Article

Identifying inference attacks against healthcare data repositories

Rutgers University, Newark, NJ, USA
AMIA Summits on Translational Science proceedings AMIA Summit on Translational Science 03/2013; 2013:262-266.
Source: PubMed

ABSTRACT

Health care data repositories play an important role in driving progress in medical research. Finding new pathways to discovery requires having adequate data and relevant analysis. However, it is critical to ensure the privacy and security of the stored data. In this paper, we identify a dangerous inference attack against naive suppression based approaches that are used to protect sensitive information. We base our attack on the querying system provided by the Healthcare Cost and Utilization Project, though it applies in general to any medical database providing a query capability. We also discuss potential solutions to this problem.

Download full-text

Full-text

Available from: Basit Shafiq, Mar 01, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The biomedical community benefits from the increasing availability of genomic data to support meaningful scientific research, e.g., Genome-Wide Association Studies (GWAS). However, high quality GWAS usually requires a large amount of samples, which can grow beyond the capability of a single institution. Federated genomic data analysis holds the promise of enabling cross-institution collaboration for effective GWAS, but it raises concerns about patient privacy and medical information confidentiality (as data are being exchanged across institutional boundaries), which becomes an inhibiting factor for the practical use. Methods: We present a privacy-preserving GWAS framework on federated genomic datasets. Our method is to layer the GWAS computations on top of secure multi-party computation (MPC) systems. This approach allows two parties in a distributed system to mutually perform secure GWAS computations, but without exposing their private data outside. Results: We demonstrate our technique by implementing a framework for minor allele frequency counting and chi(2) statistics calculation, one of typical computations used in GWAS. For efficient prototyping, we use a state-of-the-art MPC framework, i.e., Portable Circuit Format (PCF) [1]. Our experimental results show promise in realizing both efficient and secure cross-institution GWAS computations.
    Preview · Article · Dec 2015 · BMC Medical Informatics and Decision Making