ArticlePDF Available

Bounding the role of black carbon in the climate system: A Scientific assessment

Authors:

Abstract and Figures

Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr(-1) in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m(-2) with 90% uncertainty bounds of (+0.08, +1.27) W m(-2). Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m(-2). Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m(-2) with 90% uncertainty bounds of +0.17 to +2.1 W m(-2). Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m(-2), is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (-0.50 to +1.08) W m(-2) during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (-0.06 W m(-2) with 90% uncertainty bounds of -1.45 to +1.29 W m(-2)). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
Content may be subject to copyright.
A preview of the PDF is not available
... Anthropogenic aerosol pollution has a complex impact on the atmosphere, significantly affecting solar radiation, air temperature and humidity and resulting in noticeable climatic effects (IPCC, 2022(IPCC, , 2013Jacobson, 2004;Bond et al., 2013). Aerosol particles at the surface level also have a harmful effect on human health (Manisalidis et al., 2020;Lu et al., 2015). ...
... Black carbon (BC) is a particularly important urban aerosol component which absorbs visible radiation and contributes to the heating of the atmosphere, in contrast to most other aerosol species (Jacobson, 2004(Jacobson, , 2006Ramanathan and Carmichael, 2008;Bond et al., 2013). The urban environment is the main source of BC emissions due to the use of diesel fuel (Weingartner et al., 1997). ...
... To date, measurements of black carbon are irregular and quite rare, especially in cities, where the emissions are particularly high. This leads to a lack of understanding of the processes occurring in the atmosphere, and, in particular, to a possible error in estimating the contribution of BC to the balance between heating and cooling rates (Bond et al., 2013), which, in turn, increases the uncertainty of its climatic effect. The possible influence of BC on the absorbing properties of the atmosphere has been analyzed in only a few publications (Kozlov et al., 2016;Markowicz et al., 2017;Rajesh and Ramachandran, 2018). ...
Article
Full-text available
Urban aerosol pollution was analyzed over the Moscow megacity region using the COSMO-ART (COSMO – COnsortium for Small-scale MOdelling, ART – Aerosols and Reactive Trace gases) online coupled mesoscale model system and intensive measurement campaigns at the Moscow State University Meteorological Observatory (MSU MO, 55.707∘ N, 37.522∘ E) during the April–May period in 2018 and 2019. We analyzed mass concentrations of particulate matter with diameters smaller than 10 µm (PM10), black carbon (BC) and aerosol gas precursors (NOx, SO2, CHx) as well as columnar aerosol parameters for fine and coarse modes together with different meteorological parameters, including an index characterizing the intensity of particle dispersion (IPD). Both model and experimental datasets have shown a statistically significant linear correlation of BC with NO2 and PM10 mass concentrations, which indicates mostly common sources of emissions of these substances. There was a pronounced increase in the BC/PM10 ratio from 0.7 % to 5.9 %, with the decrease in the IPD index related to the amplification of the atmospheric stratification. We also found an inverse dependence between the BC/PM10 ratio and columnar single-scattering albedo (SSA) for the intense air mixing conditions. This dependence together with the obtained negative correlation between wind speed and BC/PM10 may serve as an indicator of changes in the absorbing properties of the atmosphere due to meteorological factors. On average, the relatively low BC / PM10 ratio (for urban regions) of 4.7 % is the cause of the observed relatively high SSA = 0.94 in Moscow. Using long-term parallel aerosol optical depth (AOD) measurements over the 2006–2020 period at the MSU MO and under upwind clean background conditions at Zvenigorod Scientific Station (ZSS) of the IAP RAS (55.7∘ N, 36.8∘ E), we estimated the urban component of AOD (AODurb) and some other parameters as the differences at these sites. The annual mean AODurb at 550 nm was about 0.021 with more than 85 % of the fine aerosol mode. The comparisons between AODurb obtained from the model and measurements during this experiment have revealed a similar level of aerosol pollution of about AODurb=0.015–0.019, which comprised 15 %–19 % of the total AOD at 550 nm. The urban component of PM10 (PM10urb) was about 16 µg m−3 according to the measurements and 6 µg m−3 according to the COSMO-ART simulations. We obtained a pronounced diurnal cycle of PM10urb and urban BC (BCurb) as well as their strong correlation with the IPDs. With the IPD index change from 3 to 1 at night, there was about a 4 times increase in PM10urb (up to 30–40 µg m−3) and a 3 times increase in BCurb (up to 3–3.5 µg m−3). At the same time, no pronounced daily cycle was found for the columnar urban aerosol component (AODurb), although there was a slight increase in model AODurb at night.
... Atmospheric particles are important radiative forcing agents of the climate system. Carbonaceous aerosols are one of the important subcomponents of atmospheric particles (Bond et al., 2013;Chung et al., 2012;Wang et al., 2022), and they can be divided into organic carbon (OC) and elemental carbon (EC). When deposited on snow/ice surfaces, both EC and light-absorbing OC can absorb solar radiation and accelerate snow/ice melting. ...
... When deposited on snow/ice surfaces, both EC and light-absorbing OC can absorb solar radiation and accelerate snow/ice melting. Compared to greenhouse gases, carbonaceous aerosols have larger temporal and spatial variations (Bond et al., 2013;Liu et al., 2020), resulting in larger uncertainties in their climate forcing estimation (IPCC, 2013). This phenomenon is especially remarkable in remote regions that lack in situ data and have much lower atmospheric particle concentrations. ...
Article
Carbonaceous particles are an important radiative forcing agent in the atmosphere, with large temporal and spatial variations in their concentrations and compositions, especially in remote regions. This study reported the Δ¹⁴C and δ¹³C of total carbon (TC) and water-insoluble particulate carbon (IPC) of the total suspended particles (TSP) and PM2.5 at a remote site of the eastern Tibetan Plateau (TP), a region that is influenced by heavy air pollution from Southwest China. The average organic carbon and elemental carbon concentrations of TSP samples in this study were 3.20 ± 2.38 μg m⁻³ and 0.68 ± 0.67 μg m⁻³, respectively, with low and high values in summer and winter, respectively. The fossil fuel contributions of TC in TSP and PM2.5 samples were 18.91 ± 7.22% and 23.13 ± 12.52%, respectively, both of which were far lower than that in Southwest China, indicating the importance of non-fossil contributions from local sources. The δ¹³C of TC in TSP samples of the study site was −27.06 ± 0.96‰, which is between the values of long-range transported sources (e.g., Southwest China) and local biomass combustion emissions. Therefore, despite the contribution from the long-range transport of particles, aerosols emitted from local biomass combustion also have an important influence on carbonaceous particles at the study site. The findings of this work can be applied to other remote sites on the eastern TP and should be considered in related research in the future.
... Although CO 2 and water vapor tend to dominate emissions, wildfire smoke includes a rich and complex mixture of many gas and aerosol constituents -most notably the greenhouse gases methane (CH 4 ) and nitrous oxide (N 2 O), a suite of volatile and semi-volatile organics, light-scattering aerosols and often weakly absorbing soil or dust particles, and the light-absorbing aerosols black carbon (BC) and brown carbon (BrC). Globally, wildfires are the most significant source of light-absorbing airborne particles (Bond et al., 2013;Feng et al., 2013). In addition to exhibiting distinct chemical properties, BC and BrC are optically unique in that BC is highly absorbing across all visible wavelengths, whereas BrC is less absorbing overall and displays enhanced light absorption at shorter wavelengths (Kirchstetter et al., 2004;Samset et al., 2018). ...
... For each plume, we obtain the estimated height of the planetary boundary layer (PBLH) from the MERRA-2 reanalysis model (Bosilovich et al., 2016;Gelaro et al., 2017;Global Modeling and Assimilation Office, 2015b). The PBLH data are provided at a 0.625 • longitude × 0.5 • latitude spatial resolution and an hourly temporal resolution, so we choose the data point closest to the time and location of each fire plume origin. ...
Article
The optical and chemical properties of biomass burning (BB) smoke particles greatly affect the impact that wildfires have on climate and air quality. Previous work has demonstrated some links between smoke properties and factors such as fuel type and meteorology. However, the factors controlling BB particle speciation at emission are not adequately understood nor are the factors driving particle aging during atmospheric transport. As such, modeling wildfire smoke impacts on climate and air quality remains challenging. The potential to provide robust, statistical characterizations of BB particles based on ecosystem type and ambient environmental conditions with remote sensing data is investigated here. Space-based Multi-angle Imaging SpectroRadiometer (MISR) observations, combined with the MISR Research Aerosol (RA) algorithm and the MISR Interactive Explorer (MINX) tool, are used to retrieve smoke plume aerosol optical depth (AOD) and to provide constraints on plume vertical extent; smoke age; and particle size, shape, light-absorption properties, and absorption spectral dependence. These tools are applied to numerous wildfire plumes in Canada and Alaska, across a range of conditions, to create a regional inventory of BB particle-type temporal and spatial distribution. We then statistically compare these results with satellite measurements of fire radiative power (FRP) and land cover characteristics, as well as short-term climate, meteorological, and drought information from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) reanalysis and the North American Drought Monitor. We find statistically significant differences in the retrieved smoke properties based on land cover type, with fires in forests producing the thickest plumes containing the largest, brightest particles and fires in savannas and grasslands exhibiting the opposite. Additionally, the inferred dominant aging mechanisms and the timescales over which they occur vary systematically between land types. This work demonstrates the potential of remote sensing to constrain BB particle properties and the mechanisms governing their evolution over entire ecosystems. It also begins to realize this potential, as a means of improving regional and global climate and air quality modeling in a rapidly changing world.
... In general, this literature reveals substantial impacts of ambitious decarbonization strategies on energy-related air pollutant levels, due to the phase-out of fossil fuels and the containment of fuel gases for the purpose of carbon capture and storage. However, increased use of biomass as a GHG policy measure may lead to higher PM emissions (Bond et al., 2013;Rauner et al., 2020). ...
Chapter
Nature’s ability to reduce air pollution should be accounted for in global efforts to preserve and restore air filtration capacity. While reducing emission is vital, however, it must be tied to ecosystem services. Given that cities are one of the main agents of pollutant emission, environmental policies to restore and recover urban vegetation and technological advances to reduce urban emission are equally relevant are equally relevant to the conservation of existing forests and wild vegetation. The future points to the need to rethink the relationship between cities and nature, especially in regard to urban forests.
... It revealed that the MACs for BC were higher than those of POA at both long and short wavelengths. This is consistent with a previous study [1], where light-absorbing organics seemed to absorb more light at shorter wavelengths than at longer wavelengths. Comparable MACs were obtained for the BC of all three flames for each size, suggesting that in our flames, the absorptive nature of pure BC did not depend on the combustion conditions, and BC from different flames had a similar molecular structure. ...
Article
Full-text available
In this study, we developed a framework for interpreting the in situ morphological properties of black carbon (BC, also referred to as "soot" due to combustion relevance) mixed with primary organic aerosol. Integration of the experiment considering primary organic aerosol (POA) evaporation from the soot particles was examined using a Differential mass-mobility analyzer (DMA) and showed the untold story of the mixing of BC and POA. We also hypothesize that morphological transformation of soots and determined such as (i) the evaporation of externally and internally mixed POA led to a decline in the particle number and size of monodisperse aerosol; (ii) presence of externally mixed BC was interpreted from the occurrence of two peaks of soot upon heating; (iii) heat-induced collapse of the BC core possibly resulted from the evaporation of material from the voids and effect of heat; (iv) volume equivalent to changes in the mobility diameter represented evaporation of POA from the surface and collapse upon heating. POA constituted a high fraction (20-40% by mass) of aerosol mass from these flames and was predominantly (i.e., 92-97% by mass) internally mixed with BC. POA was found to be highly light absorptive, i.e., an Ångström absorption exponent (AAE) value of (in general) >1.5 was estimated for BC + POA at 405/781 nm wavelengths. Interestingly, a much more highly absorptive POA [mass absorption cross-section (MAC)-5 m 2 g −1 ] at 405 nm was discovered under a specific flame setting, which was comparable to MACs of BC particles (8-9 m 2 g −1).
Article
Full-text available
Both teflon and quartz PM2.5 filters collected from January to July 2021 at the monitoring site of the Department of Mathematics and Physics of the University of Salento in Lecce (Italy) were analyzed by integrating different characterization techniques (Particle Induced X-ray Emission PIXE, Isotope Ratio Mass Spectrometry IRMS, and Accelerator Mass Spectrometry AMS) at the CEDAD (Center of Applied Physics, Dating and Diagnostics) of the Department of Mathematics and Physics, University of Salento. The PM2.5 concentration analyses allowed to identify the variation of the main PM2.5 characteristics as a function of the season and the day of the week. This last characterization was integrated by the results from the PIXE, which allowed to identify the heavy elements and their concentrations. The main results showed the presence of different elements, such as S and Zn (considered as markers of anthropogenic sources for PM2.5) and Ca and Fe (as markers of natural sources). The concentrations of these elements showed a significant decrease during the weekend, mostly in the case of elements of anthropogenic origin, according to the data on the PM2.5 temporal evolution. Using the isotopic markers of carbon and nitrogen by means of the IRMS, we determined values of δ15N between 4.5 and 10.6‰, which are consistent with the origin of PM2.5 from anthropic combustion processes and a secondary contribution from vehicular traffic. Similarly, the values of δ13C obtained by IRMS were in the range between −24.4 and −26.7‰, generally associated with biomass combustion and with vehicular traffic. An analysis of the fossil and modern contribution was carried out on the PM2.5 filters by measuring radiocarbon using the integrated IRMS-EA system connected with the TANDETRON accelerator and AMS spectrometer. In more detail, we found a percentage of modern carbon in the range 71.6–92.4% that indicates a larger bio-derived contribution with respect to the contribution from fossil sources during the analyzed period. The parameters obtained from PIXE, IRMS, and AMS techniques were finally used as input for different ordination methods that allowed their deeper characterization.
Article
Traditional solid fuel cookstoves emit gas- and particle-phase pollutants that contribute to household air pollution, human disease, and climate impacts. Forced-draft semi-gasifier stoves are an attractive intermediate step to zero-emitting stoves due to their reported lower emissions in laboratory and field studies, and potential for increased availability in more rural locales. However, emissions from these stoves have been shown to be highly variable and sensitive to stove design, fuel type, secondary air velocity, and operation mode. We measured carbon monoxide (CO), particulate matter (PM2.5), organic and elemental carbon, and particle number (15–685 nm) emissions of the widely adopted Mimi Moto pellet-fed, gasifier stove for different operating conditions under two modified protocols, the Water Boiling Test (WBT) and an updated laboratory testing protocol ISO 19867-1 (ISO). We categorized operating conditions into three approaches: Startup (varying ignition material), Shutdown (varying fan speed during a 45-min burnout period), and Refuel (varying the height of charred pellets added for re-ignition). Refueling led to the largest and most variable emissions, but lab emissions were all lower than high field emissions (e.g., similar to those of traditional solid fuels) and remained primarily in ISO Tiers 5 and 4 for CO and PM2.5, aspirational and second-best, respectively. We find large relative differences in emissions when comparing our results to similar studies conducted with the Mimi Moto and ISO protocol, suggesting small operational differences can have large emissions implications. To minimize emissions, we recommend using kerosene for ignition, turning the fan off when pellets are done burning and flame has extinguished, and reigniting with fresh pellets instead of pellet char. Improved training and maintenance are needed in real-world applications to decrease the frequency of high-emission events. Tightly constrained testing and detection limits remain challenges to fully understanding factors contributing to these events.
Article
Refractory black carbon (rBC) aerosols in the atmosphere play a significant role in climate systems due to their strong ability to absorb solar radiation. The lifetime of rBC depends on atmospheric transport, aging and consequently on wet scavenging processes (in-cloud and below-cloud scavenging). In this study, sequential rainwater samples in eight rainfall events collected in 2 mm interval were measured by a tandem system including a single particle soot photometer (SP2) and a nebulizer. The results showed that the volume-weighted average (VWA) mass concentrations of rBC in each rainfall event varied, ranging from 10.8 µg/L to 78.9 µg/L. The highest rBC concentrations in the rainwater samples typically occurred in the first fraction from individual rainfall events. The geometric mean median mass-equivalent diameter (MMD) decreased under precipitation, indicating that rBC with larger sizes was relatively aged and preferentially removed by wet scavenging. A positive correlation (R² = 0.73) between the VWA mass concentrations of rBC in rainwater and that in ambient air suggested the important contribution of below-cloud scavenging process. Additionally, the contributions of in-cloud and below-cloud scavenging were distinguished and accounted for 74% and 26% to wet scavenging, respectively. The scavenging ratio of rBC particles was estimated to be 0.06 on average. This study provides helpful information for better understanding the mechanism of rBC wet scavenging and reducing the uncertainty of numerical simulations of the climate effects of rBC.
Chapter
This chapter assesses the current state of the science regarding the composition, intensity, and drivers of wildland fire emissions in the USA and Canada. Globally and in the USA wildland fires are a major source of gases and aerosols which have significant air quality impacts and climate interactions. Wildland fire smoke can trigger severe pollution episodes with substantial effects on public health. Fire emissions can degrade air quality at considerable distances downwind, hampering efforts by air regulators to meet air standards. Fires are a major global source of aerosols which affect the climate system by absorbing and scattering radiation and by altering optical properties, coverage, and lifetime of clouds. A thorough understanding of fire emissions is essential for effectively addressing societal and climate consequences of wildland fire smoke.
Article
The North China Plain has been suffering from severe haze pollution in the past few decades. In addition to rapid urbanization and intensive anthropogenic emissions, the complex terrain in this region greatly influences the atmospheric circulation, thereby weakening the ventilation of air pollutants. Nevertheless, the vertical responses of surface-emitted pollutants to the gradient of the terrain and its impact on secondary aerosol formation, as well as its interaction with boundary layer meteorology, have not yet been fully understood. Here, in-situ observations and satellite retrievals together with meteorology–chemistry coupled modeling are integrated to shed light on the terrain effects on atmospheric chemistry and its interaction with physical processes. It is found that the blocking effect of the terrain can result in haze accumulation over the plains and updrafts of pollution along the mountains. Long-term averaged PM2.5 concentrations show that nearly 70% of plain stations exceeded 75 μg m⁻³, compared with only 12% of high-altitude stations. In the highly polluted month of January 2018, the pollution layer was simulated to be elevated to an altitude of over 2 km. A higher oxidizing capacity in the upper boundary layer tends to accelerate secondary aerosol formation. Furthermore, the elevated pollution layer and the intense secondary formation due to the terrain effects jointly enhanced the aerosol–boundary layer interaction, weakening the vertical dispersion and further deteriorating the air pollution. This study highlights that there are intensified interactions between atmospheric chemistry and physics near complex terrain, which may substantially contribute to haze pollution in China. 摘要 华北平原地区冬季雾霾污染频发, 本研究结合地面观测,卫星反演和大气动力-化学耦合模拟发现, 该地区复杂地形加剧了细颗粒物污染及其与大气边界层之间的相互作用.一方面, 复杂地形导致污染在山麓平原积聚, 加强迎风坡上升气流.在污染事件中, 污染层易被抬升至1-2公里高度, 高空较强的氧化能力利于二次气溶胶生成;另一方面, 地形导致的污染层抬升和二次生成进一步加强气溶胶-边界层相互作用, 削弱垂直扩散并加剧近地面大气污染.
Chapter
An assessment is made of each component of the heat budgets of the surface and of the earth-atmosphere system in the central Arctic, both for an ice-covered ocean and for an ice-free ocean. The annual patterns of atmospheric heat loss for both conditions are obtained as residuals; the relation of these patterns to general atmospheric circulation and glacier accumulation is discussed. It is shown that atmospheric cooling in the Arctic is closely related to certain indices of atmospheric circulation. An ice-free Arctic Ocean would probably be associated with atmospheric circulation more vigorous in summer at subarctic latitudes and of comparable vigor in winter. The cool summers and warm, moist winters would be highly conducive to glacier growth.
Article
Particulate elemental carbon is found in the atmosphere in both urban and remote regions and isoften responsible for much of the absorption of solar radiation by atmospheric aerosols. Itsatmospheric lifetime is controlled by four factors: the initial size distribution, the concentrationof ambient particles, the frequency and duration of precipitation, and the efficiencies of removalmechanisms. A model of the atmospheric cycle of particulate elemental carbon which includesthese factors has been used to estimate the range of atmospheric lifetimes expected under variousconditions. Calculated lifetimes range from under 40 hours in rainy climates to well over 1 weekin clean, dry regions. DOI: 10.1111/j.1600-0889.1983.tb00027.x
Article
Simultaneous aerosol measurements with particle counters and a multiwavelength integrating nephelometer have been made at Ny-Alesund, Svalbard (12° E, 79° N). The measured integral aerosol properties were used in an inversion procedure to derive a consistent model of the particle size distribution of Arctic haze. The obtained size distribution is compared to the global background aerosol size distribution. Both the light scattering coefficients and the total suspended volume of particles were found to be on the level of the global background. DOI: 10.1111/j.2153-3490.1980.tb00952.x