Content uploaded by Michael A. Slawinski

Author content

All content in this area was uploaded by Michael A. Slawinski on Feb 28, 2014

Content may be subject to copyright.

ERRATUM

Coordinate-free Characterization of the Symmetry

Classes of Elasticity Tensors

Andrej Bóna &Ioan Bucataru &Michael A. Slawinski

Published online: 10 July 2007

#Springer Science + Business Media B.V. 2007

1 Journal of Elasticity Volume 87(2-3) 109-132, doi: 10.1007/s10659-007-9099-z

1. Equation (5): there should be a factor of 2 in front of c_45.

The correct text should be as follows:

CeðÞ¼

c11 c12 c13 ﬃﬃﬃ

2

pc14 ﬃﬃﬃ

2

pc15 ﬃﬃﬃ

2

pc16

c12 c22 c23 ﬃﬃﬃ

2

pc24 ﬃﬃﬃ

2

pc25 ﬃﬃﬃ

2

pc26

c13 c23 c33 ﬃﬃﬃ

2

pc34 ﬃﬃﬃ

2

pc35 ﬃﬃﬃ

2

pc36

ﬃﬃﬃ

2

pc14 ﬃﬃﬃ

2

pc24 ﬃﬃﬃ

2

pc34 2c44 2c45 2c46

ﬃﬃﬃ

2

pc15 ﬃﬃﬃ

2

pc25 ﬃﬃﬃ

2

pc35 2c45 2c55 2c56

ﬃﬃﬃ

2

pc16 ﬃﬃﬃ

2

pc26 ﬃﬃﬃ

2

pc36 2c46 2c56 2c66

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð5Þ

2. Within the paragraph before equation (34)“rotation by angle qh”should be as

follows:

“rotation by angle θηðÞ

=3”

J Elasticity (2007) 88:185–186

DOI 10.1007/s10659-007-9126-0

The online version of the original article can be found at http://dx.doi.org/10.1007/s10659-007-9099-z.

A. Bóna :M. A. Slawinski

Department of Earth Sciences, Memorial University, St. John’s NL A1B 3X5, Canada

A. Bóna

e-mail: abona@mun.ca

M. A. Slawinski

e-mail: mslawins@mun.ca

I. Bucataru (*)

Faculty of Mathematics, “Al. I. Cuza”University, Iasi 700506, Romania

e-mail: bucataru@uaic.ro

3. Equation (34): there should be a factor of 3 in the denominator of the argument of the

trigonometric functions 2qþhðÞ.

The correct text should be as follows:

σ¼bkk

γ2cos ð2θþηðÞ

=3Þγ2sin ð2θþηðÞ

=3Þsin ð2θþηðÞ

=3Þ

γ2sin ð2θþη

ðÞ

=3Þγ2cos ð2θþη

ðÞ

=3Þcos ð2θþη

ðÞ

=3Þ

sin ð2θþηðÞ

=3Þcos ð2θþηðÞ

=3Þ0

2

43

5:ð34Þ

4. Equation (35): the denominator of the expression for c_44 should be multiplied by 2.

The correct text should be as follows:

c11 ¼γ1þγ3

ðÞγ2

2γ2

1þγ1þγ4

ðÞγ2

1þ2γ2þγ3

ðÞγ2

2þ2γ2þγ4

ðÞ

22þγ2

1

ðÞ

1þγ2

2

ðÞ ;

c12 ¼γ1γ3

ðÞγ2

2γ2

1þγ1γ4

ðÞγ2

1þ2γ2γ3

ðÞγ2

2þ2γ2γ4

ðÞ

22þγ2

1

ðÞ

1þγ2

2

ðÞ ;

c13 ¼γ2γ1

ðÞγ1

2þγ2

1

;c33 ¼2γ1þγ2γ2

1

2þγ2

1

;

c14 ¼γ3γ4

ðÞγ2

21þγ2

2

ðÞ

;c44 ¼γ3þγ4γ2

2

21þγ2

2

ðÞ

;

ð35Þ

186 A. Bóna et al.