïîë-
íÿþùàÿ èñòîðè÷åñêèå ñâåäåíèÿ.
Благодарности
Èññëåäîâàíèå ïîääåðæàíî ãðàíòîì â ôîðìå
ñóáñèäèè â ðàìêàõ ðåàëèçàöèè ìåðîïðèÿòèé 1.1-
1.5 ÔÖÏ «Íàó÷íûå è íàó÷íî-ïåäàãîãè÷åñêèå êàä-
ðû èííîâàöèîííîé Ðîññèè» íà 2009–2013 ãîäû
(ñîãëàøåíèå ¹ 8088), Ïðîãðàììàìè Ïðåçèäèóìà
ÐÀÍ «Æèâàÿ ïðèðîäà (Äèíàìèêà ãåíîôîíäîâ)»,
«Ìîëåêóëÿðíàÿ è êëåòî÷íàÿ áèîëîãèÿ», «Ôóíäà-
ìåíòàëüíûå íàóêè – ìåäèöèíå» è ãðàíòàìè ÐÔÔÈ
10-04-01603-à, 10-07-00515-à, 11-06-00333-à, 12-
06-90819-ìîë_ðô_íð, 12-04-90915-ìîë_ñíã_íð.
Библиография
Òûíûøïàåâ Ì. Ìàòåðèàëû ê èñòîðèè êèðãèç-êàçàêñêî-
ãî íàðîäà (÷èòàíû â Òóðêåñòàíñêîì îòäåëå Ðóññêîãî ãåî-
ãðàôè÷åñêîãî îáùåñòâà â 1924 è 1925 ã.). Òàøêåíò, 1925.
62 ñ.
Abilev S., Malyarchuk B., Derenko M. et al. The Y chromo-
some C3* star-cluster attributed to Genghis Khan’s descen-
dants is present at high frequency in the Kerey clan from
Kazakhstan // Hum. Biology, 2012. Vol. 84. N 1.
Biro A., Zalan A., Volgyi A., Pamjav H. Y-chromosomal compa-
rison of the Madjars (Kazakhstan) and the Magyars (Hungary)
// Am. J. Phys. Anthropol., 2009. Vol. 139(3). P. 305–310.
Gusmao L., Sánchez-Diz P., Calafell F. et al. Mutation rates
at Y chromosome specific microsatellites. // Hum. Mutat.,
2005. Vol. 26. P. 520–528.
Karafet T., Xu L., Du R. et al. Paternal population history of
East Asia: sources, patterns, and microevolutionary processes
// Am. J. Hum. Genet., 2001. Vol. 69(3). P. 615–628.
Malyarchuk B., Derenko M., Denisova G. et al. Phylogeo-
graphy of the Y chromosome haplogroup C in northern
Eurasia // An. Hum. Genet., 2010. Vol. 74. P. 539–546.
Wells R., Yuldasheva N., Ruzibakiev R. et al. The Eurasian
heartland: a continental perspective on Y-chromosome
diversity // Proc. Natl. Acad. Sci. USA, 2001. Vol. 98. P. 10244–
10249.
Zerjal T., Xue Y., Bertorelle G. et al. The genetic legacy of
the Mongols // Am. J. Hum. Genet., 2003. Vol. 72(3). P. 717–
721.
Zhivotovsky L., Underhill P., Cinnioglu C. et al. The effective
mutation rate at Y chromosome short tandem repeats, with
application to human population-divergence time // Am. J.
Hum. Genet., 2004. Vol.74. P. 50–61.
Êîíòàêòíàÿ èíôîðìàöèÿ:
Æàáàãèí Ìàêñàò Êèçàòîâè÷: e-mail: mzhabagin@gmail.com;
Äèáèðîâà Õàäèæàò Äèáèðîâíà: e-mail: hadizha-dibirova@mail.ru;
Ôðîëîâà Ñâåòëàíà Àëåêñàíäðîâà: e-mail: s_frolova@list.ru;
Òàáëèöà 2. Âîçðàñò êëàñòåðîâ STR-ãàïëîòèïîâ
101
Вестник Московского университета. Серия XXIII АНТРОПОЛОГИЯ № 1/2014: 96–101
Связь изменчивости Y$хромосомы и родовой структуры: генофонд степной аристократии и духовенства казахов
Ñàáèòîâ Æàêñûëûê Ìóðàòîâè÷: e-mail: babasan@yandex.kz;
Þñóïîâ Þëäàø Ìóõàììàòîâè÷: e-mail: Usupov.Uld@yandex.ru;
Óòåâñêàÿ Îëüãà Ìèõàéëîâíà: e-mail: outevsk@yandex.ua;
Òàðëûêîâ Ïàâåë Âèêòîðîâè÷: e-mail: pavel.tarlykov@gmail.com;
Òàæèãóëîâà Èíêàð Ìåøèòáàåâíà:
e-mail: inkar.tazhigulova@gmail.com;
THE RELATION BETWEEN THE YCHROMOSOMAL VARIATION
AND THE CLAN STRUCTURE: THE GENE POOL OF THE STEPPE
ARISTOCRACY AND THE STEPPE CLERGY OF THE KAZAKHS
M.K. Zhabagin1,2, H.D. Dibirova2,3, S.A. Frolova3, Zh.M. Sabitov4, Yu.M. Yusupov2, 5, O.M. Utevska2,6,
P.V. Tarlykov 3,7, I.M. Tazhigulova3,8, O.A. Balaganskaya3, P. Nymadawa9, I.A. Zakharov 2,
O.P. Balanovsky 2,3
1 Center for Life Science, Nazarbayev University, Astana, Kazakhstan
2 Vavilov Institute for General Genetics RAS, Moscow, Russia
3 Research Centre for Medical Genetics RAMS, Moscow, Russia
4 Gumilyov Eurasian National University, Astana, Kazakhstan
5 Institute for Humanities Research of the Republic of Bashkortostan, Ufa, Russia
6 Karazin National University, Kharkov, Ukraine
7 National Center for Biotechnology of the Republic of Kazakhstan, Astana, Kazakhstan
8 Forensic science centre of the Ministry of Justice of the Republic of Kazakhstan, Astana, Kazakhstan
9 Mongolian Academy of Sciences, Ulan Bator, Mongolia
Aim: to study the possible connection between of Y-chromosomal variability and the genealogical structure
of Kazakhs to analyze the relationship between biological and social kinship. In the study, besides the
descendants of the steppe aristocracy and steppe clergy (sample size N = 94), other clans of Kazakhs and
Mongols (N = 359) were analyzed. All samples were analyzed by 17 Y-chromosomal STR markers, addressing
to haplogroups was confirmed by direct analysis of haplogroup-defining SNPs. In the clan of Tore, eight
haplogroups were identified, among which there were three major haplogroups: C3 * – M217 (xM48) (35%),
R1a * – M198 (xM458) (22%) and R2a – M124 (17%). In the clan of Kozha, there were 14 Y-chromosome
haplogroups, only three of which had frequencies higher than 10 percent: R1a1a-M198 (37%), J2-M172
(12%), R2a-M124 (11%). The major haplogroups of Kozha (R1a, J2, R2a) are typical for gene pool of South-
West Asia, Iran and Tajikistan, which marks possible homelands of the missionaries which brought Islam into
Kazakhstan. In the comparative analysis of the Tore and Kozha, it was revealed that there are similarities in
the two major haplogroups – R1a1a-M198 and R2a-M124, which can indicate the genealogical links between
the socially privileged groups, which is consistent with historical sources. The clan of Tore (Genghis Khan
descendants in Kazakhstan) is similar to the clan of Bordzhigin (Genghis Khan descendants in Mongolia) by
frequency of the major haplogroup C3* (35% in Tore and 39% in Bordzhigin); this haplogroup is presumably
attributed to Genghis Khan. The phylogenetic analysis of the haplogroup C3* allowed us to reveal three new
clusters of haplotypes. One of them includes members of Konirat clan only; the age of the cluster is 1100±400
years. The corrected age of the star-cluster (including the so-called “Genghis Khan haplotype”) was estimated
to be 1000 +/- years. We revealed the partial positive relation between social and biological kinship in Kazakh
clans, which can serve as source of information, additional to the written records.
Keywords: Y-chromosome, gene geography, clan structure of the Kazakhs, population genetics
Áàëàãàíñêàÿ Îëüãà Àëåêñååâíà: e-mail: olga.vasinskaja@mail.ru;
Íèìàäàâà Ïàãáàäæàá: e-mail: nymadawa@gmail.com;
Çàõàðîâ-Ãåçåõóñ Èëüÿ Àðòåìüåâè÷: e-mail: iaz34@mail.ru;
Áàëàíîâñêèé Îëåã Ïàâëîâè÷: e-mail: balanovsky@inbox.ru.
... A strong tribe structure has been detected among populations from this region [26]. The tribal tradition leads to great differences in dominant paternal lineage between tribes [27][28][29][30][31][32][33][34][35][36]. By contrast, within a tribe, paternal Y-chromosomal short tandem repeat (Y-STR) diversity is generally low [34]. ...
... The tribal tradition leads to great differences in dominant paternal lineage between tribes [27][28][29][30][31][32][33][34][35][36]. By contrast, within a tribe, paternal Y-chromosomal short tandem repeat (Y-STR) diversity is generally low [34]. Although gene flow is common, the genetic relationships among populations are still closely related to the language category. ...
Article
Full-text available
In the past two decades, studies of Y chromosomal single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) have shed light on the demographic history of Central Asia, the heartland of Eurasia. However, complex patterns of migration and admixture have complicated population genetic studies in Central Asia. Here, we sequenced and analyzed the Y-chromosomes of 187 male individuals from Kazakh, Kyrgyz, Uzbek, Karakalpak, Hazara, Karluk, Tajik, Uyghur, Dungan, and Turkmen populations. High diversity and admixture from peripheral areas of Eurasia were observed among the paternal gene pool of these populations. This general pattern can be largely attributed to the activities of ancient people in four periods, including the Neolithic farmers, Indo-Europeans, Turks, and Mongols. Most importantly, we detected the consistent expansion of many minor lineages over the past thousand years, which may correspond directly to the formation of modern populations in these regions. The newly discovered sub-lineages and variants provide a basis for further studies of the contributions of minor lineages to the formation of modern populations in Central Asia.
... This questionnaire, aimed mainly at the implementation of the "rule of three generations," also helps to identify family ties. The fact that the pedigree profile contains information about belonging to the clan not only reveals the kinship but also opens up a new direction in the genogeography, making it possible to more accurately study the structure of the population system and monitor migration flows [38][39][40][41][42][43][44][45]. ...
... In certain collections, DNA samples are accompanied by quantitative measurements of skin color and anthropological photographs of donors. An important feature of this biobank is careful monitoring of information about the clan and genealogical structure, which made it possible, for example, to estimate the rate of Y-chromosome mutations using the data of whole genome sequencing [43], to identify the role of the clan structure in the formation of the gene pool architectonic and its association with the geographical and cultural landscape of the region [68], and to verify hypotheses of ethnogeny of certain population groups [40,69]. This biobank is actively used for solving problems in forensics: 1400 samples of venous blood collected within the Genographic Project in 14 regions uniformly covering Kazakhstan were submitted, according to the decision of the project board, to the Center of Judicial Examination of the Ministry of Justice of the Republic of Kazakhstan. ...
Article
Population biobanks are collections of thoroughly annotated biological material stored for many years. Population biobanks are a valuable resource for both basic science and applied research and are essential for extensive analysis of gene pools. Population biobanks make it possible to carry out fundamental studies of the genetic structure of populations, explore their genetic processes, and reconstruct their genetic history. The importance of biobanks for applied research is no less significant: they are essential for development of personalized medicine and genetic ecological monitoring of populations and are in high demand in forensic science. Establishment of an efficient and representative biobank requires strict observance of the principles of sample selection in populations, protocols of DNA extraction, quality control, and storage and documentation of biological materials. We reviewed regional biobanks and presented the organizational model of population biobank establishment based on the Biobank of Indigenous Population of Northern Eurasia created under supervision of E.V. Balanovska and O.P. Balanovsky. The results obtained using the biobanks in transdisciplinary research and prospective applications for the purposes of genogeography, genomic medicine, and forensic science are presented.
... nonsignificant Mantel test), we observed the imprint of higher frequencies of C2 haplogroups along the southern and western border of Kazakhstan, which corresponds to both the path of the Mongolian invasion and the approximate route of the ancient Silk Road. A broader spatial and temporal analysis of the Y-STR diversity among Kazakh tribes within the context of other groups in Central Asia is needed to further elucidate this dynamic history Abilev et al., 2012, Akerov, 2016, Artykbaev, 2020, Balaganskaya et al., 2011, Balanovsky et al., 2015, Barinova, 2016, Beisenov et al., 2015, Cai et al., 2011, Damba et al., 2018, Derenko et al., 2007, Ding et al., 2020, Herrera and Garcia-Bertrand, 2018, Hollard et al., 2014, Ilumä e et al., 2016, Ismagulov, 1970, Ismagulov, 1982, Jeong et al., 2019, Keyser et al., 2009, Kozhanuly, 2018, Malyarchuk et al., 2010, Meirmans, 2006, Roewer et al., 2013, Sabitov, 2013, Shi et al., 2005, Shi et al., 2013, Wei et al., 2018, Zegura et al., 2004, Zhabagin et al., 2016, Zhabagin et al., 2014, Zhabagin et al., 2020, Zhong et al., 2010 ...
Article
Full-text available
Ethnogenesis of Kazakhs took place in Central Asia, a region of high genetic and cultural diversity. Even though archaeological and historical studies have shed some light on the formation of modern Kazakhs, the process of establishment of hierarchical socioeconomic structure in the Steppe remains contentious. In this study, we analyzed haplotype variation at 15 Y-chromosomal short-tandem-repeats obtained from 1171 individuals from 24 tribes representing the three socio-territorial subdivisions (Senior, Middle and Junior zhuz) in Kazakhstan to comprehensively characterize the patrilineal genetic architecture of the Kazakh Steppe. In total, 577 distinct haplotypes were identified belonging to one of 20 haplogroups; 16 predominant haplogroups were confirmed by SNP-genotyping. The haplogroup distribution was skewed towards C2-M217, present in all tribes at a global frequency of 51.9%. Despite signatures of spatial differences in haplotype frequencies, a Mantel test failed to detect a statistically significant correlation between genetic and geographic distance between individuals. An analysis of molecular variance found that ∼8.9% of the genetic variance among individuals was attributable to differences among zhuzes and ∼20% to differences among tribes within zhuzes. The STRUCTURE analysis of the 1164 individuals indicated the presence of 20 ancestral groups and a complex three-subclade organization of the C2-M217 haplogroup in Kazakhs, a result supported by the multidimensional scaling analysis. Additionally, while the majority of the haplotypes and tribes overlapped, a distinct cluster of the O2 haplogroup, mostly of the Naiman tribe, was observed. Thus, firstly, our analysis indicated that the majority of Kazakh tribes share deep heterogeneous patrilineal ancestries, while a smaller fraction of them are descendants of a founder paternal ancestor. Secondly, we observed a high frequency of the C2-M217 haplogroups along the southern border of Kazakhstan, broadly corresponding to both the path of the Mongolian invasion and the ancient Silk Road. Interestingly, we detected three subclades of the C2-M217 haplogroup that broadly exhibits zhuz-specific clustering. Further study of Kazakh haplotypes variation within a Central Asian context is required to untwist this complex process of ethnogenesis.
... Previous genetic studies of Sayeds from Pakistan and India have not revealed a recent common paternal ancestor, but they were genetically closer to Arabs than to the control samples from Pakistani and Indian populations [9]. Our preliminary analysis of the Ychromosomal gene pool of the Kozha clan revealed the prevalence of haplogroups R1a, J2, and R2a indicating a likely West Asian origin (Middle East, Iran, or Tajikistan); thus missionaries who brought Islam to Transoxiana might have originated from these regions [10]. According to genealogical studies, the Alimuly are part of the large Alshin tribe [5], which supposedly migrated to the area of present-day Kazakhstan from East Asia [1] in the 13th century [11]. ...
... Within Transoxiana, this founder haplotype is most common among the Kazakh clan Tore (11%), tribe Uysun (6%) and Karakalpaks (5%). The estimated age of the μ cluster (1100 ± 300 years) aligns with previous estimations of ~1000 years 21,30,39 . It may be assumed that modal haplotype 3 was the "proto-Mongolian haplotype", inherited, among others, by Genghis Khan, his descendants and patrilineal relatives. ...
Article
Full-text available
We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape. The main factor structuring the gene pool was the mode of subsistence: settled agriculture or nomadic pastoralism. Investigation of STR-based clusters of haplotypes and their ages revealed that cultural and demic expansions of Transoxiana were not closely connected with each other. The Arab cultural expansion introduced Islam to the region but did not leave a significant mark on the pool of paternal lineages. The Mongol expansion, in contrast, had enormous demic success, but did not impact cultural elements like language and religion. The genealogy of Muslim missionaries within the settled agricultural communities of Transoxiana was based on spiritual succession passed from teacher to disciple. However, among Transoxianan nomads, spiritual and biological succession became merged.
Article
Nonrecombinant portions of the genome, Y chromosome and mitochondrial DNA, are widely used for research on human population gene pools and reconstruction of their history. These systems allow the genetic dating of clusters of emerging haplotypes. The main method for age estimations is ρ statistics, which is an average number of mutations from founder haplotype to all modern-day haplotypes. A researcher can estimate the age of the cluster by multiplying this number by the mutation rate. The second method of estimation, ASD, is used for STR haplotypes of the Y chromosome and is based on the squared difference in the number of repeats. In addition to the methods of calculation, methods of Bayesian modeling assume a new significance. They have greater computational cost and complexity, but they allow obtaining an a posteriori distribution of the value of interest that is the most consistent with experimental data. The mutation rate must be known for both calculation methods and modeling methods. It can be determined either during the analysis of lineages or by providing calibration points based on populations with known formation time. These two approaches resulted in rate estimations for Y-chromosomal STR haplotypes with threefold difference. This contradiction was only recently refuted through the use of sequence data for the complete Y chromosome; “whole-genomic” rates of single nucleotide mutations obtained by both methods are mutually consistent and mark the area of application for different rates of STR markers. An issue even more crucial than that of the rates is correlation of the reconstructed history of the haplogroup (a cluster of haplotypes) and the history of the population. Although the need for distinguishing “lineage history” and “population history” arose in the earliest days of phylogeographic research, reconstructing the population history using genetic dating requires a number of methods and conditions. It is known that population history events leave distinct traces in the history of haplogroups only under certain demographic conditions. Direct identification of national history with the history of its occurring haplogroups is inappropriate and is avoided in population genetic studies, although because of its simplicity and attractiveness it is a constant temptation for researchers. An example of DNA genealogy, an amateur field that went beyond the borders of even citizen science and is consistently using the principle of equating haplogroup with lineage and population, which leads to absurd results (e.g., Eurasia as an origin of humankind), can serve as a warning against a simplified approach for interpretation of genetic dating results.
Article
Full-text available
To verify the possibility that the Y-chromosome C3* star-cluster attributed to Genghis Khan and his patrilineal descendants is relatively frequent in the Kereys, who are the dominant clan in Kazakhstan and in Central Asia as a whole, polymorphism of the Y-chromosome was studied in Kazakhs, represented mostly by members of the Kerey clan. The Kereys showed the highest frequency (76.5%) of individuals carrying the Y-chromosome variant known as C3* star-cluster ascribed to the descendants of Genghis Khan. C3* star-cluster haplotypes were found in two subclans, Abakh-Kereys and Ashmaily-Kereys, diverged about 20-22 generations ago according to the historical data. Median network of the Kerey star-cluster haplotypes at 17 STR loci displays a bipartite structure, with two subclusters defined by the only difference at the DYS448 locus. Noteworthy is a strong correspondence of these subclusters with the Kerey subclans affiliation. The data obtained suggest that the Kerey clan appears to be the largest known clan in the world descending from a common Y-chromosome ancestor. Possible ways of Genghis Khan's relationship to the Kereys are discussed.
Article
Full-text available
To reconstruct the phylogenetic structure of Y-chromosome haplogroup (hg) C in populations of northern Eurasia, we have analyzed the diversity of microsatellite (STR) loci in a total sample of 413 males from 18 ethnic groups of Siberia, Eastern Asia and Eastern Europe. Analysis of SNP markers revealed that all Y-chromosomes studied belong to hg C3 and its subhaplogroups C3c and C3d, although some populations (such as Mongols and Koryaks) demonstrate a relatively high input (more than 30%) of yet unidentified C3* haplotypes. Median joining network analysis of STR haplotypes demonstrates that Y-chromosome gene pools of populations studied are characterized by the presence of DNA clusters originating from a limited number of frequent founder haplotypes. These are subhaplogroup C3d characteristic for Mongolic-speaking populations, "star cluster" in C3* paragroup, and a set of DYS19 duplicated C3c Y-chromosomes. All these DNA clusters show relatively recent coalescent times (less than 3000 years), so it is probable that founder effects, including social selection resulting in high male fertility associated with a limited number of paternal lineages, may explain the observed distribution of hg C3 lineages.
Article
Full-text available
The nonrecombining portion of the human Y chromosome has proven to be a valuable tool for the study of population history. The maintenance of extended haplotypes characteristic of particular geographic regions, despite extensive admixture, allows complex demographic events to be deconstructed. In this study we report the frequencies of 23 Y-chromosome biallelic polymorphism haplotypes in 1,935 men from 49 Eurasian populations, with a particular focus on Central Asia. These haplotypes reveal traces of historical migrations, and provide an insight into the earliest patterns of settlement of anatomically modern humans on the Eurasian continent. Central Asia is revealed to be an important reservoir of genetic diversity, and the source of at least three major waves of migration leading into Europe, the Americas, and India. The genetic results are interpreted in the context of Eurasian linguistic patterns.
Article
Full-text available
The Madjars are a previously unstudied population from Kazakhstan who practice a form of local exogamy in which wives are brought in from neighboring tribes, but husbands are not, so the paternal lineages remain genetically isolated within the population. Their name bears a striking resemblance to the Magyars who have inhabited Hungary for over a millennium, but whose previous history is poorly understood. We have now carried out a genetic analysis of the population structure and relationships of the Madjars, and in particular have sought to test whether or not they show a genetic link with the Magyars. We concentrated on paternal lineages because of their isolation within the Madjars and sampled males representing all extant male lineages unrelated for more than eight generations (n = 45) in the Torgay area of Kazakhstan. The Madjars show evidence of extensive genetic drift, with 24/45 carrying the same 12-STR haplotype within haplogroup G. Genetic distances based on haplogroup frequencies were used to compare the Madjars with 37 other populations and showed that they were closest to the Hungarian population rather than their geographical neighbors. Although this finding could result from chance, it is striking and suggests that there could have been genetic contact between the ancestors of the Madjars and Magyars, and thus that modern Hungarians may trace their ancestry to Central Asia, instead of the Eastern Uralic region as previously thought.
Article
Full-text available
We have identified a Y-chromosomal lineage with several unusual features. It was found in 16 populations throughout a large region of Asia, stretching from the Pacific to the Caspian Sea, and was present at high frequency: approximately 8% of the men in this region carry it, and it thus makes up approximately 0.5% of the world total. The pattern of variation within the lineage suggested that it originated in Mongolia approximately 1,000 years ago. Such a rapid spread cannot have occurred by chance; it must have been a result of selection. The lineage is carried by likely male-line descendants of Genghis Khan, and we therefore propose that it has spread by a novel form of social selection resulting from their behavior.
Article
Full-text available
We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9x10-4 per 25 years, with a standard deviation across loci of 5.7x10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria.
Article
Asia has served as a focal point for human migration during much of the Late Pleistocene and Holocene. Clarification of East Asia's role as a source and/or transit point for human dispersals requires that this region's own settlement history be understood. To this end, we examined variation at 52 polymorphic sites on the nonrecombining portion of the Y chromosome (NRY) in 1,383 unrelated males, representing 25 populations from southern East Asia (SEAS), northern East Asia (NEAS), and central Asia (CAS). The polymorphisms defined 45 global haplogroups, 28 of which were present in these three regions. Although heterozygosity levels were similar in all three regions, the average pairwise difference among haplogroups was noticeably smaller in SEAS. Multidimensional scaling analysis indicated a general separation of SEAS versus NEAS and CAS populations, and analysis of molecular variance produced very different values of Phi(ST) in NEAS and SEAS populations. In spatial autocorrelation analyses, the overall correlogram exhibited a clinal pattern; however, the NEAS populations showed evidence of both isolation by distance and ancient clines, whereas there was no evidence of structure in SEAS populations. Nested cladistic analysis demonstrated that population history events and ongoing demographic processes both contributed to the contrasting patterns of NRY variation in NEAS and SEAS. We conclude that the peopling of East Asia was more complex than earlier models had proposed-that is, a multilayered, multidirectional, and multidisciplinary framework is necessary. For instance, in addition to the previously recognized genetic and dental dispersal signals from SEAS to NEAS populations, CAS has made a significant contribution to the contemporary gene pool of NEAS, and the Sino-Tibetan expansion has left traces of a genetic trail from northern to southern China.
Article
A collaborative work was carried out by the Spanish and Portuguese ISFG Working Group (GEP-ISFG) to estimate Y-STR mutation rates. Seventeen Y chromosome STR loci (DYS19, DYS385, DYS389I and II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS460, DYS461, DYS635 [GATA C4], GATA H4, and GATA A10) were analyzed in a sample of 3,026 father/son pairs. Among 27,029 allele transfers, 54 mutations were observed, with an overall mutation rate across the 17 loci of 1.998 x 10(-3) (95% CI, 1.501 x 10(-3) to 2.606 x 10(-3)). With just one exception, all of the mutations were single-step, and they were observed only once per gametogenesis. Repeat gains were more frequent than losses, longer alleles were found to be more mutable, and the mutation rate seemed to increase with the father's age. Hum Mutat 26(6), 520-528, 2005. (c) 2005 Wiley-Liss, Inc.
Ìàòåðèàëû ê èñòîðèè êèðãèç-êàçàêñêîãî íàðîäà (÷èòàíû â Òóðêåñòàíñêîì îòäåëå Ðóññêîãî ãåîãðàôè÷åñêîãî îáùåñòâà â 1924 è 1925 ã.). Òàøêåíò, 1925
  • Ì Òûíûøïàåâ
Òûíûøïàåâ Ì. Ìàòåðèàëû ê èñòîðèè êèðãèç-êàçàêñêîãî íàðîäà (÷èòàíû â Òóðêåñòàíñêîì îòäåëå Ðóññêîãî ãåîãðàôè÷åñêîãî îáùåñòâà â 1924 è 1925 ã.). Òàøêåíò, 1925. 62 ñ.
The Eurasian heartland
  • R Wells
  • N Yuldasheva
  • R Ruzibakiev
Wells R., Yuldasheva N., Ruzibakiev R. et al. The Eurasian heartland: a continental perspective on Y-chromosome diversity // Proc. Natl. Acad. Sci. USA, 2001. Vol. 98. P. 1024410249.