An in-depth study of characterization and evaluation of selection strategies in the Lusitano horse breed was conducted to identify factors affecting the genetic variability of the breed and provide baseline information for the establishment of a sustainable genetic improvement program. Pedigree records collected in 53417 animals born from 1824 to 2009 were used. The mean generation interval was 11.33±5.23 and 9.71±4.48 years for sires and dams, respectively. For animals born between 2005 and 2009, the mean number of equivalent generations was 11.20±0.71 and the average inbreeding was 11.34±7.48%. The rate of inbreeding per year was 0.173±0.070, and the corresponding effective population size was about 28. The effective number of founders, ancestors and studs was 27.5, 11.7 and 5.4, respectively. These results reflect a strong emphasis placed on a few sire-families and raise concerns regarding the conservation of genetic diversity for the future.
Mixed model procedures were used to estimate genetic parameters, fixed effects and genetic trends for morpho-functional traits in Lusitano horses by uni- and multivariate animal models. Morphological traits included were partial scores attributed to more than 18000 horses at the time of registration in the studbook and included the classification of head/neck, shoulder/withers, chest/thorax, back/loin, croup, legs and overall impression, plus a final score (FS) and a score for gaits (GA) and the measurement of height at withers (HW). For functionality, the traits considered were scores obtained in dressage (WEDT) and maneability (WEMT) trials of working equitation (WE, about 1500 records by 200 horses), and classical dressage (CD, about 12130 records by nearly 760 horses). Fixed effects considered in the analyses of morphology, GA and FS were stud, year, sex, inbreeding and age. For functionally traits, the fixed effects were event, level of competition, sex, inbreeding and age. Heritability (h2) estimates for all partial morphological scores ranged between 0.12 and 0.18, except for legs (0.07), and were 0.18 for FS, 0.61 for HW and 0.17 for GA. For performance, h2 was 0.32 for WEDT and CD and 0.18 for WEMT. The genetic correlations among partial components of morphology were positive but widely different (0.08 to 0.77). The favourable genetic relationships existing between morphology and performance indicate that morphology and gaits traits can be used to enhance selection response when the improvement of WE or CD is intended. The magnitude of inbreeding depression was small for all the traits analyzed. The estimated breeding values for morphology, gaits and WE presented a large variability, indicating that selection can be effective, but the genetic trend observed over the last few years was positive but moderate for all traits.
The assessment of genetic diversity and population structure obtained by either pedigree data or microsatellite markers was compared. The same pedigree database was used and, in addition, data on either 6 or 8 microsatellite markers genotyped in more than 19000 horses, from 1998-2007. Genealogical inbreeding was a better predictor of molecular inbreeding than the opposite, but it had a modest correlation with multilocus heterozygosity (6% of its variability). Still, the rates of inbreeding per generation estimated by the two methods were very similar. Genetic distances among the major studs producing Lusitano horses were comparable when they were estimated from pedigree or molecular information, with a correlation between FST distances of 0.82, and similar dendrograms were obtained in both cases. Overall, estimates derived from a reduced number of microsatellites or from pedigrees are poorly correlated when considered at the individual level, but parameters derived from pedigree are better predictors of molecular-derived indicators. However, when considered at the breed-level, the estimated diversity parameters, time trends and population substructure are very similar when genealogical data or microsatellite markers are considered.