Data

The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VIII. 'Futile' Processes in the Chromosphere

Authors:
To read the file of this research, you can request a copy directly from the authors.

Abstract

In the liquid metallic hydrogen solar model (LMHSM), the chromosphere is the site of hydrogen condensation (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, L15-L21). Line emission is associated with the dissipation of energy from condensed hydrogen structures, CHS. Previously considered reactions resulted in hydrogen atom or cluster addition to the site of condensation. In this work, an additional mechanism is presented, wherein atomic or molecular species interact with CHS, but do not deposit hydrogen. These reactions channel heat away from CHS, enabling them to cool even more rapidly. As a result, this new class of processes could complement true hydrogen condensation reactions by providing an auxiliary mechanism for the removal of heat. Such 'futile' reactions lead to the formation of activated atoms, ions, or molecules and might contribute to line emission from such species. Evidence that complimentary 'futile' reactions might be important in the chromosphere can be extracted from lineshape analysis.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The establishment by Andrews of critical temperatures (T. Andrews, Phil. Trans. 1869, v. 159, 575-590) soon became one of the great pillars in support of the gaseous models of the Sun. Gases above these temperatures simply could not be liquefied. Given that interior of the Sun was already hypothesized in the 19th century to be at temperatures well exceeding those achievable on Earth in ordinary furnaces, it became inconceivable to think of the solar interior as anything but gaseous. Hence, the models advanced by Secchi, Faye, Stoney, Lane, and Young, could easily gain acceptance. However, modern science is beginning to demonstrate that hydrogen (which under ordinary conditions has a critical point at ˜33 K) can become pressure ionized such that its electrons enter metallic conductions bands, given sufficiently elevated pressures, as the band gap is reduced from 15 eV to ˜0.3 eV. Liquid metallic hydrogen will possess a new critical temperature well above that of ordinary hydrogen. Already, experiments suggests that it can exist at temperatures of thousands of Kelvin and millions of atmospheres (S. T. Weir et al., Phys. Rev. Let. 1996, 76, 1860). The formation of liquid metallic hydrogen brings with it a new candidate for the interior of the Sun and the stars. Its existence shatters the great pillar of the gaseous models of the Sun which the critical point of ordinary gases had erected.
Article
Full-text available
The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV). Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK). In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14). Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun
Article
Full-text available
The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47). Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355). The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in nature. Spicules provide a means, not to heat the corona, but rather, for condensed hydrogen to rejoin the photospheric layer of the Sun. Spicular velocities of formation are known to be essentially independent of gravitational effects and highly supportive of the hypothesis that true condensation processes are being observed. The presence of spicules brings into question established chromospheric densities and provides additional support for condensation processes in the chromosphere, the seventh line of evidence that the Sun is comprised of condensed matter.
Article
Full-text available
In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21). As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25). Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 10^4 –10^6 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as CIV, OIV, and SiIV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simulta-neous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as CIV, OIV, and SiIV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4 , SiH4 , H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model, it follows that the great physical extent of the chromosphere is supported by gas pressure, much like the atmosphere of the Earth. This constitutes the thirty-fourth line of evidence that the Sun is comprised of condensed matter.
Article
Full-text available
Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS) within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21). Next to hydrogen, helium is perhaps the most intriguing component in this region of the Sun. Much like other elements, which combine with hydrogen to produce hydrides, helium can form the well-known helium hydride molecular ion, HeH+ , and the excited neutral helium hydride molecule, HeH* . While HeH+ is hypothesized to be a key cosmological molecule, its possible presence in the Sun, and that of its excited neutral counterpart, has not been considered. Still, these hydrides are likely to play a role in the synthesis of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study of helium emission spectra can provide insight into the condensed nature of the Sun, especially when considering the 10830 Å line associated with the 2 3P→2 3S triplet state transition. This line is strong in solar prominences and can be seen clearly on the disk. The excessive population of helium triplet states cannot be adequately explained using the gaseous models, since these states should be depopulated by collisional processes. Conversely, when He-based molecules are used to build CHS in a liquid metallic hydro-gen model, an ever increasing population of the 2 3S and 23 P states might be expected. The overpopulation of these triplet states leads to the conclusion that these emission lines are unlikely to be produced through random collisional or photon excitation, as required by the gaseous models. This provides a significant hurdle for these models. Thus, the strong 2 3P→2 3S lines and the overpopulation of the helium triplet states provides the thirty-second line of evidence that the Sun is comprised of condensed matter.
Article
Our Sun has confronted humanity with overwhelming evidence that it is comprised of condensed matter. Dismissing this reality, the standard solar models continue to be anchored on the gaseous plasma. In large measure, the endurance of these theories can be attributed to 1) the mathematical elegance of the equations for the gaseous state, 2) the apparent success of the mass-luminosity relationship, and 3) the long-lasting influence of leading proponents of these models. Unfortunately, no direct physical finding supports the notion that the solar body is gaseous. Without exception, all observations are most easily explained by recognizing that the Sun is primarily comprised of condensed matter. However, when a physical characteristic points to condensed matter, a postori arguments are invoked to account for the behavior using the gaseous state. In isolation, many of these treatments appear plausible. As a result, the gaseous models continue to be accepted. There seems to be an overarching belief in solar science that the problems with the gaseous models are few and inconsequential. In reality, they are numerous and, while often subtle, they are sometimes daunting. The gaseous equations of state have introduced far more dilemmas than they have solved. Many of the conclusions derived from these approaches are likely to have led solar physics down unproductive avenues, as deductions have been accepted which bear little or no relationship to the actual nature of the Sun. It could be argued that, for more than 100 years, the gaseous models have prevented mankind from making real progress relative to understanding the Sun and the universe. Hence, the Sun is now placed on trial. Forty lines of evidence will be presented that the solar body is comprised of, and surrounded by, condensed matter. These ‘proofs’ can be divided into seven broad categories: 1) Planckian, 2) spectroscopic, 3) structural, 4) dynamic, 5) helioseismic, 6) elemental, and 7) earthly. Collectively, these lines of evidence provide a systematic challenge to the gaseous models of the Sun and expose the many hurdles faced by modern approaches. Observational astronomy and laboratory physics have remained unable to properly justify claims that the solar body must be gaseous. At the same time, clear signs of condensed matter interspersed with gaseous plasma in the chromosphere and corona have been regrettably dismissed. As such, it is hoped that this exposition will serve as an invitation to consider condensed matter, especially metallic hydrogen, when pondering the phase of the Sun.
Article
We first show that, with the same input parameters, the standard solar models of Bahcall and Ulrich; of Sienkiewicz, Bahcall, and Paczyński; of Turck-Chièze, Cahen, Cassé, and Doom; and of the current Yale code all predict event rates for the chlorine experiment that are the same within ±0.1 SNU (solar neutrino units), i.e., approximately 1% of the total calculated rate. We then construct new standard solar models using the Yale stellar evolution computer code supplemented with a more accurate (exportable) nuclear energy generation routine, an improved equation of state, recent determinations of element abundances, and the new Livermore (OPAL) opacity calculations. We evaluate the individual effects of different improvements by calculating a series of precise models, changing only one aspect of the solar model at a time. We next add a new subroutine that calculates the diffusion of helium with respect to hydrogen with the aid of the Bahcall-Loeb formalism. Finally, we compare the neutrino fluxes computed from our best solar models constructed with and without helium diffusion. We find that helium diffusion increases the predicted event rates by about 0.8 SNU, or 11% of the total rate, in the chlorine experiment; by about 3.5 SNU, or 3%, in the gallium experiments; and by about 12% in the Kamiokande and SNO experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, radiative opacity, and equation of state predicts a value of 8.0±3.0 SNU for the 37Cl experiment and 132-17+21 SNU for the 71Ga experiment. The quoted errors represent the total theoretical range and include the effects on the model predictions of 3σ errors in measured input parameters. All 15 calculations since 1968 of the predicted rate in the chlorine experiment given in this series of papers are consistent with both the range estimated in the present work and the 1968 best-estimate value of 7.5±2.3 SNU. Including the effects of helium diffusion and the other improvements in the description of the solar interior that are implemented in this paper, the inferred primordial solar helium abundance is Y=0.273. The calculated depth of the convective zone is R=0.707R⊙, in agreement with the value of 0.713R⊙ inferred by Christensen-Dalsgaard, Gough, and Thompson from a recent analysis of the observed p-mode oscillation frequencies. Including helium diffusion increases the calculated present-day hydrogen surface abundance by about 4%, decreases the helium abundance by approximately 11%, and increases the calculated heavy-element abundance by about 4%. In the Appendix, we present detailed numerical tables of our best standard solar models computed both with and without including helium diffusion. In the context of the MSW (Mikheyev-Smirnov-Wolfenstein) or other weak-interaction solutions of the solar neutrino problem, the numerical models can be used to compute the influence of the matter in the sun on the observed neutrino fluxes.
Article
Scitation is the online home of leading journals and conference proceedings from AIP Publishing and AIP Member Societies
Article
We investigate the synthesis of the Balmer and Paschen lines of the quiet Sun, using both classical semiempirical and theoretical model atmospheres, modern line-broadening theory, and non-LTE line formation. The computations alleviate long-standing discrepancies between LTE predictions and the observed lines. Theoretical and semiempirical model atmospheres without a chromosphere on the one hand and semiempirical models with a chromosphere on the other produce two physically disjoint solutions for the run of non-LTE level populations, including H II, throughout the model stratification. The resulting synthetic non-LTE line profiles are practically identical and reproduce the observation in either case, despite large differences in the line-formation depths, e.g., a chromospheric origin of the Hα core (in concordance with observation) versus a photospheric origin. The findings are of much broader interest, assuming the Sun to be a prototype cool dwarf star. A consistent account for chromospheres in cool star analyses is required, because of their potential to change atmospheric structure via non-LTE effects on the ionization balance of hydrogen and thus the free-electron pool. The latter in turn affects the main opacity source H-. This will in particular affect the atmospheres of metal-poor and evolved stars, in which the contribution of hydrogen to the electron pool becomes dominant.
Article
We discuss many aspects of the solar chromosphere from an observational point of view, and show that most existing models are in direct contradiction to radio and eclipse measurements. We plead for attention to the actual observed radio temperatures and density gradients, as well as images of the chromosphere. We find that the chromosphere is not in hydrostatic equilibrium and suggest that the support is due to the tangled intranetwork fields.
The physical constitution of the Sun
  • G Kirchhoff
Kirchhoff G. The physical constitution of the Sun. In: Researches on the Solar Spectrum and the Spectra of the Chemical Elements. Translated by H.E. Roscoe, Macmillan and Co., Cambridge, 1862, p. 23.
A Study of the Solar Chromosphere. Publications of the Lick Observatory
  • D H Menzel
Menzel D.H. A Study of the Solar Chromosphere. Publications of the Lick Observatory, University of California Press, Berkeley, CA, v. 17, 1931.