DataPDF Available

Abstract—Magnetic Resonance Imaging play a vital role in the

Authors:
  • ASIET,Kalady

Abstract

decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users' feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved. Keywords—Local Binary pattern (LBP), Modified Local Binary pattern (MOD-LBP), T1 and T2 weighted images, Moment features.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
In the medical domain, experts usually look at specific anatomical structures to identify the cause of a pathology, and therefore they can largely benefit from automated tools that retrieve relevant slice(s) from a patient's image volume in diagnosis. Accordingly, this paper introduces a novel search and retrieval work for finding relevant slices in brain MR (magnetic resonance) volumes. As intensity is non-standard in MR we explore performance of two complementary intensity invariant features, local binary patterns and Kanade-Lucas-Tomasi feature points, their extended versions with spatial context, and a simple edge descriptor with spatial context. Experiments on real and simulated data showed that the local binary patterns with spatial context is fast, highly accurate, and robust to geometric deformations and intensity variations.
Article
Full-text available
Practitioners in the area of neurology often need to retrieve multimodal magnetic resonance (MR) images of the brain to study disease progression and to correlate observations across multiple subjects. In this paper, a novel technique for retrieving 2-D MR images (slices) in 3-D brain volumes is proposed. Given a 2-D MR query slice, the technique identifies the 3-D volume among multiple subjects in the database, associates the query slice with a specific region of the brain, and retrieves the matching slice within this region in the identified volumes. The proposed technique is capable of retrieving an image in multimodal and noisy scenarios. In this study, support vector machines (SVM) are used for identifying 3-D MR volume and for performing semantic classification of the human brain into various semantic regions. In order to achieve reliable image retrieval performance in the presence of misalignments, an image registration-based retrieval framework is developed. The proposed retrieval technique is tested on various modalities. The test results reveal superior robustness performance with respect to accuracy, speed, and multimodality.
Conference Paper
Full-text available
We present and discuss our participation in the four tasks of the ImageCLEF 2006 Evaluation. In particular, we present a novel approach to learn feature weights in our content-based image retrieval system FIRE. Given a set of training images with known relevance among each other, the retrieval task is reformulated as a classification task and then the weights to combine a set of features are trained discriminatively using the maximum entropy framework. Experimental results for the medical retrieval task show large improvements over heuristically chosen weights. Furthermore the maximum entropy approach is used for the automatic image annotation tasks in combination with a part-based object model. Using our object classification methods, we obtained the best results in the medical and in the object annotation task.
Article
Full-text available
The aging population and the growing amount of medical data have increased the need for automated tools in the neurology departments. Although the researchers have been developing computerized methods to help the medical expert, these efforts have primarily emphasized to improve the effectiveness in single patient data, such as computing a brain lesion size. However, patient-to-patient comparison that should help improve diagnosis and therapy has not received much attention. To this effect, this paper introduces a fast and robust region-of-interest retrieval method for brain MR images. We make the following various contributions to the domains of brain MR image analysis, and search and retrieval system: 1) we show the potential and robustness of local structure information in the search and retrieval of brain MR images; 2) we provide analysis of two complementary features, local binary patterns (LBPs) and Kanade-Lucas-Tomasi feature points, and their comparison with a baseline method; 3) we show that incorporating spatial context in the features substantially improves accuracy; and 4) we automatically extract dominant LBPs and demonstrate their effectiveness relative to the conventional LBP approach. Comprehensive experiments on real and simulated datasets revealed that dominant LBPs with spatial context is robust to geometric deformations and intensity variations, and have high accuracy and speed even in pathological cases. The proposed method can not only aid the medical expert in disease diagnosis, or be used in scout (localizer) scans for optimization of acquisition parameters, but also supports low-power handheld devices.
Conference Paper
Axial brain slices containing similar anatomical structures are retrieved using features derived from the histogram of Local binary pattern (LBP). A rotation invariant description of texture in terms of texture patterns and their strength is obtained with the incorporation of local variance to the LBP, called Modified LBP (MOD-LBP). In this paper, we compare Histogram based Features of LBP (HF/LBP), against Histogram based Features of MOD-LBP (HF/MOD-LBP) in retrieving similar axial brain images. We show that replacing local histogram with a local distance transform based similarity metric further improves the performance of MOD-LBP based image retrieval.
Article
A wavelet-based, multimodal, multiscale technique is proposed for 2D slice retrieval in 3D Magnetic Resonance (MR) volumes. The use of multiscale wavelet representation facilitates robust matching of important anatomical structures at multiple resolutions. This wavelet representation gives multiscale edges and hence it is very suitable for multimodal registration and is inherently insensitive to MR field inhomogeneity. The dyadic representation allows to use dyadic step size for optimization of registration parameter space for efficient computation. We propose a fast, 2D rigid image registration scheme using mutual information (MI) as a first step for retrieval. For efficient retrieval of relevant slices a novel MI based search scheme is developed. Experiments show promising results with respect to multi-modality, accuracy, speed and robustness.
Article
Image reference databases (IRDBs) are a recurrent research topic in medical imaging. Most IRDBs are designed to help experienced physicians in diagnostic tasks and require that users have prior extensive knowledge of the field for their use to be fruitful. Therefore, the educational potential of such image collections cannot be exploited thoroughly. In this paper we propose an image-indexing method to extend the functionalities of an existing medical IRDB and allow for its use in educational applications, as well as in computer-assisted diagnosis. Our method, based on the Kahrunen-Leève transform, has been used to develop a content-based search engine for tomographic image databases on which we are presently experimenting and which we aim to integrate into a working radiological IRDB installed at the University of Florence. Results achieved in our preliminary tests are also reported.
Conference Paper
Feature aggregation is a critical technique in content- based image retrieval systems that employ multiple visual features to characterize image content. In this paper, the p-norm is introduced to feature aggregation that provides a framework to unify various previous feature aggregation schemes such as linear combination, Euclidean distance, Boolean logic and decision fusion schemes in which previous schemes are instances. Some insights of the mechanism of how various aggregation schemes work are discussed through the effects of model parameters in the unified framework. Experiments show that performances vary over feature aggregation schemes that necessitates an unified framework in order to optimize the retrieval performance according to individual queries and user query concept. Revealing experimental results conducted with IAPR TC-12 ImageCLEF2006 benchmark collection that contains over 20,000 photographic images are presented and discussed.