Conference Paper

Similarity guided feature labeling for lesion detection.

Conference: 16th Medical Image Computing & Computer-Assisted Intervention (MICCAI 2013), At Ngoya, Japan
Source: PubMed

ABSTRACT

The performance of automatic lesion detection is often affected by the intra- and inter-subject feature variations of lesions and normal anatomical structures. In this work, we propose a similarity-guided sparse representation method for image patch labeling, with three aspects of similarity information modeling, to reduce the chance that the best reconstruction of a feature vector does not provide the correct classification. Based on this classification model, we then design a new approach for detecting lesions in positron emission tomography computed tomography (PET-CT) images. The approach works well with simple image features, and the proposed sparse representation model is effectively applied for both detection of all lesions and characterization of lung tumors and abnormal lymph nodes. The experiments show promising performance improvement over the state-of-the-art.

0 Followers
 · 
3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a lesion detection and characterization method for 18F-fluorodeoxyglucose positron emission tomography - computed tomography (FDG PET-CT) images of the thorax in the evaluation of patients with primary non-small cell lung cancer (NSCLC) with regional nodal disease. Lesion detection can be difficult due to low contrast between lesions and normal anatomical structures. Lesion characterization is also challenging due to similar spatial characteristics between the lung tumors and abnormal lymph nodes. To tackle these problems, we propose a context driven approximation (CDA) method. There are two main components of our method. First, a sparse representation technique with region-level contexts was designed for lesion detection. To discriminate low-contrast data with sparse representation, we propose a reference consistency constraint and a spatial consistent constraint. Second, a multi-atlas technique with image-level contexts was designed to represent the spatial characteristics for lesion characterization. To accommodate inter-subject variation in a multi-atlas model, we propose an appearance constraint and a similarity constraint. The CDA method is effective with a simple feature set, and does not require parametric modeling of feature space separation. The experiments on a clinical FDG PET-CT dataset show promising performance improvement over the state-of-the-art.
    No preview · Article · Feb 2014 · IEEE Transactions on Medical Imaging