Article

LISA Telescope Assembly Optical Stability Characterization for ESA

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The LISA Optical Stability Characterization project is part of the LISA CTP activities to achieve the required Technonlogy Readiness Level (TRL) for all of the LISA technologies used. This activity aims demonstration of the Telescope Assembly (TA), with a structure based on CFRP technology, that a CTE of 10-7 1/K can be achieved with measures to tune the CTE to this level. In addition the demonstration is required to prove that the structure exhibits highly predictable mechanical distortion characteristics when cooling down to -90°C, during outgassing in space and when going from 1g environment to 0g. This paper describes the test facilities as well as the first test results. A dedicated test setup is designed and realized to allow monitoring dimensional variations of the TA using three interferometers, while varying the temperature in a thermal vacuum chamber. Critical parameters of the verification setup are the length metrology accuracy in thermal vacuum and the thermal vacuum flexibility and stability. The test programme includes Telescope Assembly CTE measurements and thermal gradient characterization.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The mirrors adopt low temperature optimized Zerodur or ultra low expansion glass (ULE) (Westerhoff et al. 2014) and special techniques are used to reduce the weight of the primary mirror (Krödel et al. 2014). To minimize thermoelastic impacts in the position of the mirrors, SiC and TC4 can be adopted for the telescope structure (Verlaan et al. 2012). Aluminum coatings can be used as the optical mirror surface. ...
Article
Full-text available
The Closeby Habitable Exoplanet Survey (CHES) mission is proposed to discover habitable-zone Earth-like planets of the nearby solar-type stars ($\sim 10~\mathrm{pc}$ away from our solar system) via micro-arcsecond relative astrometry. The major scientific objectives of CHES are: to search for Earth Twins or terrestrial planets in habitable zones orbiting 100 FGK nearby stars; further to conduct a comprehensive survey and extensively characterize the nearby planetary systems. The primary payload is a high-quality, low-distortion, high-stability telescope. The optical subsystem is a coaxial three-mirror anastigmat (TMA) with a $1.2 \mathrm{~m}$-aperture, $0.44^{\circ} \times 0.44^{\circ}$ field of view and $500 \mathrm{~nm}-900 \mathrm{~nm}$ working waveband. The camera focal plane is composed of 81 MOSAIC scientific CMOS detectors each with $4 \mathrm{~K} \times 4 \mathrm{~K}$ pixels. The heterodyne laser interferometric calibration technology is employed to ensure micro-arcsecond level (1 $\mu$as) relative astrometry precision to meet the requirements for detection of Earth-like planets. CHES satellite operates at the Sun-Earth L2 point and observes the entire target stars for 5 years. CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on micro-arcsecond astrometry from space. This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars, and finally to reflect the evolution of our own solar system.
... We are aware of a similar effort in Europe [3] and that approach is complementary. Both investigations have converged to an off-axis optical design, although the design approach and material choices are very different. ...
Article
Full-text available
We report on the results of a study conducted from Nov 2012-Apr 2013 to develop a telescope design for a space-based gravitational wave detector. The telescope is needed for efficient power delivery but since it is directly in the beam path, the design is driven by the requirements for the overall displacement sensitivity of the gravitational wave observatory. Two requirements in particular, optical pathlength stability and scattered light performance, are beyond the usual specifications for good image quality encountered in traditional telescopic systems. An important element of the study was to tap industrial expertise to develop an optimized design that can be reliably manufactured. Key engineering and design trade-offs and the sometimes surprising results will be presented.
Article
Coupling between exiting wavefront error of space gravitational wave telescopes and tilt-to-length (TTL) noise affects the measurement accuracy. Using the LISA Pathfinder signal, we analyzed cancellation and superposition of TTL coupling noise under various optical aberrations. We proposed proportion requirements of any two aberrations amplitude when noise was cancelled and an aberration amplitude control requirement when noise was superposed. Taking them as the aberration control requirements of gravitational wave telescope optical system, the exiting wavefront error requirements was reduced while suppressing the TTL coupling noise. A 40× optical telescope system with detection aperture φ=200 mm was designed. The exiting wavefront error was relaxed from 0.02 λ to 0.0496 λ. The maximum coupling coefficient value did not exceed 6.9448 pm/µrad within a pointing jitter angle of ±300 µrad. The proposed approach should be useful in future telescope design.
Article
Thermal control is essential to guarantee the optimal performance of most advanced electronic devices or systems. In space, orbital satellites face the issues of high thermal gradients, heating, and different thermal loads mediated by differential illumination from the Sun. Todaýs state-of-the-art thermal control systems provide protection; however, they are bulky and restrict the mass and power budgets for payloads. Here, we develop a lightweight optical superlattice nanobarrier structure to provide a smart thermal control solution. The structure consists of a moisture and outgassing physical barrier (MOB) coupled with atomic oxygen (AO)-UV protection functionality. The nanobarrier exhibits transmission and reflection of light by controlling the optical gap of individual layers to enable high infrared emissivity and variable solar absorptivity (minimum ΔαS = 0.30) across other wavelengths. The multifunctional coating can be applied to heat-sensitive substrates by means of a bespoke room-temperature process. We demonstrate enhanced stability, energy-harvesting capability, and power savings by facilitating the radiation cooling and facility for active self-reconfiguration in orbit. In this way, the reduction of the operating temperature from ∼120 to ∼60 °C on space-qualified and nonmechanically controlled composite structures is also demonstrated.
Article
Space applications demand light weight materials with excellent dimensional stability for telescopes, optical benches, optical resonators, etc. Glass-ceramics and composite materials can be tuned to reach very low coefficient of thermal expansion (CTE) at different temperatures. In order to determine such CTEs, very accurate setups are needed. Here we present a dilatometer that is able to measure the CTE of a large variety of materials in the temperature range of 140 K to 250 K. The dilatometer is based on a heterodyne interferometer with nanometer noise levels to measure the expansion of a sample when applying small amplitude controlled temperature signals. In this article, the CTE of a carbon fiber reinforced polymer sample has been determined with an accuracy in the 10⁻⁸ K⁻¹ range.
Article
Space-based observation of gravitational waves promises to enable the study of a rich variety of high energy astrophysical sources in the 0.0001 to 1 Hz band using signals complementary to traditional electromagnetic waves. Gravitational waves represent the first new tool for studying the sky since gamma ray telescopes debuted in the 1970s, and we expect compelling science to be the result. The fundamental measurement is to monitor the path length difference between pairs of freely falling test masses with laser interferometry to a precision of picometers over gigameter baselines. The test masses are arranged in an equilateral triangle to allow simultaneous measurement of both gravitational wave polarizations. The heliocentric orbital space environment enables the test masses to be shielded from large ground motions at low frequencies, and allows the construction of long measurement baselines that are well matched to the signal wavelengths. Optical telescopes play an important role in the measurement because they deliver laser light efficiently from one spacecraft to another. The telescopes are directly in the measurement path, so there are additional performance requirements to support precision metrology beyond the usual requirements for good image formation. c 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Article
Through the years many stable optical mounts have been designed, analyzed and tested at TNO. This paper gives an overview of the design principles used. Various examples are presented together with verification test results. The use of adhesives in combination with an iso-static mount design allows mounting of optical components in a limited volume with limited deformation of the optical surfaces due to thermal and mechanical loads. Relatively large differences in thermal expansion over large temperature ranges can be overcome using a simple and predictable design at reasonable costs. Despite adhesives have limited dimensional stability and loadability, stable optical mounts can be realized when proper design principles are used.
ResearchGate has not been able to resolve any references for this publication.