One-Step Surgery With Multipotent Stem Cells for the Treatment of Large Full-Thickness Chondral Defects of the Knee

The American Journal of Sports Medicine (Impact Factor: 4.36). 01/2014; 42(3):648-57. DOI: 10.1177/0363546513518007
Source: PubMed


BACKGROUND:Chondral lesions in athletically active patients cause considerable morbidity, and treatment with existing cell-based therapies can be challenging. Bone marrow has been shown as a possible source of multipotent stem cells (MSCs) with chondrogenic potential and is easy to harvest during the same surgical procedure. PURPOSE:To investigate the clinical outcome in a group of active patients with large full-thickness chondral defects of the knee treated with 1-step surgery using bone marrow-derived MSCs and a second-generation matrix. STUDY DESIGN:Case series; Level of evidence, 4. METHODS:From January 2007 to February 2010, 25 patients (average age, 46.5 years) with symptomatic large chondral defects of the knee (International Cartilage Repair Society grade 4) who underwent cartilage transplantation with MSCs and a collagen type I/III matrix were followed up for a minimum of 3 years. The average lesion size was 8.3 cm(2). Coexisting injuries were treated during the same surgical procedure in 18 patients. All patients underwent a standard postoperative rehabilitation program. Preoperative and postoperative evaluations at 1-year, 2-year, and final follow-up included radiographs, magnetic resonance imaging (MRI), and visual analog scale (VAS) for pain, International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm, Marx, and Tegner scores. Seven patients underwent second-look arthroscopic surgery, with 4 consenting to a tissue biopsy. RESULTS:No patients were lost at final follow-up. The average preoperative values for the evaluated scores were significantly improved at final follow-up (P < .001): VAS, 5.4 ± 0.37 to 0.48 ± 0.19; IKDC subjective, 37.92 ± 4.52 to 81.73 ± 2.42; KOOS pain, 61.04 ± 3.95 to 93.32 ± 1.92; KOOS symptoms, 55.64 ± 3.23 to 89.32 ± 2.32; KOOS activities of daily living, 63.96 ± 4.48 to 91.20 ± 2.74; KOOS sports, 34.20 ± 5.04 to 80.00 ± 3.92; KOOS quality of life, 32.20 ± 4.43 to 83.04 ± 3.37; Lysholm, 46.36 ± 2.25 to 86.52 ± 2.73; Marx, 3.00 ± 0.79 to 9.04 ± 0.79; and Tegner, 2.12 ± 0.32 to 5.64 ± 0.26. Patients younger than 45 years of age and those with smaller or single lesions showed better outcomes. The MRI scans showed good stability of the implant and complete filling of the defect in 80% of patients, and hyaline-like cartilage was found in the histological analysis of the biopsied tissue. No adverse reactions or postoperative complications were noted. CONCLUSION:The treatment of large chondral defects with MSCs is an effective procedure and can be performed routinely in clinical practice. Moreover, it can be achieved with 1-step surgery, avoiding a previous surgical procedure to harvest cartilage and subsequent chondrocyte cultivation.

21 Reads
  • Source
    • "Therefore, cartilage defect treatment is being performed with the same cumulating trend. The spectrum of tools and techniques available on offer for the surgeon has significantly broadened over time (Gobbi et al. 2014;Crawford et al. 2012;Cucchiarini et al. 2014;De Bari and Dell&apos;accio 2008;Khazzam 2013;Abrams et al. 2013;Bhardwaj et al. 2014;Liu et al. 2013). The current evidence is still conflicting when cartilage repair techniques are concerned. "
    [Show abstract] [Hide abstract]
    ABSTRACT: During a specialised orthopedic meeting held on ‘the state of the art in cartilage defect repair’, all previously fully-registered participants were requested to participate in an electronic survey by the use of a moderator-presented “Power Point Presentation-based” 9-item questionnaire. The aim of this survey was to assess indication, approach, and treatment execution of cartilage defect debridement prior to planned microfracture (MFX) or autologous chondrocyte implantation (ACI). All participants completed the questionnaire (n = 146) resulting in a return rate of 100 %. An uncertainty exists as to whether the removal of the calcifying layer prior to cartilage repair must be carried out or not. The same was true for the acceptability of subchondral bleeding prior to microfracturing and its handling prior to autologous chondrocyte implantation. There is a degree of unanimity among experts regarding the management of osteophytes and bone marrow edema. In a homogenous society collective of consultants that frequently deal with cartilage defective pathologies, there still remain a significant heterogeneity in selected topics of defect debridement.
    Full-text · Article · Dec 2015 · SpringerPlus
  • Source
    • "Following this rationale, such constructs were first applied in combination with cultured cells (chondrocytes) such as a 3D support for a better tissue regeneration, thus producing good results even at mid-long term follow-up (Filardo et al. 2014b; Brix et al. 2014). Subsequently, this kind of matrix was applied as " one-step " surgical augmentation to marrow-stimulating techniques, by implanting into the defect alone, thus avoiding any cell addition (Anders et al. 2013; Gille et al. 2013), or in combination with mesenchymal stem cells, harvested and seeded during the same surgical procedure (Gobbi et al. 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several techniques have been used during the years to treat chondral and osteochondral lesions. Among them, the emerging trend in the field of osteochondral regeneration is to treat the entire osteochondral unit by implanting cell-free scaffolds, which provide a three-dimensional support for the cell growth and may act themselves as stimuli for an “in situ” tissue regeneration. Various multi-layered products have been proposed that mimic both the subchondral bone and the cartilaginous layer. Among these, three have currently been reported in the literature. One has been widely investigated: it is a nanocomposite three-layered collagen-hydroxyapatite scaffold, which is showing promising results clinically and by MRI even at mid-term follow-up. The second is a PLGA-calcium-sulfate bilayer scaffold: however, the literature findings are still controversial and only short-term outcomes of limited case-series have been published. The most recent one is a solid aragonite-based scaffold, which seems to give promising clinical and MRI outcomes, even if the literature is still lacking more in-depth evaluations. Even though the Literature related to this topic is quickly increasing in number, the clinical evidence it is still limited to some case series, and high-level studies are needed to better demonstrate their real effectiveness.
    Full-text · Article · Aug 2014
  • Source
    • "The beneficial effects of the treatment peak within 6 months of the injections and subsequently reduce, and the outcome measures remain significantly higher than pre-treatment values even 24 months after treatment. In many cases, PRP is administered together with other biological augmentation methods, such as mesenchymal stem cells [6, 15, 16, 18] or bio-engineered scaffolds [10, 35], making it difficult to assess the net contribution made by PRP to the outcome. This study investigated PRP as an isolated entity in the treatment of early stages of OA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the outcome of intra-articular platelet-rich plasma (PRP) injections into the knee in patients with early stages of osteoarthritis (OA) and to determine whether cyclical dosing would affect the end result. This is a prospective, randomized study in which 93 patients (119 knees) were followed up for a minimum of 2 years. Fifty knees were randomly selected prior to the first injection, to receive a second cycle at the completion of 1 year. A cycle consisted of three injections, each given at a monthly interval. The outcome was assessed using Knee Injury and Osteoarthritis Outcome Score (KOOS), Visual Analogue Scale (VAS), Tegner and Marx scoring systems, recorded prior to the first injection and then at 12, 18 and 24 months. There was a significant improvement in all scores over time compared to the pre-treatment value (p < 0.001). At 12 months, both groups showed similar and significant improvement. At 18 months, except for KOOS (Symptoms) and Tegner score, all other parameters showed a significant difference between the two groups in favour of the patients who had received the second cycle (p < 0.001). At 2 years, the scores declined in both groups but remained above the pre-treatment value with no significant difference between the groups despite the patients with two cycles showing higher mean values for all the scores. Intra-articular PRP injections into the knee for symptomatic early stages of OA are a valid treatment option. There is a significant reduction in pain and improvement in function after 12 months, which can be further improved at 18 months by annual repetition of the treatment. Although the beneficial effects are ill sustained at 2 years, the results are encouraging when compared to the pre-treatment function. LEVEL OF EVIDENCE: II.
    Full-text · Article · Apr 2014 · Knee Surgery Sports Traumatology Arthroscopy
Show more