Article

Decreasing mortality and changing patterns of causes of death in the Swiss HIV Cohort Study

Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
HIV Medicine (Impact Factor: 3.99). 04/2013; 14(4):195-207. DOI: 10.1111/j.1468-1293.2012.01051.x.

ABSTRACT

Background:
Mortality among HIV-infected persons is decreasing, and causes of death are changing. Classification of deaths is hampered because of low autopsy rates, frequent deaths outside of hospitals, and shortcomings of International Statistical Classification of Diseases and Related Health Problems (ICD-10) coding.

Methods:
We studied mortality among Swiss HIV Cohort Study (SHCS) participants (1988-2010) and causes of death using the Coding Causes of Death in HIV (CoDe) protocol (2005-2009). Furthermore, we linked the SHCS data to the Swiss National Cohort (SNC) cause of death registry.

Results:
AIDS-related mortality peaked in 1992 [11.0/100 person-years (PY)] and decreased to 0.144/100 PY (2006); non-AIDS-related mortality ranged between 1.74 (1993) and 0.776/100 PY (2006); mortality of unknown cause ranged between 2.33 and 0.206/100 PY. From 2005 to 2009, 459 of 9053 participants (5.1%) died. Underlying causes of deaths were: non-AIDS malignancies [total, 85 (19%) of 446 deceased persons with known hepatitis C virus (HCV) status; HCV-negative persons, 59 (24%); HCV-coinfected persons, 26 (13%)]; AIDS [73 (16%); 50 (21%); 23 (11%)]; liver failure [67 (15%); 12 (5%); 55 (27%)]; non-AIDS infections [42 (9%); 13 (5%); 29 (14%)]; substance use [31 (7%); 9 (4%); 22 (11%)]; suicide [28 (6%); 17 (7%), 11 (6%)]; myocardial infarction [28 (6%); 24 (10%), 4 (2%)]. Characteristics of deceased persons differed in 2005 vs. 2009: median age (45 vs. 49 years, respectively); median CD4 count (257 vs. 321 cells/μL, respectively); the percentage of individuals who were antiretroviral therapy-naïve (13 vs. 5%, respectively); the percentage of deaths that were AIDS-related (23 vs. 9%, respectively); and the percentage of deaths from non-AIDS-related malignancies (13 vs. 24%, respectively). Concordance in the classification of deaths was 72% between CoDe and ICD-10 coding in the SHCS; and 60% between the SHCS and the SNC registry.

Conclusions:
Mortality in HIV-positive persons decreased to 1.33/100 PY in 2010. Hepatitis B or C virus coinfections increased the risk of death. Between 2005 and 2009, 84% of deaths were non-AIDS-related. Causes of deaths varied according to data source and coding system.

Download full-text

Full-text

Available from: Justyna D Kowalska, Jul 14, 2015
  • Source
    • "Smith et al., [7] in particular, found a statistically significant decrease of adjusted IR of both liver-related deaths and cardio-vascular deaths, but the adjusted IR of non-AIDS-cancers relative to recent cART years vs. early cART years always resulted nearly equal to unity, i.e., non-AIDS-related cancer rates have remained stable over time. These types of cancer seem now be the most common cause of non-AIDS death [8,17]. An important caveat to this study is that, being observational in nature, we cannot rule out the possibility of unmeasured confounding. "

    Full-text · Article · Jan 2015 · Journal of AIDS & Clinical Research
  • Source
    • "Only patients with more than 14 months of potential follow-up, before closure of the database, were included in the analysis of LTFU. Causes of deaths were classified according to the Causes of Death in HIV (CoDe) protocol (Version 2.3)[20], or based on ICD-10 codes from the death certificate (Table S1, http://links.lww.com/QAD/A603). We considered patients as exposed to hepatitis C virus (HCV) if they had positive anti-HCV or HCV-RNA tests and exposed to hepatitis B virus (HBV) in the presence of positive anti- HBc, HBs-antigen or HBV-DNA tests. "
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: Inequalities and inequities in health are an important public health concern. In Switzerland, mortality in the general population varies according to the socio-economic position (SEP) of neighbourhoods. We examined the influence of neighbourhood SEP on presentation and outcomes in HIV-positive individuals in the era of combination antiretroviral therapy (cART). METHODS: The neighbourhood SEP of patients followed in the Swiss HIV Cohort Study (SHCS) 2000-2013 was obtained on the basis of 2000 census data on the 50 nearest households (education and occupation of household head, rent, mean number of persons per room). We used Cox and logistic regression models to examine the probability of late presentation, virologic response to cART, loss to follow-up and death across quintiles of neighbourhood SEP. RESULTS: A total of 4489 SHCS participants were included. Presentation with advanced disease [CD4 cell count <200 cells/μl or AIDS] and with AIDS was less common in neighbourhoods of higher SEP: the age and sex-adjusted odds ratio (OR) comparing the highest with the lowest quintile of SEP was 0.71 [95% confidence interval (95% CI) 0.58-0.87] and 0.59 (95% CI 0.45-0.77), respectively. An undetectable viral load at 6 months of cART was more common in the highest than in the lowest quintile (OR 1.52; 95% CI 1.14-2.04). Loss to follow-up, mortality and causes of death were not associated with neighbourhood SEP. CONCLUSION: Late presentation was more common and virologic response to cART less common in HIV-positive individuals living in neighbourhoods of lower SEP, but in contrast to the general population, there was no clear trend for mortality.
    Full-text · Article · Nov 2014 · AIDS (London, England)
  • Source
    • "The use of antiretroviral treatment (ART) for HIV infection has led to a dramatic reduction of HIV-related morbidity and mortality, and the life expectancy of HIV-infected individuals is now approaching that of the general population [1-4]. As HIV-related mortality has decreased, there has been a relative increase in the proportion of deaths attributable to other complications such as renal disease, liver disease, neurocognitive impairment, and cardiovascular disease (CVD) [5]. For reasons that are not yet fully understood, HIV-infected individuals, even those on stable suppressive treatment, have a higher prevalence of atherosclerosis than age-matched HIV-negative adults [6-9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic HIV infection is associated with increased risk of cardiovascular disease caused by atherosclerosis. Oxidized forms of low-density lipoprotein (LDL) are present in atherosclerotic lesions and constitute major epitopes for natural antibodies. IgM has been shown to be protective against atherosclerosis, whereas the role of corresponding IgG is less clear. The objective of this study was to determine if HIV + individuals have disturbed levels of IgM and IgG directed against oxidized forms of LDL as compared to HIV- individuals. Ninety-one HIV + patients and 92 HIV- controls were included in this retrospective study. Circulating levels of IgG and IgM directed against two forms of oxidized LDL; copper oxidized (OxLDL) and malondialdehyde modified (MDA-LDL), total IgM and IgG, C-reactive protein (CRP), soluble CD14, and apolipoproteins A1 and B were determined. HIV + individuals had slightly lower levels of IgM against MDA-LDL and higher levels of IgG against MDA-LDL, OxLDL, and total IgG, than HIV- controls. Anti-MDA-LDL and Anti-OxLDL IgG displayed a positive correlation with viral load and a negative correlation with the CD4+ T-cell count. HIV + individuals also displayed elevated CRP and soluble CD14 levels compared to HIV- individuals, but there were no correlations between CRP or soluble CD14 and specific antibodies. HIV infection is associated with higher levels of IgG including specific IgG against oxidized forms of LDL, and lower IgM against the same epitope. In addition to dyslipidemia, immune activation, HIV-replication and an accumulation of risk factors for atherosclerosis, this adverse antibody profile may be of major importance for the increased risk of cardiovascular disease in HIV + individuals.
    Full-text · Article · Mar 2014 · BMC Infectious Diseases
Show more