Field study site selection, species abundance and monthly distribution of anopheline mosquitoes in the northern Kruger National Park, South Africa

Malaria Journal (Impact Factor: 3.11). 01/2014; 13(1):27. DOI: 10.1186/1475-2875-13-27
Source: PubMed


Knowledge of the ecology and behaviour of a target species is a prerequisite for the successful development of any vector control strategy. Before the implementation of any strategy it is essential to have comprehensive information on the bionomics of species in the targeted area. The aims of this study were to conduct regular entomological surveillance and to determine the relative abundance of anopheline species in the northern Kruger National Park. In addition to this, the impact of weather conditions on an Anopheles arabiensis population were evaluated and a range of mosquito collection methods were assessed.
A survey of Anopheles species was made between July 2010 and December 2012. Mosquitoes were collected from five sites in the northern Kruger National Park, using carbon dioxide-baited traps, human landing and larval collections. Specimens were identified morphologically and polymerase chain reaction assays were subsequently used where appropriate.
A total of 3,311 specimens belonging to nine different taxa was collected. Species collected were: Anopheles arabiensis (n = 1,352), Anopheles quadriannulatus (n = 70), Anopheles coustani (n = 395), Anopheles merus (n = 349), Anopheles pretoriensis (n = 35), Anopheles maculipalpis (n = 28), Anopheles rivulorum (n = 19), Anopheles squamosus (n = 3) and Anopheles rufipes (n = 2). Members of the Anopheles gambiae species complex were the most abundant and widely distributed, occurring across all collection sites. The highest number of mosquitoes was collected using CO2 baited net traps (58.2%) followed by human landing catches (24.8%). Larval collections (17%) provided an additional method to increase sample size. Mosquito sampling productivity was influenced by prevailing weather conditions and overall population densities fluctuated with seasons.
Several anopheline species occur in the northern Kruger National Park and their densities fluctuate between seasons. Species abundance and relative proportions within the An. gambiae complex varied between collection methods. There is a perennial presence of an isolated population of An. arabiensis at the Malahlapanga site which declined in density during the dry winter months, making this site suitable for a small pilot study site for SIT as a malaria vector control strategy.

Download full-text


Available from: Danny Govender, Jan 08, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Information on dynamics of anopheline mosquitoes is limited in the coastal zone of French Guiana compared with inland endemic areas. Importantly, improvement of surveillance techniques for assessing malaria transmission indicators and comprehension of impact of meteorological factors on Anopheles darlingi Root, the main malaria vector, are necessary. Anopheline mosquitoes were collected continuously during 2012 and 2013 using Mosquito Magnet traps baited with octenol and human landing catches. The two methods were compared based on trends in abundance and parity rate of An. darlingi. Impact of meteorological factors on An. darlingi density estimates was investigated using Spearman's correlation and by binomial negative regression analysis. In all, 11,928 anopheline mosquitoes were collected, and 90.7% (n = 10,815) were identified consisting of four species, with An. darlingi making up 94.9% (n = 10,264). An. darlingi specimens collected by the two methods were significantly correlated, and no difference in parity rate was observed. The abundance of this species peaked in September (dry season) and variations along the years were influenced by relative humidity, temperature, rainfall, and wind speed. Number of mosquitoes collected during peak aggression period was influenced by wind speed and rainfall. Data gathered in this study provide fundamental information about An. darlingi, which can facilitate the design of vector control strategies and construction of models for predicting malaria risk. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email:
    No preview · Article · Jun 2015 · Environmental Entomology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is a major vector-borne disease in tropical and sub-tropical countries caused by Plasmodium infection. It is one the most important health problem in south and southeast of Iran. Since Iran has recently launched to the elimination phase of malaria and vector control is one of the main strategies for elimination, this study was conducted to determine the topographical distribution of malaria vectors in Minab County, one of the important malaria endemic areas in south of Iran. In this cross-sectional study, six villages in three topographically different sites namely coastal plain, foothill and mountainous areas were selected by simple random sampling. The anopheline larvae were collected using the standard dipping method. The specimens were identified using a morphology based-key. Statistical analyses were performed using SPSS ver.16 software. In total, 3,841 anopheles larvae were collected from 24 larval habitats. They consisted of ten species: Anopheles moghulensis (25.23%), Anopheles stephensi (24.47%), Anopheles dthali (19.14%), Anopheles culicifacies (9.63%), Anopheles fluviatilis (7.52%), Anopheles superpictus (5.62%), Anopheles turkhudi (5.55%), Anopheles pulcherrimus (1.93%), Anopheles multicolor (0.47%), and Anopheles apoci (0.44%). Most species were distributed in different topographies and only An. Stephensi and An. culicifacies, the main malaria vectors in Iran, were significantly associated with the altitude of studied areas. An. moghulensis, An. stephensi and An. dthali were the most widespread species and were, respectively predominant in Coastal plain, foothill and mountainous areas. Results of this study have revealed that there are many malaria vectors that are distributed in Minab County and some of them are expected to be predominant in areas with special topographic characteristics. This finding can provide a basis for effective planning and implementation of evidence-based malaria vector intervention strategies towards vector control, which may help in malaria elimination in the study area.
    Full-text · Article · Jul 2015 · Malaria Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the global burden of mosquito-borne diseases increasing, and some conventional vector control tools losing effectiveness, the sterile insect technique (SIT) is a potential new tool in the arsenal. Equipment and protocols have been developed and validated for efficient mass-rearing, irradiation and release of Aedines and Anophelines that could be useful for several control approaches. Assessment of male quality is becoming more sophisticated, and several groups are well advanced in pilot site selection and population surveillance. It will not be long before SIT feasibility has been evaluated in various settings. Until perfect sexing mechanisms exist, combination of Wolbachia-induced phenotypes, such as cytoplasmic incompatibility and pathogen interference, and irradiation may prove to be the safest solution for population suppression.
    Full-text · Article · Aug 2015