Article

Neural Correlates of Substance Abuse: Reduced Functional Connectivity Between Areas Underlying Reward and Cognitive Control

Human Brain Mapping (Impact Factor: 5.97). 09/2014; 35(9). DOI: 10.1002/hbm.22474
Source: PubMed

ABSTRACT

Substance use disorders (SUD) have been associated with dysfunction in reward processing, habit formation, and cognitive-behavioral control. Accordingly, neurocircuitry models of addiction highlight roles for nucleus accumbens, dorsal striatum, and prefrontal/anterior cingulate cortex. However, the precise nature of the disrupted interactions between these brain regions in SUD, and the psychological correlates thereof, remain unclear. Here we used magnetic resonance imaging to measure rest-state functional connectivity of three key striatal nuclei (nucleus accumbens, dorsal caudate, and dorsal putamen) in a sample of 40 adult male prison inmates (n = 22 diagnosed with SUD; n = 18 without SUD). Relative to the non-SUD group, the SUD group exhibited significantly lower functional connectivity between the nucleus accumbens and a network of frontal cortical regions involved in cognitive control (dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, and frontal operculum). There were no group differences in functional connectivity for the dorsal caudate or dorsal putamen. Moreover, the SUD group exhibited impairments in laboratory measures of cognitive-behavioral control, and individual differences in functional connectivity between nucleus accumbens and the frontal cortical regions were related to individual differences in measures of cognitive-behavioral control across groups. The strength of the relationship between functional connectivity and cognitive control did not differ between groups. These results indicate that SUD is associated with abnormal interactions between subcortical areas that process reward (nucleus accumbens) and cortical areas that govern cognitive-behavioral control. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.

Download full-text

Full-text

Available from: Arielle Baskin-Sommers, Sep 22, 2014
  • Source
    • "Not surprisingly, on inhibitory control tasks, nonaddicted individuals significantly outperform those who chronically use alcohol (Kamarajan et al., 2005), stimulants (Hester and Garavan, 2004;Monterosso et al., 2005), and opioids (Fu et al., 2008). Functional neuroimaging studies of addicted populations have demonstrated that the key regions associated with these control deficits are the anterior cingulate cortex , dorsolateral prefrontal cortex, and orbitofrontal cortex (Goldstein and Volkow, 2011;Motzkin et al., 2014), and structural neuroimaging studies have found that these regions are smaller in individuals with SUDs, with reductions proportionate to severity and/or length of use (Ersche et al., 2013;Goldstein and Volkow, 2011;Liu et al., 2009). Further , resting state functional connectivity strength within the executive control network is negatively correlated with AUD severity, which mediates the relationship between length of regular drinking and severity of alcohol problems (Weiland et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Existing pharmacological treatments for alcohol use disorder (AUD) and other substance use disorders (SUDs) have demonstrated only modest efficacy. Although the field has recently emphasized testing and developing new compounds to treat SUDs, there are numerous challenges inherent to the development of novel medications, and this is particularly true for SUDs. Thus, research to date has tended toward the “repurposing” approach, in which medications developed to treat other mental or physical conditions are tested as SUD treatments. Often, potential treatments are examined across numerous drugs of abuse. Several repurposed medications have shown promise in treating a specific SUD, but few have shown efficacy across multiple SUDs. Examining similarities and differences between AUD and other SUDs may shed light on these findings and offer directions for future research.Methods This qualitative review discusses similarities and differences in neural circuitry and molecular mechanism(s) across alcohol and other substances of abuse, and examines studies of pharmacotherapies for AUD and other SUDs.ResultsSubstances of abuse share numerous molecular targets and involve much of the same neural circuitry, yet compounds tested because they putatively target common mechanisms have rarely indicated therapeutic promise for multiple SUDs.Conclusions The lack of treatment efficacy across SUDs may be partially explained by limitations inherent in studying substance users, who comprise a highly heterogeneous population. Alternatively, medications may fail to show efficacy across multiple SUDs due to the fact that the differences between drug mechanisms are more important than their commonalities in terms of influencing treatment response. We suggest that exploring these differences could support novel treatment development, aid in identifying existing medications that may hold promise as treatments for specific SUDs, and ultimately advance translational research efforts.
    Full-text · Article · Sep 2015 · Alcoholism Clinical and Experimental Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common criticism of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) is that its criteria are based more on behavioral descriptions than on underlying biological mechanisms. Increasingly, calls have intensified for a more biologically-based approach to conceptualizing, studying, and treating psychological disorders, as exemplified by the Research Domain Criteria Project (RDoC). Among the most well-studied neurobiological mechanisms is reward processing. Moreover, individual differences in reward sensitivity are related to risk for substance abuse and depression. The current review synthesizes the available preclinical, electrophysiological, and neuroimaging literature on reward processing from a transdiagnostic, multidimensional perspective. Findings are organized with respect to key reward constructs within the Positive Valence Systems domain of the RDoC matrix, including initial responsiveness to reward (physiological 'liking'), approach motivation (physiological 'wanting'), and reward learning/habit formation. The current review (a) describes the neural basis of reward, (b) elucidate differences in reward activity in substance abuse and depression, and (c) suggest a framework for integrating these disparate literatures and discuss the utility of shifting focus from diagnosis to process for understanding liability and co-morbidity. Ultimately, we believe that an integrative focus on abnormal reward functioning across the full continuum of clinically heterogeneous samples, rather than within circumscribed diagnostic categories, might actually help to refine the phenotype and improve the prediction of onset and recovery of these disorders. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Feb 2015 · International journal of psychophysiology: official journal of the International Organization of Psychophysiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The insula has been implicated in salience processing, craving, and interoception, all of which are critical to the clinical manifestations of drug and behavioral addiction. In this functional magnetic resonance imaging (fMRI) study, we examined resting-state functional connectivity (rsFC) of the insula and its association with Internet gaming characteristics in 74 young adults with Internet gaming disorder (IGD) and 41 age- and gender-matched healthy control subjects (HCs). In comparison with HCs, IGD subjects (IGDs) exhibited enhanced rsFC between the anterior insula and a network of regions including anterior cingulate cortex (ACC), putamen, angular gyrus, and precuneous, which are involved in salience, craving, self-monitoring, and attention. IGDs also demonstrated significantly stronger rsFC between the posterior insula and postcentral gyrus, precentral gyrus, supplemental motor area, and superior temporal gyrus (STG), which are involved in interoception, movement control, and auditory processing. Furthermore, IGD severity was positively associated with connectivity between the anterior insula and angular gyrus, and STG, and with connectivity between the posterior insula and STG. Duration of Internet gaming was positively associated with connectivity between the anterior insula and ACC. These findings highlight a key role of the insula in manifestation of the core symptoms of IGD and the importance to examine functional abnormalities of the anterior and posterior insula separately in IGDs. © 2015 Society for the Study of Addiction.
    Full-text · Article · May 2015 · Addiction Biology
Show more