ArticlePDF Available

Implementing lessons learned from previous bronchial biopsy trials in a new randomized controlled COPD biopsy trial with roflumilast

Authors:

Abstract and Figures

Background: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease mediated by an array of inflammatory cells and mediators, but above all, CD8+ T-lymphocytes, macrophages and neutrophils are important players in disease pathogenesis. Roflumilast, a first-in-class, potent and selective phosphodiesterase 4 (PDE4) inhibitor, reduces the rate of exacerbations in patients with a high risk of future exacerbations and has been shown to reduce inflammatory cells and mediators in induced sputum, a surrogate of airway inflammation. However, these anti-inflammatory effects are yet to be confirmed in another robust study directly assessing inflammatory markers in bronchial sub-mucosa. Methods/design: An international, 16-week, randomized, double-blind, placebo-controlled, parallel-group study investigating the effects of roflumilast 500 μg once-daily versus placebo on inflammatory parameters in bronchial biopsy tissue specimens, sputum and blood serum. One hundred and fifty patients with COPD and chronic bronchitis for at least 12 months will be recruited into the study and randomized in a 1:1 ratio to receive either roflumilast or placebo. The primary endpoint will be the number of CD8+ cells (cell counts per mm2) in bronchial biopsy tissue specimens (sub-mucosa) and the key secondary endpoint will be the number of CD68+ cells (cell counts per mm2), assessed by indirect immunohistochemistry. Discussion: It is hypothesized that treatment with roflumilast reduces the characteristic inflammation found in the airways of patients with moderate-to-severe COPD, compared with placebo. The design of the present study has built on the work of previous bronchial biopsy studies available in the literature. It is hoped that it will reveal the cellular mechanisms underlying the anti-inflammatory effects of roflumilast and identify potentially important biomarkers and other surrogate endpoints in patients with COPD. The design and rationale for this trial are described herein.
Content may be subject to copyright.
A preview of the PDF is not available
... The design and rationale of ROBERT have been published previously. 26 Eligible patients were current or former smokers (smoking history of ≥20 pack years) aged 40-80 years who had a history of COPD diagnosed at least 12 months before the baseline visit, with chronic productive cough ...
... Bronchial biopsy specimens, induced sputum, and peripheral blood were collected and analysed as previously described. 26,27 Bronchoscopies were done at baseline (ie, at randomisation) and week 16 to quantify the number of CD8, CD68, CD4, and CD45 cells, neutrophils, and eosinophils per mm 2 in the submucosa. CD8 and CD68 cells were also quantified in the bronchial epithelium. ...
... All participating centres had to undergo training and continuous quality control before and during the study. 26 Bronchial biopsy samples were taken from each lobar and sub-segmental carina. To take into account inter-airway and intra-airway variability, two or three samples were taken from the lobar bronchus and from the subsegmental airway at each bronchoscopy session. ...
Article
Background: The clinical effects of roflumilast, a selective phosphodiesterase-4 inhibitor, are well established, but little is known about the anti-inflammatory mechanisms underlying the drug's efficacy. The aim of the ROflumilast Biopsy European Research Trial (ROBERT) was to assess the anti-inflammatory effects of roflumilast on bronchial mucosal inflammation in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD) and chronic bronchitis. Methods: ROBERT was a randomised, double-blind, placebo-controlled trial done at 18 sites in five countries. Eligible patients were aged 40-80 years, had COPD, and had had a chronic productive cough for 3 months in each of the two previous years. Patients also had to have a post-bronchodilator predicted FEV1 30-80% and a post-bronchodilator FEV1/forced vital capacity ratio of 70% or less. Patients entered a 6-week run-in period before being randomly assigned (1:1) via a computerised central randomisation system to roflumilast 500 μg once daily or placebo for 16 weeks, in addition to bronchodilator therapy (inhaled corticosteroids were not permitted). Randomisation was stratified by concomitant use of long-acting β agonist. Both participants and investigators were masked to group assignment. Roflumilast and placebo were supplied as identical yellow, triangular tablets. Airway inflammation was assessed by quantification of inflammatory cells in bronchial biopsy samples and induced sputum samples. The primary endpoint was the change in the number of CD8 inflammatory cells in bronchial biopsy submucosa from randomisation to week 16 in the intention-to-treat population. Changes in cell counts of additional inflammatory markers, including eosinophils, were assessed as secondary endpoints. This trial is registered with ClinicalTrials.gov, number NCT01509677, and is closed to new participants, with follow-up completed. Findings: Between Jan 4, 2012, and Feb 11, 2016, 158 patients were randomly assigned: 79 to the roflumilast group, and 79 to the placebo group. At week 16, the change in the number of CD8 cells in the bronchial submucosa did not differ significantly between the roflumilast and placebo groups (treatment ratio 1·03 [95% CI 0·82-1·30]; p=0·79). However, compared with placebo, roflumilast was associated with a significant reduction in eosinophils in bronchial biopsy samples at week 16 (treatment ratio 0·53 [95% CI 0·34-0·82]; p=0·0046). Significant reductions in both absolute (p=0·0042) and differential (p=0·0086) eosinophil cell counts in induced sputum were also noted with roflumilast compared with placebo, but peripheral blood eosinophil counts were not significantly affected. We noted no other significant effects of roflumilast on bronchial mucosal inflammatory cells. The most common (ie, occurring in >5% patients) moderate adverse events were worsening of COPD (three [4%] patients in the roflumilast group vs seven [9%] in the placebo group), cough (six [8%] vs four [5%]), diarrhoea (four [5%] vs three [4%]), and nasopharyngitis (three [4%] vs five [6%]). Severe adverse events included worsening of COPD, which occurred in four (5%) patients in the roflumilast group and two (3%) in the placebo group. No deaths occurred during the study. Serious adverse events occurred in eight (10%) patients in the roflumilast group and five (6%) in the placebo group. Interpretation: 16 weeks of treatment with roflumilast did not affect the number of CD8 cells in bronchial submucosa compared with placebo. However, we noted signficant reductions in eosinophil cell counts in bronchial biopsy samples and induced sputum, generating the hypothesis that the effect of roflumilast in COPD could be mediated by an effect on lung eosinophils. Funding: Takeda and AstraZeneca.
... Current COPD treatments alleviate the symptoms, but do not target the cause of disease. For example, the widely used drug roflumilast works through inhibition of phosphodiesterase-4 and reduces inflammatory mediators, including IL-6, and decreases apoptosis [69,70]. Although effective in increasing the forced expiratory volume in 1 second (FEV1) in patients, roflumilast has serious side effects such as diarrhea, significant weight loss, acute pancreatitis, anxiety, depression and insomnia [71]. ...
Article
Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.
... Four of the other studies focused on the physiological and functional benefits of roflumilast in improving PFT data or decreasing inflammation, but in doing so do not address the clinical question. [3][4][5][6] Three more studies were conducted in patient populations exclusively in Asia, the results of which cannot necessarily be translated to the patient population of my patient. [7][8][9] One study focused on cost effectiveness of roflumilast in Germany, which is neither the patient population nor the clinical question of this appraisal. ...
Article
Full-text available
p>A critical appraisal and clinical application of Martinez FJ, Rabe KF, Sethi S, et al. Effect of Roflumilast and Inhaled Corticosteroid/Long-Acting beta2-Agonist on Chronic Obstructive Pulmonary Disease Exacerbations (RE(2)SPOND). A Randomized Clinical Trial. Am J Respir Crit Care Med . Sep 1 2016;194(5):559-567. doi: 10.1164/rccm.201607-1349OC .</p
... The study of Barnes et al 55 showed that roflumilast could reduce the level of IL-6 in patients with ACO and eventually alleviate ACO inflammation. This effect may be related to the following factors. ...
Article
Full-text available
Asthma–COPD overlap (ACO) is a type of incomplete obstructive airway disease that has a high incidence and mortality. Nevertheless, there is currently no clear definition of ACO and no effective intervention. The newly discovered phosphodiesterase-4 inhibitor, roflumilast, has shown initial efficacy for treating asthma, COPD, and ACO. The mechanism of roflumilast, however, remains unclear, and there has been no interpretation through systematic review to date. The determination of a definite mechanism of roflumilast will guide the clinician’s decisions regarding medication use, standardized diagnosis, and treatment guidelines. For this reason, we have systematically reviewed the therapeutic mechanism of roflumilast for ACO and provided reference for the clinical application of roflumilast in ACO.
... Therefore, it is important to carefully evaluate the safety and comfort of this procedure, which will impact general acceptance by patients and clinicians. Based on published studies, bronchoscopy with or without biopsy is considered a safe procedure and it is used not only for medical purposes but also to conduct research [5,[41][42][43][44][45][46][47][48][49]. Reported complication rates (also known as serious adverse event/SAE rates) for all bronchoscopy procedures range from 0.08-1.93 ...
Article
Full-text available
Background: The Lung Cancer Risk Test (LCRT) trial is a prospective cohort study comparing lung cancer incidence among persons with a positive or negative value for the LCRT, a 15 gene test measured in normal bronchial epithelial cells (NBEC). The purpose of this article is to describe the study design, primary endpoint, and safety; baseline characteristics of enrolled individuals; and establishment of a bio-specimen repository. Methods/design: Eligible participants were aged 50-90 years, current or former smokers with 20 pack-years or more cigarette smoking history, free of lung cancer, and willing to undergo bronchoscopic brush biopsy for NBEC sample collection. NBEC, peripheral blood samples, baseline CT, and medical and demographic data were collected from each subject. Discussion: Over a two-year span (2010-2012), 403 subjects were enrolled at 12 sites. At baseline 384 subjects remained in study and mean age and smoking history were 62.9 years and 50.4 pack-years respectively, with 34 % current smokers. Obstructive lung disease (FEV1/FVC <0.7) was present in 157 (54 %). No severe adverse events were associated with bronchoscopic brushing. An NBEC and matched peripheral blood bio-specimen repository was established. The demographic composition of the enrolled group is representative of the population for which the LCRT is intended. Specifically, based on baseline population characteristics we expect lung cancer incidence in this cohort to be representative of the population eligible for low-dose Computed Tomography (LDCT) lung cancer screening. Collection of NBEC by bronchial brush biopsy/bronchoscopy was safe and well-tolerated in this population. These findings support the feasibility of testing LCRT clinical utility in this prospective study. If validated, the LCRT has the potential to significantly narrow the population of individuals requiring annual low-dose helical CT screening for early detection of lung cancer and delay the onset of screening for individuals with results indicating low lung cancer risk. For these individuals, the small risk incurred by undergoing once in a lifetime bronchoscopic sample collection for LCRT may be offset by a reduction in their CT-related risks. The LCRT biospecimen repository will enable additional studies of genetic basis for COPD and/or lung cancer risk. Trial registration: The LCRT Study, NCT 01130285, was registered with Clinicaltrials.gov on May 24, 2010.
Article
Background: Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea, and a reduction in lung function, quality of life, and life expectancy. Apart from smoking cessation, no other treatments that slow lung function decline are available. Roflumilast and cilomilast are oral phosphodiesterase-4 (PDE₄) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This Cochrane Review was first published in 2011, and was updated in 2017 and 2020. Objectives: To evaluate the efficacy and safety of oral PDE₄ inhibitors for management of stable COPD. Search methods: We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search 9 March 2020). We found other trials at web-based clinical trials registers. Selection criteria: We included RCTs if they compared oral PDE₄ inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. Data collection and analysis: We used standard Cochrane methods. Two independent review authors selected trials for inclusion, extracted data, and assessed risk of bias. We resolved discrepancies by involving a third review author. We assessed our confidence in the evidence by using GRADE recommendations. Primary outcomes were change in lung function (minimally important difference (MID) = 100 mL) and quality of life (scale 0 to 100; higher score indicates more limitations). Main results: We found 42 RCTs that met the inclusion criteria and were included in the analyses for roflumilast (28 trials with 18,046 participants) or cilomilast (14 trials with 6457 participants) or tetomilast (1 trial with 84 participants), with a duration between six weeks and one year or longer. These trials included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II to IV), with mean age of 64 years. We judged risks of selection bias, performance bias, and attrition bias as low overall amongst the 39 published and unpublished trials. Lung function Treatment with a PDE₄ inhibitor was associated with a small, clinically insignificant improvement in forced expiratory volume in one second (FEV₁) over a mean of 40 weeks compared with placebo (mean difference (MD) 49.33 mL, 95% confidence interval (CI) 44.17 to 54.49; participants = 20,815; studies = 29; moderate-certainty evidence). Forced vital capacity (FVC) and peak expiratory flow (PEF) were also improved over 40 weeks (FVC: MD 86.98 mL, 95% CI 74.65 to 99.31; participants = 22,108; studies = 17; high-certainty evidence; PEF: MD 6.54 L/min, 95% CI 3.95 to 9.13; participants = 4245; studies = 6; low-certainty evidence). Quality of life Trials reported improvements in quality of life over a mean of 33 weeks (St George's Respiratory Questionnaire (SGRQ) MD -1.06 units, 95% CI -1.68 to -0.43; participants = 7645 ; moderate-certainty evidence). Incidence of exacerbations Treatment with a PDE₄ inhibitor was associated with a reduced likelihood of COPD exacerbation over a mean of 40 weeks (odds ratio (OR) 0.78, 95% CI 0.73 to 0.84; participants = 20,382; studies = 27; high-certainty evidence), that is, for every 100 people treated with PDE₄ inhibitors, five more remained exacerbation-free during the study period compared with those given placebo (number needed to treat for an additional beneficial outcome (NNTB) 20, 95% CI 16 to 27). No change in COPD-related symptoms nor in exercise tolerance was found. Adverse events More participants in the treatment groups experienced an adverse effect compared with control participants over a mean of 39 weeks (OR 1.30, 95% CI 1.22 to 1.38; participants = 21,310; studies = 30; low-certainty evidence). Participants experienced a range of gastrointestinal symptoms such as diarrhoea, nausea, vomiting, or dyspepsia. Diarrhoea was more commonly reported with PDE₄ inhibitor treatment (OR 3.20, 95% CI 2.74 to 3.50; participants = 20,623; studies = 29; high-certainty evidence), that is, for every 100 people treated with PDE₄ inhibitors, seven more suffered from diarrhoea during the study period compared with those given placebo (number needed to treat for an additional harmful outcome (NNTH) 15, 95% CI 13 to 17). The likelihood of psychiatric adverse events was higher with roflumilast 500 µg than with placebo (OR 2.13, 95% CI 1.79 to 2.54; participants = 11,168; studies = 15 (COPD pool data); moderate-certainty evidence). Roflumilast in particular was associated with weight loss during the trial period and with an increase in insomnia and depressive mood symptoms. Participants treated with PDE₄ inhibitors were more likely to withdraw from trial participation; on average, 14% in the treatment groups withdrew compared with 8% in the control groups. Mortality No effect on mortality was found (OR 0.98, 95% CI 0.77 to 1.24; participants = 19,786; studies = 27; moderate-certainty evidence), although mortality was a rare event during these trials. Authors' conclusions: For this current update, five new studies from the 2020 search contributed to existing findings but made little impact on outcomes described in earlier versions of this review. PDE₄ inhibitors offered a small benefit over placebo in improving lung function and reducing the likelihood of exacerbations in people with COPD; however, they had little impact on quality of life or on symptoms. Gastrointestinal adverse effects and weight loss were common, and the likelihood of psychiatric symptoms was higher, with roflumilast 500 µg. The findings of this review provide cautious support for the use of PDE₄ inhibitors in COPD. In accordance with GOLD 2020 guidelines, they may have a place as add-on therapy for a subgroup of people with persistent symptoms or exacerbations despite optimal COPD management (e.g. people whose condition is not controlled by fixed-dose long-acting beta₂-agonist (LABA) and inhaled corticosteroid (ICS) combinations). More longer-term trials are needed to determine whether or not PDE₄ inhibitors modify FEV₁ decline, hospitalisation, or mortality in COPD.
Article
Background: Randomized controlled trials (RCTs) of roflumilast effect on chronic obstructive pulmonary disease (COPD) have been reported in the last decade. The current meta-analysis was designed to systematically review and perform meta-analysis of the RCTs of roflumilast treatment in COPD. Methods: Electronic databases including PubMed, EMBASE, Web of Science, and Cochrane clinical trials database were searched to identify RCTs of roflumilast treatment on COPD. The primary outcomes were effect of roflumilast on pre-bronchodilator FEV1, post-bronchodilator FEV1, and exacerbation rate. Secondary outcomes were effect of roflumilast on airway inflammation and adverse effect. Results: A total of 11 RCTs were enrolled into the current analysis. Roflumilast significantly improved both pre-bronchodilator FEV1 (standardized difference in mean ± SD was 0.621 ± 0.161; 95% CI 0.306~0.936, p < 0.001) and post-bronchodilator FEV1 (standardized difference in mean ± SD was 0.563 ± 0.149, 95% CI 0.270~0.855, p < 0.001) compared with placebo. Roflumilast also significantly reduced exacerbation of COPD (standardized difference in mean ± SD 0.099 ± 0.020, 95% CI 0.061~0.138; p < 0.001) and suppressed airway inflammation (standardized difference in mean ± SD 1.354 ± 0.260, 95% CI 0.845~1.862, p < 0.001) compared with placebo. However, roflumilast significantly increased adverse effect such as diarrhea (rate ratio 2.945, 95% CI 2.453~3.536, p < 0.001) and weight loss (rate ratio 3.814, 95% CI 3.091~4.707, p < 0.001) compared with placebo. Conclusion: These findings indicated that roflumilast treatment could improve COPD patients' lung function and reduce exacerbation, and that inhibition of airway inflammation by roflumilast might contribute to the beneficial effect of PDE-4 inhibitors on COPD.
Article
Background: Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE4) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This is an update of a Cochrane review first published in 2011 and updated in 2013. Objectives: To evaluate the efficacy and safety of oral PDE4 inhibitors in the management of stable COPD. Search methods: We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search October 2016). We found other trials from web-based clinical trials registers. Selection criteria: We included RCTs if they compared oral PDE4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. Data collection and analysis: One review author extracted data and a second review author checked the data. We reported pooled data in Review Manager as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). We converted the odds ratios into absolute treatment effects in a 'Summary of findings' table. Main results: Thirty-four separate RCTs studying roflumilast (20 trials with 17,627 participants) or cilomilast (14 trials with 6457 participants) met the inclusion criteria, with a duration of between six weeks and one year. These included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II-IV), with a mean age of 64 years.We considered that the methodological quality of the 34 published and unpublished trials was acceptable overall. Treatment with a PDE4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV1) over the trial period compared with placebo (MD 51.53 mL, 95% confidence interval (CI) 43.17 to 59.90, 27 trials with 20,585 participants, moderate-quality evidence due to moderate levels of heterogeneity and risk of reporting bias). There were small improvements in quality of life (St George's Respiratory Questionnaire (SGRQ), MD -1.06 units, 95% CI -1.68 to -0.43, 11 trials with 7645 participants, moderate-quality evidence due to moderate levels of heterogeneity and risk of reporting bias) and COPD-related symptoms, but no significant change in exercise tolerance. Treatment with a PDE4 inhibitor was associated with a reduced likelihood of COPD exacerbation (OR 0.78, 95% CI 0.73 to 0.83; 23 trials with 19,948 participants, high-quality evidence). For every 100 people treated with PDE4 inhibitors, five more remained exacerbation-free during the study period compared with placebo (number needed to treat for an additional beneficial outcome (NNTB) 20, 95% CI 16 to 26). More participants in the treatment groups experienced non-serious adverse events compared with controls, particularly a range of gastrointestinal symptoms such as diarrhoea, nausea, vomiting or dyspepsia. For every 100 people treated with PDE4 inhibitors, seven more suffered from diarrhoea during the study period compared with placebo (number needed to treat for an additional harmful outcome (NNTH) 15, 95% CI 13 to 17). Roflumilast in particular was associated with weight loss during the trial period and an increase in insomnia and depressive mood symptoms. There was no significant effect of treatment on non-fatal serious adverse events (OR 0.99, 95% CI 0.91 to 1.07) or mortality (OR 0.97, 95% CI 0.76 to 1.23), although mortality was a rare event during the trials. Participants treated with PDE4 inhibitors were more likely to withdraw from the trials because of adverse effects; on average 14% in the treatment groups withdrew compared with 8% in the control groups. Authors' conclusions: In people with COPD, PDE4 inhibitors offered benefit over placebo in improving lung function and reducing the likelihood of exacerbations; however, they had little impact on quality of life or symptoms. Gastrointestinal adverse effects and weight loss were common, and safety data submitted to the US Food and Drug Administration (FDA) have raised concerns over psychiatric adverse events with roflumilast. The findings of this review give cautious support to the use of PDE4 inhibitors in COPD. They may be best used as add-on therapy in a subgroup of people with persistent symptoms or exacerbations despite optimal COPD management. This is in accordance with the GOLD 2017 guidelines. Longer-term trials are needed to determine whether or not PDE4 inhibitors modify FEV1 decline, hospitalisation or mortality in COPD.
Article
There remains a considerable need to develop novel therapies for patients with asthma and chronic obstructive pulmonary disease (COPD). The greatest challenge at the moment is measuring the effects of novel anti-inflammatory drugs, as these drugs often cause only small effects on lung function. Measurements that demonstrate the pharmacological and clinical effects of these drugs are needed. Furthermore, we now recognise that only subgroups of patients are likely to respond to these novel drugs, so using biomarkers to determine the clinical phenotype most suitable for such therapies is important. An endotype is a subtype of a (clinical) condition defined by a distinct pathophysiological mechanism. An endotype-driven approach may be more helpful in drug development, enabling drugs to be targeted specifically towards specific biological mechanisms rather than clinical characteristics. This requires the development of biomarkers to define endotypes and/or to measure drug effects. This newer approach should continue alongside efforts to optimise the measurement of clinical endpoints, including patient-reported outcome measurements, required by drug regulatory authorities.
Article
Clinical phenotyping is currently used to guide pharmacological treatment decisions in chronic obstructive pulmonary disease (COPD), a personalized approach to care. Precision medicine integrates biological (endotype) and clinical (phenotype) information for a more individualized approach to pharmacotherapy, to maximize the benefit versus risk ratio. Biomarkers can be used to identify endotypes. To evolve toward precision medicine in COPD, the most appropriate biomarkers and clinical characteristics that reliably predict treatment responses need to be identified. FEV1 is a marker of COPD severity and has historically been used to guide pharmacotherapy choices. However, we now understand that the trajectory of FEV1 change, as an indicator of disease activity, is more important than a single FEV1 measurement. There is a need to develop biomarkers of disease activity to enable a more targeted and individualized approach to pharmacotherapy. Recent clinical trials testing commonly used COPD treatments have provided new information that is likely to influence pharmacological treatment decisions both at initial presentation and at follow up. In this Perspective, we consider the impact of recent clinical trials on current COPD treatment recommendations. We also focus on the movement toward precision medicine and propose how this field needs to evolve in terms of using clinical characteristics and biomarkers to identify the most appropriate patients for a given pharmacological treatment.
Article
Full-text available
COPD is associated with increased numbers of T cells in the lungs, particularly CD8+ T cells. The mechanisms of increased T cells are unknown but may be related to repeated virus infections in COPD patients. We analysed lymphocyte subsets in blood and bronchoalveolar lavage in smokers and COPD subjects during experimental rhinovirus infections. Lymphocytes were isolated from blood and bronchoalveolar lavage from COPD subjects and non-obstructed smokers prior to, and following experimental rhinovirus infection. Lymphocyte surface markers and intracellular cytokines were analysed using flow cytometry. Following rhinovirus infection CD4+ and CD8+ T cell numbers in the COPD subjects were significantly reduced in blood and CD3+ and CD8+ T cells increased in bronchoalveolar lavage compared to baseline. T cells did not increase in BAL in the control subjects. CD3+ T cells correlated with virus load. Following rhinovirus infection T cells move from the circulation to the lung. Repeated virus infections may contribute to T cell accumulation in COPD patients.
Article
The participants in the workshop reached unanimous consensus that as an investigative tool, BAL has enormous potential for extending knowledge of the immunopathogenesis of asthma. When utilized according to these guidelines, maximum knowledge may be gained with minimal risks to study subjects. However, we wish to emphasize that the extent to which the safety of the procedure applies to those asthmatic subjects with more symptoms and an FEV1 of less than 60 percent of predicted remains to be established by carefully controlled clinical investigations.
Article
The participants in the workshop reached unanimous consensus that, as an investigative tool, BAL has enormous potential for extending knowledge of the immunopathogenesis of asthma. When BAL is used according to these guidelines, maximum knowledge may be gained with minimal risks to study subjects. However, we wish to emphasize that the extent to which the safety of the procedure applies to those subjects with asthma and more symptoms and an FEV1 of <60% of predicted value remains to be established by carefully controlled clinical investigations.
Article
To investigate whether the inflammatory process in peripheral airways is different in smokers who develop symptoms of chronic bronchitis and chronic airflow limitation and in asymptomatic smokers who do not develop chronic airflow limitation, we examined surgical specimens obtained from 16 smokers undergoing lung resection for localized pulmonary lesions. Nine had symptoms of chronic bronchitis and chronic airflow limitation and seven were asymptomatic with normal lung function. In peripheral airways, immunohistochemical methods were performed to identify neutrophils, macrophages, CD4+ and CD8+ T-lymphocytes infiltrating the airway wall, and morphometric methods were used to measure the internal perimeter, the airway wall area, and the smooth muscle area. The number of CD8+ T-lymphocytes and the smooth muscle area were increased in smokers with symptoms of chronic bronchitis and chronic airflow limitation as compared with asymptomatic smokers with normal lung function, while the number of neutrophils, macrophages, and CD4+ T-lymphocytes were similar in the two groups of subjects examined. We concluded that smokers who develop symptoms of chronic bronchitis and chronic airflow limitation have an increased number of CD8+ T-lymphocytes and an increased smooth muscle area in the peripheral airways as compared with asymptomatic smokers with normal lung function, supporting the important role of CD8+ T-lymphocytes and airway remodeling in the pathogenesis of chronic obstructive pulmonary disease.