Chapter

Regulation of autophagy by miRNAs

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

To cope with stress factors including nutrient deprivation, toxins, abnormal protein accumulation, cells developed mechanisms to repair damage caused by stress or, in cases where the damage is irrepairable, cell death responses. Autophagy and apoptosis are among the most important stress and death response mechanisms. Autophagy is defined by sequestration and transport of cytoplasm pieces and organelles by double- or multi-membrane vesicles and, degradation of the cargo following fusion with lysosomes. Consequently, autophagy plays an important role in elimination of long-lived proteins, damaged organelles, mutant proteins and even intracellular bacteria and viruses, helping to survive stressfull conditions. Paradoxically, depending stress and cell type, autophagy may kill cells by a non-apoptotic programmed cell death mechanism called “autophagic cell death”. Recent studies including our publications suggest that miRNAs add a novel layer of regulation to autophagy pathways. Molecular details of autophagy regulation by miRNAs started to emerge in the last 2 years. In this chapter we will summarize acccumulating data on this novel mechanism of autophagy regulation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... They are ~22 nucleotide long and regulate important biological processes, including differentiation, proliferation, cell death and cell cycle (Bartel, 2009). More recent studies introduce miRNAs as new players in the regulation of autophagy (Tekirdag et al., 2014). Since autophagy and apoptosis share several essential proteins, targeting of these proteins by miRNAs will directly affect signaling switch between two pathways. ...
Article
Full-text available
Autophagy and apoptosis are two important molecular mechanisms that maintain cellular homeostasis under stress conditions. Autophagy represents an intracellular mechanism responsible for turnover of organelles and long-lived proteins through a lysosome-dependent degradation pathway. Cell death signals or sustained stress might trigger programmed cell death pathways, and among them, apoptosis is the most extensively studied one. Recent studies indicate the presence of a complex interplay between autophagy and apoptosis. Physiological relevance of autophagy-apoptosis crosstalk was mainly shown in vitro. However, in vivo consequences possibly exist both during health and disease. In this review, we will summarize the current knowledge about molecular mechanisms connecting autophagy and apoptosis, and about the significance of this crosstalk for human health.
... miRNAs including MIR30A, the MIR376 family, and MIR181A were shown to target key autophagy proteins in various stages of autophagosome formation and control autophagic responses under various stress conditions (Zhu et al., 2009;Korkmaz et al., 2012;Korkmaz et al., 2013;Tekirdag et al., 2013). The list of autophagy-related targets of miRNAs is growing and it includes important autophagy proteins ATG4, ATG5, and BECN1 (Tekirdag et al., 2014). ...
Article
Full-text available
Autophagy is an evolutionary conserved intracellular degradation and stress response mechanism that is mainly responsible for the breakdown and recycling of cytoplasmic materials, including long-lived proteins, protein aggregates, and damaged organelles. In this way, autophagy provides the cell with building blocks and allows the maintenance of homeostasis under stress conditions such as growth factor deficiency, nutrient deprivation, hypoxia, and toxins. Consequently, abnormalities of autophagy contribute to a number of pathologies ranging from neurodegenerative diseases to cancer. Autophagy was reported to have a dual role in cancer. Depending on cancer stage, autophagy seems to act as tumor suppressor or as a mechanism supporting tumor growth and spread. In this review, we provide a summary of the relevant literature and discuss the role of autophagy in cancer formation and chemotherapy responses.
Article
Full-text available
Autophagy is a highly conserved cellular process that degrades modified, surplus, or harmful cytoplasmic components by sequestering them in autophagosomes which then fuses with the lysosome for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis, as well as for remodeling during normal development. Impairment of this process has been implicated in various diseases, in the pathogenic response to bacterial and viral infections, and in aging. Pluripotent stem cells, with their ability to self-replicate and to give rise to any specialized cell type, are very valuable resources for cell-based medical therapies and open a number of promising avenues for studying human development and disease. It has been suggested that autophagy is vital for the maintenance of cellular homeostasis in stem cells, and subsequently more in-depth knowledge about the regulation of autophagy in stem cell biology has been acquired recently. In this review, we describe the most significant advances in the understanding of autophagy regulation in hematopoietic and mesenchymal stem cells, as well as in induced pluripotent stem cells. In particular, we highlight the roles of various autophagy activities in the regulation of self-renewal and differentiation of these stem cells.
Article
Full-text available
Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3' untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G 1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway.
Article
Full-text available
The therapeutic outcome of pancreatic cancer is generally poor due to the inherent or acquired resistance of cancer cells to treatment. Pancreatic cancer cells have higher basal autophagy levels than other cancer cell types, which may correlate with their nonresponsiveness to the available cancer therapy. Therefore, understanding the mechanisms behind autophagy activation in pancreatic cancer cells may ultimately improve therapeutic outcomes. Here we demonstrated that MIR23B is a potent inhibitor of autophagy. MIR23B targets the 3'UTR of the autophagy-related gene ATG12, thereby decreasing autophagic activity and ultimately promoting radiation-induced pancreatic cancer cell death. Thus, our study clarified some of the underlying molecular mechanisms of activated autophagy in response to cancer therapy in pancreatic cancer.
Article
Full-text available
ATG7 is a key autophagy-promoting gene that plays a critical role in the regulation of cell death and survival of various cell types. We report here that microRNAs (miRNAs), a class of endogenous 22-24 nucleotide noncoding RNA molecules able to affect stability and translation of mRNA, may represent a novel mechanism for regulating ATG7 expression and therefore autophagy. We demonstrated that ATG7 is a potential target for miR-17, and this miRNA could negatively regulate ATG7 expression, resulting in a modulation of the autophagic status in T98G glioblastoma cells. Treatment of these tumor cells with the miR-17 mimic decreased, and with the antagomir increased, the expression of ATG7 protein. Dual luciferase reporter assay confirmed that a specific miR-17 binding sequence in the 3'-UTR of ATG7 contributed to the modulation of the expression of the gene by miR-17. Interestingly, our results showed that anti-miR-17 administration activated autophagy through autophagosome formation, as resulted by LC3B and ATG7 protein expression increase, and by the analysis of GFP-LC3 positive autophagosome vesicles in living cells. Furthermore, the autophagy activation by anti-miR-17 resulted in a decrease of the threshold resistance at Temozolomide doses in T98G cells, while miR-17 modulation in U373-MG glioblastoma cells resulted in a sensitization to low ionizing radiation doses. Our study of the role of miR-17 in regulating ATG7 expression and autophagy reveals a novel function for this miRNA sequence in a critical cellular event with significant impacts in cancer development, progression and treatment.
Article
Full-text available
Macroautophagy (autophagy herein) is a cellular catabolic mechanism activated in response to stress conditions including starvation, hypoxia and misfolded protein accumulation. Abnormalities in autophagy were associated with pathologies including cancer and neurodegenerative diseases. Hence, elucidation of the signaling pathways controlling autophagy is of utmost importance. Recently we and others described microRNAs (miRNAs) as novel and potent modulators of the autophagic activity. Here, we describe MIR181A (hsa-miR-181a-1) as a new autophagy-regulating miRNA. We showed that overexpression of MIR181A resulted in the attenuation of starvation- and rapamycin-induced autophagy in MCF-7, Huh-7 and K562 cells. Moreover, antagomir-mediated inactivation of endogenous miRNA activity stimulated autophagy. We identified ATG5 as an MIR181A target. Indeed, ATG5 cellular levels were decreased in cells upon MIR181A overexpression and increased following the introduction of antagomirs. More importantly, overexpession of ATG5 from a miRNA-insensitive cDNA construct rescued autophagic activity in the presence of MIR181A. We also showed that the ATG5 3' UTR contained functional MIR181A responsive sequences sensitive to point mutations. Therefore, MIR181A is a novel and important regulator of autophagy and ATG5 is a rate-limiting miRNA target in this effect.
Article
Full-text available
MicroRNAs are known to be involved in the pathogenesis of hepatocellular carcinoma (HCC). This study aims to explore the potential biological function of miR-376a, which was found to be inhibited after partial hepatectomy, in HCC. We discovered that miR-376a was frequently down-regulated in HCC cell lines and HCC tissues, while higher relative level of miR-376a was significantly associated with high serum AFP level. Over-expression of miR-376a not only inhibited proliferation but induced apoptosis in Huh7 cells. Additionally, p85α (PIK3R1) was identified as a direct and functional target of miR-376a in Huh7 cells. Moreover, we confirmed that p85α and miR-376a were inversely correlated in HCC. These findings suggest that down-regulation of miR-376a may contribute to the development of HCC by targeting p85α.
Article
Full-text available
Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect.
Article
Full-text available
Macroautophagy (autophagy) is the major intracellular degradation pathway for long-lived proteins and organelles. It helps the cell to survive a spectrum of stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Moreover, abnormalities of autophagy play a role in major health problems including cancer and neurodegenerative diseases. Yet, mechanisms controlling autophagic activity are not fully understood. Here, we describe hsa-miR-376b (miR-376b) as a new microRNA (miRNA) regulating autophagy. We showed that miR-376b expression attenuated starvation- and rapamycin-induced autophagy in MCF-7 and Huh-7 cells. We discovered autophagy proteins ATG4C and BECN1 (Beclin 1) as cellular targets of miR-376b. Indeed, upon miRNA overexpression, both mRNA and protein levels of ATG4C and BECN1 were decreased. miR-376b target sequences were present in the 3' UTR of ATG4C and BECN1 mRNAs and introduction of mutations abolished their miR-376b responsiveness. Antagomir-mediated inactivation of the endogenous miR-376b led to an increase in ATG4C and BECN1 levels. Therefore, miR-376b controls autophagy by directly regulating intracellular levels of two key autophagy proteins, ATG4C and BECN1.
Article
Full-text available
Autophagy plays a significant role in myocardial ischemia-reperfusion (IR) injury. So it is important to inhibit autophagy to protect cardiomyocytes besides anti-apoptosis. MiRNA has been demonstrated to protect cardiomyocytes against apoptosis during IR, while whether it has anti-autophagy effect has not been known. The aim of this study was to investigate whether miR-204 regulated autophagy by regulating LC3-II protein, which is the marker of autophagosome during myocardial IR injury. Adult SD rats were randomized to Control and IR groups. IR group was treated with 30 min ischemia by ligating the left anterior descending coronary artery, followed by 2 h reperfusion by loosing the ligation. The expression of miR-204 was measured by RT-PCR, and LC3 protein was measured by western-blot. We found that IR induced cardiomyocytes autophagy, together with down-regulation of miR-204 and up-regulation of LC3-II protein. And, we have found that LC3-II protein was regulated by miR-204, using the method of transferring miR-204 mimic or AMO-204 into the cardiomyocytes, before. These studies provided evidence that miR-204 played an important role in regulating autophagy through LC3-IIprotein during IR.
Article
Full-text available
The mechanisms of the control and activity of the autophagy-lysosomal protein degradation machinery are emerging as an important theme for neurodevelopment and neurodegeneration. However, the underlying regulatory and functional networks of known genes controlling autophagy and lysosomal function and their role in disease are relatively unexplored. We performed a systems biology-based integrative computational analysis to study the interactions between molecular components and to develop models for regulation and function of genes involved in autophagy and lysosomal function. Specifically, we analyzed transcriptional and microRNA-based post-transcriptional regulation of these genes and performed functional enrichment analyses to understand their involvement in nervous system-related diseases and phenotypes. Transcriptional regulatory network analysis showed that binding sites for transcription factors, SREBP1, USF, AP-1 and NFE2, are common among autophagy and lysosomal genes. MicroRNA enrichment analysis revealed miR-130, 98, 124, 204 and 142 as the putative post-transcriptional regulators of the autophagy-lysosomal pathway genes. Pathway enrichment analyses revealed that the mTOR and insulin signaling pathways are important in the regulation of genes involved in autophagy. In addition, we found that glycosaminoglycan and glycosphingolipid pathways also make a major contribution to lysosomal gene regulation. The analysis confirmed the known contribution of the autophagy-lysosomal genes to Alzheimer and Parkinson diseases and also revealed potential involvement in tuberous sclerosis, neuronal ceroidlipofuscinoses, sepsis and lung, liver and prostatic neoplasms. To further probe the impact of autophagy-lysosomal gene deficits on neurologically-linked phenotypes, we also mined the mouse knockout phenotype data for the autophagylysosomal genes and found them to be highly predictive of nervous system dysfunction. Overall this study demonstrates the utility of systems biology-based approaches for understanding the autophagy-lysosomal pathways and gaining additional insights into the potential impact of defects in these complex biological processes.
Article
Full-text available
A loss of stromal Cav-1 in the tumor fibroblast compartment is associated with early tumor recurrence, lymph-node metastasis, and tamoxifen-resistance, resulting in poor clincical outcome in breast cancer patients. Here, we have used Cav-1 (-/-) null mice as a pre-clinical model for this "lethal tumor micro-environment." Metabolic profiling of Cav-1 (-/-) mammary fat pads revealed the upregulation of numerous metabolites (nearly 100), indicative of a major catabolic phenotype. Our results are consistent with the induction of oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy. The two most prominent metabolites that emerged from this analysis were ADMA (asymmetric dimethyl arginine) and BHB (beta-hydroxybutyrate; a ketone body), which are markers of oxidative stress and mitochondrial dysfunction, respectively. Transcriptional profiling of Cav-1 (-/-) stromal cells and human tumor stroma from breast cancer patients directly supported an association with oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy, as well as ADMA and ketone production.
Article
Full-text available
beclin 1, the mammalian homologue of the yeast Atg6, is a key autophagy-promoting gene that plays a critical role in the regulation of cell death and survival of various types of cells. However, recent studies have observed that the expression of beclin 1 is altered in certain diseases including cancers. The causes underlying the aberrant expression of beclin 1 remain largely unknown. We report here that microRNAs (miRNAs), a class of endogenous, 22-24 nucleotide noncoding RNA molecules able to affect stability and translation of mRNA, may represent a previously unrecognized mechanism for regulating beclin 1 expression and autophagy. We demonstrated that beclin 1 is a potential target for miRNA miR-30a, and this miRNA could negatively regulate beclin 1 expression resulting in decreased autophagic activity. Treatment of tumor cells with the miR-30a mimic decreased, and with the antagomir increased, the expression of beclin 1 mRNA and protein. Dual luciferase reporter assay confirmed that the miR-30a binding sequences in the 3'-UTR of beclin 1 contribute to the modulation of beclin 1 expression by miR-30a. Furthermore, inhibition of beclin 1 expression by the miR-30a mimic blunted activation of autophagy induced by rapamycin. Our study of the role of miR-30a in regulating beclin 1 expression and autophagy reveals a novel function for miRNA in a critical cellular event with significant impacts in cancer development, progression and treatment, and in other diseases.
Article
Full-text available
Genotoxic stress can induce autophagy in a p53-dependent fashion and p53 can transactivate autophagy-inducing genes. We have observed recently that inactivation of p53 by deletion, depletion or inhibition can trigger autophagy. Thus, human and mouse cells subjected to knockout, knockdown or pharmacological inhibition of p53 manifest signs of autophagy such as depletion of p62/SQSTM1, LC3 lipidation, redistribution of GFP-LC3 in cytoplasmic puncta, and accumulation of autophagosomes and autolysosomes, both in vitro and in vivo. Inhibition of p53 causes autophagy in enucleated cells, indicating that the cytoplasmic, non-nuclear pool of p53 can regulate autophagy. Accordingly, retransfection of p53(-/-) cells with wild-type p53 as well as a p53 mutant that is excluded from the nucleus (due to the deletion of the nuclear localization sequence) can inhibit autophagy, whereas retransfection with a nucleus-restricted p53 mutant (in which the nuclear localization sequence has been deleted) does not inhibit autophagy. Several distinct autophagy inducers (e.g., starvation, rapamycin, lithium, tunicamycin and thapsigargin) stimulate the rapid degradation of p53. In these conditions, inhibition of the p53-specific E3 ubiquitin ligase HDM2 can avoid p53 depletion and simultaneously prevent the activation of autophagy. Moreover, a p53 mutant that lacks the HDM2 ubiquitinylation site and hence is more stable than wild-type p53 is particularly efficient in suppressing autophagy. In conclusion, p53 plays a dual role in the control of autophagy. On the one hand, nuclear p53 can induce autophagy through transcriptional effects. On the other hand, cytoplasmic p53 may act as a master repressor of autophagy.
Article
Autophagy is a self-degrading process that is triggered by diverse stimuli including ionizing radiation. In this study we show novel phenomena in which transfection of miR-199a-5p mimic significantly suppresses IR-induced autophagy in MCF7 cells, and up-regulates basal and IR-induced autophagy in MDA-MB-231 breast cancer cells. We also identify DRAM1 and Beclin1 as novel target genes for miR-199a-5p. Overexpression of miR-199a-5p inhibits DRAM1 and Beclin1 expression in MCF7 cells, while it enhances expression of these genes in MDA-MB-231 cells. Furthermore, we show that miR-199a-5p sensitizes MDA-MB-231 cells to irradiation. Therefore, our data identify miR-199a-5p as a novel and unique regulator of autophagy, which plays an important role in cancer biology and cancer therapy.
Article
Tumor cells survive hypoxic conditions by inducing autophagy. We investigated the roles of microRNAs (miRNAs) in regulating autophagy of hepatocellular carcinoma (HCC) cells under hypoxic conditions. We used gain- and loss-of-function methods to evaluate the effect of miRNAs on autophagy in human HCC cell lines (Huh7 and Hep3B) under hypoxic conditions. Autophagy was quantified by immunoblot, immunofluoresence, and transmission electron microscopy analyses, and after incubation of cells with bafilomycin A1. We used a luciferase reporter assay to confirm associations between miRNAs and their targets. We analyzed growth of HCC xenograft tumors in nude mice. miR-375 was down-regulated in HCC cells and tissues; it inhibited autophagy under hypoxic conditions by suppressing the conversion of LC3I to LC3II and thereby autophagic flux. The ability of miR-375 to inhibit autophagy was independent of its ability to regulate 3'-phosphoinositide-dependent protein kinase-1-AKT-mammalian target of rapamycin signaling, but instead involved suppression of ATG7, an autophagy-associated gene. miR-375 bound directly to a predicted site in the 3' untranslated region of ATG7. Up-regulating miR-375 or down-regulating ATG7 inhibited mitochondrial autophagy of HCC cells, reduced the elimination of damaged mitochondria under hypoxia, increased release of mitochondrial apoptotic proteins, and reduced viability of HCC cells. In mice, xenograft tumors that expressed miR-375 had fewer autophagic cells, larger areas of necrosis, and grew more slowly than tumors from HCC cells that expressed lower levels of miR-375. miR-375 inhibits autophagy by reducing expression of ATG7 and impairs viability of HCC cells under hypoxic conditions in culture and in mice. miRNAs that inhibit autophagy of cancer cells might be developed as therapeutics.
Article
Autophagy is known to have a cytoprotective role under various cellular stresses; however, it also results in robust cell death as an important safeguard mechanism that protects the organism against invading pathogens and unwanted cancer cells. Autophagy is regulated by cell signalling including microRNA (miRNA), a post-transcriptional regulator of gene expression. Here, we show that genetically engineered telomerase-specific oncolytic adenovirus induced miR-7 expression, which is significantly associated with its cytopathic activity in human cancer cells. Virus-mediated miR-7 upregulation depended on enhanced expression of the E2F1 protein. Ectopic expression of miR-7 suppressed cell viability and induced autophagy by inhibiting epidermal growth factor receptor (EGFR) expression. Our results suggest that oncolytic adenovirus induces autophagic cell death through an E2F1-miR-7-EGFR pathway in human cancer cells, providing a novel insight into the molecular mechanism of an anticancer virotherapy.
Article
Unlabelled: MicroRNAs (miRNAs) are known to be involved in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). Recently, microRNA-7 (miR-7) has been proven to play a substantial role in glioblastoma and breast cancer, but its functions in the context of HCC remain unknown. Here, we demonstrate that miR-7 inhibits HCC cell growth and metastasis in vitro and in vivo. We first screened and identified a novel miR-7 target, phosphoinositide 3-kinase catalytic subunit delta (PIK3CD). Overexpression of miR-7 would specifically and markedly down-regulate its expression. miR-7-overexpressing subclones showed significant cell growth inhibition by G(0) /G(1) -phase cell-cycle arrest and significant impairment of cell migration in vitro. To identify the mechanisms, we investigated the phosphoinositide 3-kinase (PI3K)/Akt pathway and found that Akt, mammalian target of rapamycin (mTOR), and p70S6K were down-regulated, whereas 4EBP1 was up-regulated in miR-7-overexpressing subclones. We also identified two novel, putative miR-7 target genes, mTOR and p70S6K, which further suggests that miR-7 may be a key regulator of the PI3K/Akt pathway. In xenograft animal experiments, we found that overexpressed miR-7 effectively repressed tumor growth (3.5-fold decrease in mean tumor volume; n = 5) and abolished extrahepatic migration from liver to lung in a nude mouse model of metastasis (n = 5). The number of visible nodules on the lung surface was reduced by 32-fold. A correlation between miR-7 and PIK3CD expression was also confirmed in clinical samples of HCC. Conclusion: These findings indicate that miR-7 functions as a tumor suppressor and plays a substantial role in inhibiting the tumorigenesis and reversing the metastasis of HCC through the PI3K/Akt/mTOR-signaling pathway in vitro and in vivo. By targeting PIK3CD, mTOR, and p70S6K, miR-7 efficiently regulates the PI3K/Akt pathway. Given these results, miR-7 may be a potential therapeutic or diagnostic/prognostic target for treating HCC.
Article
Macro(autophagy) is a cellular mechanism which delivers cytoplasmic constituents to lysosomes for degradation. Due to its role in maintaining cellular integrity, autophagy protects against various diseases including cancer. p53 is a major tumor suppressor gene which can modulate autophagy both positively and negatively. p53 induces autophagy via transcriptional activation of Damage-Regulated Autophagy Modulator (DRAM-1). We report here that DRAM-1 encodes not just one mRNA, but a series of p53-inducible splice variants which are expressed at varying levels in multiple human and mouse cell lines. Two of these new splice variants, termed SV4 and SV5, result in mature mRNA species. Different to 'full-length' DRAM-1 (SV1), SV4 and SV5 do not localise to lysosomes or endosomes, but instead partially localise to peroxisomes and autophagosomes respectively. In addition, SV4 and SV5 can also be found co-localised with certain markers of the endoplasmic reticulum. Similar to SV1, SV4 and SV5 do not appear to be inducers of programmed cell death, but they do modulate autophagy. In summary, these findings identify new autophagy regulators that provide insight into the control of autophagy downstream of p53.
Article
The cisplatin-induced ATM-dependent phosphorylated (p)-ΔNp63α plays an important role in transcriptional regulation of specific genes encoding mRNAs and microRNAs (miRs) implicated in cell death, cell survival, and chemoresistance. The p-ΔNp63α-induced miR-885-3p functions as a critical regulator of MDM4, ATK1, BCL2, ATG16L2, ULK2, CASP2, and CASP3 mRNAs via pairing with their respective 'recognition' sequences. Cisplatin exposure modulated the levels of target proteins (reduced BCL2, AKT1, ATG16L2, and ULK2, while activated MDM4) in cisplatin-sensitive wild type ΔNp63α cells leading to distinct changes in cell viability. Finally, miR-885-3p modulated the cisplatin-induced TP53-dependent mitochondrial apoptosis by up regulation of MDM4 levels and down regulation of BCL2 levels in mitochondria. Altogether, our results support the notion that miR-885-3p might contribute in regulation of cell viability, apoptosis and/or autophagy in squamous cell carcinoma cells upon cisplatin exposure.
Article
MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that can mediate the expression of target genes with complementary sequences. About 5,300 human genes have been implicated as targets for miRNAs, making them one of the most abundant classes of regulatory genes in humans. MiRNAs recognize their target mRNAs based on sequence complementarity and act on them to cause the inhibition of protein translation by degradation of mRNA. Besides contributing to development and normal function, microRNAs have functions in various human diseases. Given the importance of miRNAs in regulating cellular differentiation and proliferation, it is not surprising that their misregulation is linked to cancer. In cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor suppressors. Amplification or overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to tumor formation by stimulating proliferation, angiogenesis, and invasion; i.e., they act as oncogenes. Similarly, miRNAs can down-regulate different proteins with oncogenic activity; i.e., they act as tumor suppressors. This review will highlight the recent discoveries regarding miRNAs and their importance in cancer.