Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus

Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 03/2014; 111(11). DOI: 10.1073/pnas.1320001111
Source: PubMed


De novo molecular design and in silico prediction of polypharmacological profiles are emerging research topics that will profoundly affect the future of drug discovery and chemical biology. The goal is to identify the macromolecular targets of new chemical agents. Although several computational tools for predicting such targets are publicly available, none of these methods was explicitly designed to predict target engagement by de novo-designed molecules. Here we present the development and practical application of a unique technique, self-organizing map-based prediction of drug equivalence relationships (SPiDER), that merges the concepts of self-organizing maps, consensus scoring, and statistical analysis to successfully identify targets for both known drugs and computer-generated molecular scaffolds. We discovered a potential off-target liability of fenofibrate-related compounds, and in a comprehensive prospective application, we identified a multitarget-modulating profile of de novo designed molecules. These results demonstrate that SPiDER may be used to identify innovative compounds in chemical biology and in the early stages of drug discovery, and help investigate the potential side effects of drugs and their repurposing options.

Download full-text


Available from: Tiago Rodrigues, Mar 04, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: FAst MEtabolizer (FAME) is a fast and accurate predictor of sites of metabolism (SoMs). It is based on a collection of random forest models trained on diverse chemical data sets of more than 20 000 molecules annotated with their experimentally determined SoMs. Using a comprehensive set of available data, FAME aims to assess metabolic processes from a holistic point of view. It is not limited to a specific enzyme family or species. Besides a global model, dedicated models are available for human, rat, and dog metabolism; specific prediction of phase I and II metabolism is also supported. FAME is able to identify at least one known SoM among the top-1, top-2, and top-3 highest ranked atom positions in up to 71%, 81%, and 87% of all cases tested, respectively. These prediction rates are comparable to or better than SoM predictors focused on specific enzyme families (such as cytochrome P450s), despite the fact that FAME uses only seven chemical descriptors. FAME covers a very broad chemical space, which together with its inter- and extrapolation power makes it applicable to a wide range of chemicals. Predictions take less than 2.5 s per molecule in batch mode on an Ultrabook. Results are visualized using Jmol, with the most likely SoMs highlighted.
    No preview · Article · Nov 2013 · Journal of Chemical Information and Modeling
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.
    Full-text · Article · May 2014 · Molecular Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SuperPred web server connects chemical similarity of drug-like compounds with molecular targets and the therapeutic approach based on the similar property principle. Since the first release of this server, the number of known compound–target interactions has increased from 7000 to 665 000, which allows not only a better prediction quality but also the estimation of a confidence. Apart from the addition of quantitative binding data and the statistical consideration of the similarity distribution in all drug classes, new approaches were implemented to improve the target prediction. The 3D similarity as well as the occurrence of fragments and the concordance of physico-chemical properties is also taken into account. In addition, the effect of different fingerprints on the prediction was examined. The retrospective prediction of a drug class (ATC code of the WHO) allows the evaluation of methods and descriptors for a well-characterized set of approved drugs. The prediction is improved by 7.5% to a total accuracy of 75.1%. For query compounds with sufficient structural similarity, the web server allows prognoses about the medical indication area of novel compounds and to find new leads for known targets. SuperPred is publicly available without registration at:
    Full-text · Article · May 2014 · Nucleic Acids Research
Show more