Content uploaded by Michael A. Slawinski
Author content
All content in this area was uploaded by Michael A. Slawinski on Feb 28, 2014
Content may be subject to copyright.
ERRATUM
Coordinate-free Characterization of the Symmetry
Classes of Elasticity Tensors
Andrej Bóna &Ioan Bucataru &Michael A. Slawinski
Published online: 10 July 2007
#Springer Science + Business Media B.V. 2007
1 Journal of Elasticity Volume 87(2-3) 109-132, doi: 10.1007/s10659-007-9099-z
1. Equation (5): there should be a factor of 2 in front of c_45.
The correct text should be as follows:
CeðÞ¼
c11 c12 c13 ffiffiffi
2
pc14 ffiffiffi
2
pc15 ffiffiffi
2
pc16
c12 c22 c23 ffiffiffi
2
pc24 ffiffiffi
2
pc25 ffiffiffi
2
pc26
c13 c23 c33 ffiffiffi
2
pc34 ffiffiffi
2
pc35 ffiffiffi
2
pc36
ffiffiffi
2
pc14 ffiffiffi
2
pc24 ffiffiffi
2
pc34 2c44 2c45 2c46
ffiffiffi
2
pc15 ffiffiffi
2
pc25 ffiffiffi
2
pc35 2c45 2c55 2c56
ffiffiffi
2
pc16 ffiffiffi
2
pc26 ffiffiffi
2
pc36 2c46 2c56 2c66
2
6
6
6
6
6
6
4
3
7
7
7
7
7
7
5
ð5Þ
2. Within the paragraph before equation (34)“rotation by angle qh”should be as
follows:
“rotation by angle θηðÞ
=3”
J Elasticity (2007) 88:185–186
DOI 10.1007/s10659-007-9126-0
The online version of the original article can be found at http://dx.doi.org/10.1007/s10659-007-9099-z.
A. Bóna :M. A. Slawinski
Department of Earth Sciences, Memorial University, St. John’s NL A1B 3X5, Canada
A. Bóna
e-mail: abona@mun.ca
M. A. Slawinski
e-mail: mslawins@mun.ca
I. Bucataru (*)
Faculty of Mathematics, “Al. I. Cuza”University, Iasi 700506, Romania
e-mail: bucataru@uaic.ro
3. Equation (34): there should be a factor of 3 in the denominator of the argument of the
trigonometric functions 2qþhðÞ.
The correct text should be as follows:
σ¼bkk
γ2cos ð2θþηðÞ
=3Þγ2sin ð2θþηðÞ
=3Þsin ð2θþηðÞ
=3Þ
γ2sin ð2θþη
ðÞ
=3Þγ2cos ð2θþη
ðÞ
=3Þcos ð2θþη
ðÞ
=3Þ
sin ð2θþηðÞ
=3Þcos ð2θþηðÞ
=3Þ0
2
43
5:ð34Þ
4. Equation (35): the denominator of the expression for c_44 should be multiplied by 2.
The correct text should be as follows:
c11 ¼γ1þγ3
ðÞγ2
2γ2
1þγ1þγ4
ðÞγ2
1þ2γ2þγ3
ðÞγ2
2þ2γ2þγ4
ðÞ
22þγ2
1
ðÞ
1þγ2
2
ðÞ ;
c12 ¼γ1γ3
ðÞγ2
2γ2
1þγ1γ4
ðÞγ2
1þ2γ2γ3
ðÞγ2
2þ2γ2γ4
ðÞ
22þγ2
1
ðÞ
1þγ2
2
ðÞ ;
c13 ¼γ2γ1
ðÞγ1
2þγ2
1
;c33 ¼2γ1þγ2γ2
1
2þγ2
1
;
c14 ¼γ3γ4
ðÞγ2
21þγ2
2
ðÞ
;c44 ¼γ3þγ4γ2
2
21þγ2
2
ðÞ
;
ð35Þ
186 A. Bóna et al.