Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Das Interesse an freien Formen in der Architektur und im Industriedesign nimmt immer stärker zu. Für komplex geformte Strukturen sind faserbasierte Werkstoffe nahezu prädestiniert und bieten gegenüber klassischen Materialien im Bauwesen etliche Vorteile. Dennoch finden diese Materialien nur in seltenen Fällen Einzug in das Bauwesen. Die Abbildung von Geometrie und Materialität stellt dabei eine erhebliche Komplexität dar. Aus diesem Grund wurden von den Autoren neue bionische und multidisziplinäre Ansätze verfolgt, die es erlauben, das Potenzial des Materials für hocheffiziente Strukturen auszuschöpfen. Hierzu wurden ein angepasstes Verfahren zur Fertigung und neue Simulationswerkzeuge zur Planung für Architekten und Ingenieure entwickelt. Die entwickelten Methoden dienten als Grundlage eines im Sommer 2012 umgesetzten Versuchsbaus auf dem Campus der Universität Stuttgart und konnten dadurch erprobt und verifiziert werden. Die Strukturlogik des semitransparenten Pavillons wurde durch die räumliche Anordnung von Carbon‐ und Glasfasern definiert. Er hatte bei einer Spannweite von 8 m nur eine durchschnittliche Bauteildicke von 4, 6 mm und wog trotz seiner beachtlichen Größe weniger als 320 kg. Bio‐inspired fibre composite structures – principles for fabrication and design The request of free‐form surface generation strategies in architecture and industrial design is ever more increasing. For complex‐shaped structures, fibre‐based materials are often an obvious choice as they offer numerous advantages compared to traditional building materials and techniques. However, the usage of these materials in the construction field is still limited. Moreover, the design and simulation of fibre‐based materials is still a very challenging topic. For these reasons the authors developed an innovative, bionic‐inspired and multidisciplinary approach which allows the exploitation of the material potential to create highly efficient structures. Following this purpose, an integrated methodology for the simulation and manufacturing process was conceived for the architects and engineers. The developed methods were the basis for a prototype realized on the campus of the University of Stuttgart in the summer 2012, allowing the testing and proof of the proposed approach. The semi‐transparent pavilion spanned 8 m for a thickness of only 4.6 mm and weighed, despite its considerable size, less than 320 kg.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... A unique opportunity for the expanded use of synthetic composites in architectural contexts is rooted in the fully customizable processes available to designers and engineers to layer and adhere filaments, rovings or mat-based fibres into a solid form (FIG. 7e). In one such application, six-axis robotic manipulators were programmed to wind resin-coated rovings over an array of 2D ribs that described the edges of a series of doubly curved surfaces 26,92 . By laying the fibres in multidirectional layers, a load-bearing structure could be generated. ...
Article
Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.
... Without the constraints of a prefabricated positive mould, this manufacturing process specifically enables the production of anticlastic double curved surfaces as long as the different fibre layers are allowed to undergo relatively large elastic deformations, therefore assuming geometric configurations other than that of a ruled surface. This is achieved by tensioning transverse layers of fibres which would naturally lie on a deeper geometrical plane compared to the previous ones, resulting in a global displacement of the system which gradually tends to a continuous saddle shape as the number of rovings increases (Reichert et al., 2013). Having replaced the continuous full core with a series of voids and discrete anchoring points, the fibres are allowed to freely deform and assume their natural funicular shape under the load introduced by the overlapping fibres. ...
Conference Paper
Full-text available
In the current paper the authors present two case studies which expose innovative use of FRPs in engineering and architecture. A particular focus is set on the development of the coreless fabrication process specifically devised for the projects. The coreless technique developed as part of the research, offers an alternative to classical filament winding by replacing the positive mould with a linear steel frame, which provides the armature onto which the resin-soaked fibres are tensioned. Along with the planning of this alternative winding technique, specific computational tools had to be developed to accurately simulate the fabrication process and the mechanical response of the final structure. The coreless winding technique was implemented in the production of a full-scale prototype, an entirely carbon and glass fibre based monocoque shell. The second case study demonstrates the use of FRP based components for the production of a large scale structure. The coreless winding technique is adapted to the production of small size elements, which later serve as basic components for the assembly of a modular and double layer structure, allowing a larger span and the optimal transfer of global bending moments. The requirement of fabrication flexibility is resolved by adopting a specific robotic fabrication setup and an adaptive winding frame.
Chapter
Faserverbundwerkstoffe, auch als faserverstärkte Kunststoffe bezeichnet, haben wegen ihrer hervorragenden Werkstoffeigenschaften schon seit Langem einen festen Platz in der Luft‐ und Raumfahrttechnik, der Sportgeräte‐ und Automobilindustrie etc. Im Bauwesen sind sie noch selten, finden aber zunehmend Anwendung in Brücken, Fassaden, Windrädern oder als Verstärkung von Betonbauteilen. Der Beitrag gibt planenden Ingenieurinnen und Ingenieuren eine Zusammenstellung der Ausgangswerkstoffe, der Herstellungs‐ und Verarbeitungsverfahren, der bauaufsichtlich eingeführten technischen Regeln und zugelassenen Bauprodukte sowie der Bemessungskonzepte. Außerdem werden gebaute Beispiele gezeigt. Ziel ist es, den Vorteilen dieser Bauart, wie z. B. geringes Eigengewicht bei hoher mechanischer Festigkeit und Steifigkeit, Frost‐Tausalzbeständigkeit, niedrige thermische Leitfähigkeit, freie Formbarkeit etc. ein breiteres Anwendungsspektrum zu ermöglichen.
Chapter
Dieses Kapitel gibt einen Einstieg in die Anwendung der Faserverstärkten Kunststoffe im Bauwesen. Fasern werden vielfaltig zu Faserverbundstoffen weiterverarbeitet und dort als Verstärkungsfasern in die Matrix eingebettet. Dafür bevorzugt man Fasern mit einem hohen E-Modul. In der Praxis werden vor allem Glas und Kohlenstofffasern verwendet, in einigen Bereichen auch Aramid- oder PE-Fasern. Bei faserverstärkten Kunststoffen streuen die Festigkeit und Steifigkeit erheblich. Je nachdem welche mechanischen, chemischen, fertigungstechnischen und visuellen Anforderungen sich stellen, muss der Anwender geeignete Materialien, Herstellungsverfahren und Laminataufbau wählen. Bauaufsichtlich eingeführte technische Regeln für die Bemessung von tragenden Baukonstruktionen aus faserverstärkten Kunststoffen liegen derzeit nicht vor. Folgende Bemessungsrichtlinien und -empfehlungen können jedoch herangezogen werden. Faserverstärkte Kunststoffe haben außer den hohen mechanischen Festigkeitswerten noch weitere Eigenschaften, die in anderen Bereichen des Bauwesens vorteilhaft genutzt werden können, zum Beispiel ihre niedrige Wärmeleitfähigkeit, die vor allem bei Fassaden eine wichtige Rolle spielt.
Article
Full-text available
In the current paper, the authors developed two different numerical methods for fibre reinforced polymers. The first method deals with the simulation of an innovative manufacturing process based on filament winding for glass and carbon fibre reinforced polymers. The second developed numerical method aims at modelling a high level of material complexity and allowing reciprocal confrontation with a geometric differentiated global structure. The developed numerical techniques served as a basis for the design and implementation of a Pavilion built on the campus of the University of Stuttgart in 2012 and could thus be tested and proved.
Conference Paper
Full-text available
In the current paper, the authors developed two different numerical methods for fibre reinforced polymers. The first method deals with the simulation of an innovative manufacturing process based on filament winding for glass and carbon fibre reinforced polymers. The second developed numerical method aims at modelling a high level of material complexity and allowing reciprocal confrontation with a geometric differentiated global structure. The developed numerical techniques served as a basis for the design and implementation of a Pavilion built on the campus of the University of Stuttgart in 2012 and could thus be tested and proved.
Article
Full-text available
This paper will focus on how the emerging scientific discipline of biomimetics can bring new insights into the field of architecture. An analysis of both architectural and biological methodologies will show important aspects connecting these two. The foundation of this paper is a case study of convertible structures based on elastic plant movements.
Article
The last few years have witnessed a robotic revival with a reinvigoration of interest in what the robot can offer the construction industry. Martin Bechthold looks back at the first robotic boom during the 1980s and 1990s when millions of Japanese yen were invested in developing robots that could address the shortage of construction labour. Bechthold further explores the similarities and dissimilarities of the current and previous periods of activity, as supported by his research at Harvard's Graduate School of Design (GSD). Copyright © 2010 John Wiley & Sons, Ltd.
Chapter
The Arthropoda use chitin and various proteins as basic materials of their cuticle which is forming their exoskeletons. The exoskeleton is composed of skeletal elements with physical properties that are adapted to their function and the eco-physiological strains of the animal. These properties are achieved by forming elaborate microstructures that are organized in several hierarchical levels like the so-called twisted plywood structure, which is built by stacks of planar arrays of complex chitin-protein fibres. Additionally, the properties are influenced by variations in the chemical composition of the cuticle, for instance by combining the organic material with inorganic nano-particles. From a materials science point of view, this makes the cuticle to a hierarchical composite material of high functional versatility. The detailed investigation of microstructure, chemical composition and mechanical properties of cuticle from different skeletal elements of the crustacean Homarus americanus shows that cuticle can combine different design principles to create a high-performance anisotropic material. Numerical modelling of the cuticle using ab initio and multiscale approaches even enables the study of mechanical properties on hierarchical levels where experimental methods can no longer be applied. Understanding and eventually applying the underlying design principles of cuticle bears the potential for realization of a completely new generation of man-made structural materials. KeywordsChitin-Biological materials-Multi-scale model-Mechanical properties
Bio-inspired fibre composite structures-principles for fabrication and design AUFSATZ ARTICLE
  • F Waimer
  • R La Magna
  • S Reichert
  • T Schwinn
  • A Menges
  • J Knippers
F. Waimer, R. La Magna, S. Reichert, T. Schwinn, A. Menges, J. Knippers: Bio-inspired fibre composite structures-principles for fabrication and design AUFSATZ ARTICLE
Prototyping Biomimetic Structu-res for Architecture Prototyping Archi-tecture: The Conference Papers
  • J Knippers
  • A Menges
KNIPPERS, J.; MENGES, A.: Prototyping Biomimetic Structu-res for Architecture., In: Stacey, M. (ed): Prototyping Archi-tecture: The Conference Papers. Building Centre Trust, Lon-don, pp. 224–244.
Integrative Nu-merical Techniques for Fibre Reinforced Polymers –
  • F Waimer
  • R La Magna
  • J Knippers
WAIMER, F.; LA MAGNA, R.; KNIPPERS, J.: Integrative Nu-merical Techniques for Fibre Reinforced Polymers –
Structural Components -A Software System for Conceptual Structural Design
  • B Van De Weerd
  • A Rolvink
  • J Coenders
VAN DE WEERD, B.; ROLVINK, A.; COENDERS, J.: Structural Components -A Software System for Conceptual Structural Design. In: IASS-APCS 2012 Proceedings, Seoul.
Skylink at the Frankfurt Airport
  • M Fahlbusch
  • A Hoffmann
  • K Bollinger
  • M Groh-Mann
FAHLBUSCH, M.; HOFFMANN, A.; BOLLINGER, K.; GROH-MANN, M.: Skylink at the Frankfurt Airport. In: IASS-APCS 2012 Proceedings, Seoul.
Achim Menges achim.menges@icd.uni-stuttgart
  • Prof
Prof. Achim Menges achim.menges@icd.uni-stuttgart.de