Conference Paper

TRP: Tunneling routing protocol for WSNs

Authors:
  • COMSATS Institute of Information Technology, Wah Cantt.
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Energy conservation is one of the most important factors in Wireless Sensor Networks (WSNs) for reliability since nodes have limited resources of energy. There is a need to design such routing protocols, which efficiently use available energy and prolong network lifetime and stability period. We implement sink mobility in Clusterless Stable Election Protocol (CL-SEP) and proposed Tunnel Routing Protocol (TRP) for WSNs, which is two level heterogeneous. From the simulation results, it is seen that the proposed protocol outperforms the conventional SEP in stability period, network lifetime and throughput. It efficiently utilizes the available energy of the network by using Moving Sink (MS) and prolongs network lifetime and stability period.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax, the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar, the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar.
Article
Full-text available
We study the impact of heterogeneity of nodes, in terms of their energy, in wireless sensor networks that are hierarchically clustered. In these networks some of the nodes become cluster heads, aggregate the data of their cluster members and transmit it to the sink. We assume that a percentage of the population of sensor nodes is equipped with additional energy resources—this is a source of heterogeneity which may result from the initial setting or as the operation of the network evolves. We also assume that the sensors are randomly (uniformly) distributed and are not mobile, the coordinates of the sink and the dimensions of the sensor field are known. We show that the behavior of such sensor networks becomes very unstable once the first node dies, especially in the presence of node heterogeneity. Classical clustering protocols assume that all the nodes are equipped with the same amount of energy and as a result, they can not take full advantage of the presence of node heterogeneity. We propose SEP, a heterogeneous-aware protocol to prolong the time interval before the death of the first node (we refer to as stability period), which is crucial for many applications where the feedback from the sensor network must be reliable. SEP is based on weighted election probabilities of each node to become cluster head according to the remaining energy in each node. We show by simulation that SEP always prolongs the stability period compared to (and that the average throughput is greater than) the one obtained using current clustering protocols. We conclude by studying the sensitivity of our SEP protocol to heterogeneity parameters capturing energy imbalance in the network. We found that SEP yields longer stability region for higher values of extra energy brought by more powerful nodes.
Article
Full-text available
The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While communication protocols are striving to save energy by acting on sensor nodes, recent results show that network lifetime can be prolonged by further involving sink mobility. As most proposals give their evidence of lifetime improvement through either (small-scale) field tests or numerical simulations on rather arbitrary cases, a theoretical understanding of the reason for this improvement and the tractability of the joint optimization problem is still missing. In this paper, we build a framework for investigating the joint sink mobility and routing problem by constraining the sink to a finite number of locations. We formally prove the NP-hardness of the problem. We also investigate the induced subproblems. In particular, we develop an efficient primal-dual algorithm to solve the subproblem involving a single sink, then we generalize this algorithm to approximate the original problem involving multiple sinks. Finally, we apply the algorithm to a set of typical topological graphs; the results demonstrate the benefit of involving sink mobility, and they also suggest the desirable moving traces of a sink.
Article
Full-text available
This paper proposes a framework to maximize the lifetime of the wireless sensor networks (WSNs) by using a mobile sink when the underlying applications tolerate delayed information delivery to the sink. Within a prescribed delay tolerance level, each node does not need to send the data immediately as it becomes available. Instead, the node can store the data temporarily and transmit it when the mobile sink is at the most favorable location for achieving the longest WSN lifetime. To find the best solution within the proposed framework, we formulate optimization problems that maximize the lifetime of the WSN subject to the delay bound constraints, node energy constraints, and flow conservation constraints. We conduct extensive computational experiments on the optimization problems and find that the lifetime can be increased significantly as compared to not only the stationary sink model but also more traditional mobile sink models. We also show that the delay tolerance level does not affect the maximum lifetime of the WSN.
Conference Paper
Full-text available
Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus deplete their batteries very quickly. The solution we propose in this paper suggests that the base station be mobile; in this way, the nodes located close to it change over time. Data collection protocols can then be optimized by taking both base station mobility and multi-hop routing into account. We first study the former, and conclude that the best mobility strategy consists in following the periphery of the network (we assume that the sensors are deployed within a circle). We then consider jointly mobility and routing algorithms in this case, and show that a better routing strategy uses a combination of round routes and short paths. We provide a detailed analytical model for each of our statements, and corroborate it with simulation results. We show that the obtained improvement in terms of network lifetime is in the order of 500%.
Article
Full-text available
We consider a noise-limited wireless sensor network that consists of battery-operated nodes which can route information to a mobile sink in a multi-hop fashion. The problem of maximizing the network's lifetime, defined as the period of time during which the network can route a feasible flow to each sink location subject to power/energy constraints, is cast into a linear program, reduced into a simpler equivalent form and solved via dual decomposition. The unknowns are the sink sojourn times and the routing flow vector for each sink location. The presence of a mobile sink presents new challenges but the problem structure can still be exploited to find the optimal solution. A distributed algorithm based on the subgradient method and using the sink as leader is proposed and its performance is evaluated through simulation for random networks. The algorithm's requirements in memory are also provided.
Article
In order to prolong the network lifetime, energy-efficient protocols should be designed to adapt the characteristic of wireless sensor networks. Clustering Algorithm is a kind of key technique used to reduce energy consumption, which can increase network scalability and lifetime. This paper studies the performance of clustering algorithm in saving energy for heterogeneous wireless sensor networks. A new distributed energy-efficient clustering scheme for heterogeneous wireless sensor networks is proposed and evaluated. In the new clustering scheme, cluster-heads are elected by a probability based on the ratio between residual energy of node and the average energy of network. The high initial and residual energy nodes will have more chances to be the cluster-heads than the low energy nodes. Simulational results show that the clustering scheme provides longer lifetime and higher throughput than the current important clustering protocols in heterogeneous environments.
Conference Paper
In this paper we investigate the network lifetime maximization problem in a delay-tolerant wireless sensor network with a mobile sink by exploiting a nontrivial tradeoff between the network lifetime and the data delivery delay. We formulate the problem as a joint optimization problem that consists of finding a trajectory for the mobile sink and designing an energy-efficient routing protocol to route sensing data to the sink, subject to the bounded delay on data delivery and the given potential sink location space. Due to NP-hardness of the problem, we then propose a novel optimization framework, which not only prolongs the network lifetime but also improves the other performance metrics including the network scalability, robustness, and the average delivery delay. We finally conduct extensive experiments by simulations to evaluate the performance of the proposed algorithm against other heuristics. The experimental results demonstrate that the proposed algorithm outperforms the others significantly in terms of network lifetime prolongation.
Article
Wireless Sensor Networks (WSNs) are increasing to handle complex situations and functions. In these networks some of the nodes become Cluster Heads (CHs) which are responsible to aggregate data of from cluster members and transmit it to Base Stations (BS). Those clustering techniques which are designed for homogenous network are not enough efficient for consuming energy. Stable Election Protocol (SEP) introduces heterogeneity in WSNs, consisting of two type of nodes. SEP is based on weighted election probabilities of each node to become CH according to remaining energy of nodes. We propose Heterogeneity-aware Hierarchal Stable Election Protocol (HSEP) having two level of energies. Simulation results show that HSEP prolongs stability period and network lifetime, as compared to conventional routing protocols and having higher average throughput than selected clustering protocols in WSNs.
Conference Paper
Sensor networks are typically sensor or radio event driven. Exploiting this property we propose a novel wake-on sensor network design. In this context we have designed a new sensor platform called TelosW. The wake-on sensing capability of TelosW lets designated sensors wake up the microcontroller (MCU) only on occurrence of some event with preconfigurable threshold. TelosW also includes the CC1101 Wake-On Radio (WOR) hardware that performs low power listening without intervention of MCU. These all lead to a completely event driven wake-on sensor network that reduces energy consumption considerably. TelosW is also equipped with an on-board energy meter that can precisely measure in-situ energy consumption. Using the energy meter it is possible to get the insight of energy states of nodes in a network at any time. This makes it possible to practically analyze energy-efficient protocols. The experiments show that the energy consumption has been significantly reduced comparing to same application without wake-on design.
Conference Paper
Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.
Article
The clustering Algorithm is a kind of key technique used to reduce energy consumption. It can increase the scalability and lifetime of the network. Energy-efficient clustering protocols should be designed for the characteristic of heterogeneous wireless sensor networks. We propose and evaluate a new distributed energy-efficient clustering scheme for heterogeneous wireless sensor networks, which is called DEEC. In DEEC, the cluster-heads are elected by a probability based on the ratio between residual energy of each node and the average energy of the network. The epochs of being cluster-heads for nodes are different according to their initial and residual energy. The nodes with high initial and residual energy will have more chances to be the cluster-heads than the nodes with low energy. Finally, the simulation results show that DEEC achieves longer lifetime and more effective messages than current important clustering protocols in heterogeneous environments.
Conference Paper
In this paper we investigate the benefits of a heterogeneous architecture for wireless sensor networks composed of a few resource rich mobile nodes and a large number of simple static nodes. These mobile nodes can either act as mobile relays or mobile sinks. To investigate the performance of these two options and the trade-offs associated with these two options, we first consider a finite network. We then compute the lifetime for different routing algorithms for three cases (i) when the network is all static (ii) when there is one mobile sink and (iii) when there is one mobile relay. We find that using the mobile node as a sink results in the maximum improvement in lifetime. We contend however that in hostile terrains, it might not always be possible for the sink to be mobile. We then investigate the performance of a large dense network with one mobile relay and show that the improvement in network lifetime over an all static network is upper bounded by a factor of four. Also, the proof implies that the mobile relay needs to stay only within a two hop radius of the sink. We then construct a joint mobility and routing algorithm which comes close to the upper bound. However this algorithm requires all the nodes in the network to be aware of the location of the mobile node. We then proposed an alternative algorithm, which achieves the same performance, but requires only a limited number of nodes in the network to be aware of the location of the mobile. We finally compare the performance of the mobile relay and mobile sink and show that for a densely deployed sensor field of radius R hops, we require O(R) mobile relays to achieve the same performance as the mobile sink.