Article

HeLiVa platform: Integrated heart-liver-vascular systems for drug testing in human health and disease

Stem Cell Research & Therapy (Impact Factor: 3.37). 12/2013; 4 Suppl 1(Suppl 1):S8. DOI: 10.1186/scrt369
Source: PubMed

ABSTRACT

Our project team is developing an integrated microphysiological platform with functionally connected vascular, liver and cardiac microtissues derived from a single line of human pluripotent stem cells. The platform enables functional representation of human physiology in conjunction with real-time biological readouts (via imaging and homologous reporters for all three cell phenotypes) and compatibility with high-throughput/high-content analysis. In this paper, we summarize progress made over the first year of the grant.

Download full-text

Full-text

Available from: Gordana Vunjak-Novakovic, Dec 25, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the tremendous hurdles presented by the complexity of the liver's structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.
    Full-text · Article · Jul 2014 · Science translational medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2-4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to related chemical, bioactivity, preclinical and clinical information uploaded from external databases for constructing predictive models. © 2015 by the Society for Experimental Biology and Medicine.
    No preview · Article · Jul 2015 · Experimental Biology and Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
    Full-text · Article · Dec 2015 · Sensors