ArticlePDF Available

Abstract

We formulate coordinate-free conditions for identifying all the symmetry classes of the elasticity tensor and prove that these conditions are both necessary and sufficient. Also, we construct a natural coordinate system of this tensor without the a priory knowledge of the symmetry axes.
ERRATUM
Coordinate-free Characterization of the Symmetry
Classes of Elasticity Tensors
Andrej Bóna &Ioan Bucataru &Michael A. Slawinski
Published online: 10 July 2007
#Springer Science + Business Media B.V. 2007
1 Journal of Elasticity Volume 87(2-3) 109-132, doi: 10.1007/s10659-007-9099-z
1. Equation (5): there should be a factor of 2 in front of c_45.
The correct text should be as follows:
CeðÞ¼
c11 c12 c13 ffiffi
2
pc14 ffiffi
2
pc15 ffiffi
2
pc16
c12 c22 c23 ffiffi
2
pc24 ffiffi
2
pc25 ffiffi
2
pc26
c13 c23 c33 ffiffi
2
pc34 ffiffi
2
pc35 ffiffi
2
pc36
ffiffi
2
pc14 ffiffi
2
pc24 ffiffi
2
pc34 2c44 2c45 2c46
ffiffi
2
pc15 ffiffi
2
pc25 ffiffi
2
pc35 2c45 2c55 2c56
ffiffi
2
pc16 ffiffi
2
pc26 ffiffi
2
pc36 2c46 2c56 2c66
2
6
6
6
6
6
6
4
3
7
7
7
7
7
7
5
ð5Þ
2. Within the paragraph before equation (34)rotation by angle qhshould be as
follows:
rotation by angle θηðÞ
=3
J Elasticity (2007) 88:185186
DOI 10.1007/s10659-007-9126-0
The online version of the original article can be found at http://dx.doi.org/10.1007/s10659-007-9099-z.
A. Bóna :M. A. Slawinski
Department of Earth Sciences, Memorial University, St. Johns NL A1B 3X5, Canada
A. Bóna
e-mail: abona@mun.ca
M. A. Slawinski
e-mail: mslawins@mun.ca
I. Bucataru (*)
Faculty of Mathematics, Al. I. CuzaUniversity, Iasi 700506, Romania
e-mail: bucataru@uaic.ro
3. Equation (34): there should be a factor of 3 in the denominator of the argument of the
trigonometric functions 2qþhðÞ.
The correct text should be as follows:
σ¼bkk
γ2cos ð2θþηðÞ
=3Þγ2sin ð2θþηðÞ
=3Þsin ð2θþηðÞ
=3Þ
γ2sin ð2θþη
ðÞ
=3Þγ2cos ð2θþη
ðÞ
=3Þcos ð2θþη
ðÞ
=3Þ
sin ð2θþηðÞ
=3Þcos ð2θþηðÞ
=3Þ0
2
43
5:ð34Þ
4. Equation (35): the denominator of the expression for c_44 should be multiplied by 2.
The correct text should be as follows:
c11 ¼γ1þγ3
ðÞγ2
2γ2
1þγ1þγ4
ðÞγ2
1þ2γ2þγ3
ðÞγ2
2þ2γ2þγ4
ðÞ
22þγ2
1
ðÞ
1þγ2
2
ðÞ ;
c12 ¼γ1γ3
ðÞγ2
2γ2
1þγ1γ4
ðÞγ2
1þ2γ2γ3
ðÞγ2
2þ2γ2γ4
ðÞ
22þγ2
1
ðÞ
1þγ2
2
ðÞ ;
c13 ¼γ2γ1
ðÞγ1
2þγ2
1
;c33 ¼2γ1þγ2γ2
1
2þγ2
1
;
c14 ¼γ3γ4
ðÞγ2
21þγ2
2
ðÞ
;c44 ¼γ3þγ4γ2
2
21þγ2
2
ðÞ
;
ð35Þ
186 A. Bóna et al.
Article
Full-text available
Constitutive tensors are of common use in mechanics of materials. Determining the relevant symmetry class of an experimental tensor is still a tedious problem. For instance, it requires numerical methods in three-dimensional elasticity. We address here the more affordable case of plane (2D) elasticity, which has not been fully solved yet. We recall first Vianello’s orthogonal projection method, valid for both the isotropic and the square symmetric (tetragonal) symmetry classes. We then solve in a closed-form, the problem of the distance to plane elasticity orthotropy, thanks to the Euler–Lagrange method.
John's NL A1B 3X5, Canada A. Bóna e-mail: abona@mun.ca M. A. Slawinski e-mail: mslawins@mun.ca I. Bucataru (*) Faculty of Mathematics
  • A Bóna
A. Bóna : M. A. Slawinski Department of Earth Sciences, Memorial University, St. John's NL A1B 3X5, Canada A. Bóna e-mail: abona@mun.ca M. A. Slawinski e-mail: mslawins@mun.ca I. Bucataru (*) Faculty of Mathematics, " Al. I. Cuza " University, Iasi 700506, Romania e-mail: bucataru@uaic.ro