ArticlePDF Available

Fabrication and characteristic of long photonic crystal fiber taper

Authors:

Abstract and Figures

In this paper, we drew a 500 m-long PCF taper directly on the industry drawing tower. The fiber taper has a uniform cross-section structure with OD from 170 μm to 70 μm, and demonstrates very good beam quality. The optical attenuation of PCF taper was measured. The optical attenuation is ~5 dB/km near 1200 nm, but the water absorption peak around 1400 nm and the attenuation beyond 1600 nm are still large. The zero dispersion wavelength (ZDW) was calculated to be ~1090 nm at the taper input end, and shifted to ~870 nm at the taper output end. The PCF taper was pumped with a picosecond laser source at wavelength of 1064 nm, and generated 200 mW output power of SC covering from ~450 nm to 1600 nm.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
A 145-m long microstructured optical fiber taper was fabricated on the industry drawing tower. The fiber taper had good uniformity of structure as the outer diameter decreased from 110 to 80 mum. Its optical attenuation was measured 52 dB/km at 1060 nm, and the zero dispersion wavelengths along the slow axis were calculated decreasing from 1000 to 915 nm. Watt-level supercontinuum spanning from 430 to 2050 nm was obtained as the fiber taper pumped by a 1064 nm picosecond laser source. The nonlinear mechanism of spectral broadening is carefully investigated with the support of numerical simulations.
Article
Full-text available
The year 2009 marks the tenth anniversary of the first report of white-light supercontinuum generation in photonic crystal fibre. This result had a tremendous impact on the field of nonlinear fibre optics and continues to open up new horizons in photonic science. Here we provide a concise and critical summary of the current state of nonlinear optics in photonic crystal fibre, identifying some of the most important and interesting recent developments in the field. We also discuss several emerging research directions and point out links with other areas of physics that are now becoming apparent.
Article
Full-text available
By using a photonic crystal fiber, a supercontinuum source with output power up to 1.7W, pumped by a passively mode-locked diode-pumped Nd:YVO4 picosecond laser is obtained. A spectral width of the supercontinuum is 1700 nm (500–2200 nm) with the 5 dB spectral width approximately 1000 nm (1200–2200 nm). This high power wide band supercontinuum source meets the demand of many applications such as optical coherence tomography, frequency metrology and wavelength-division-multiplexing systems. The evolution of the supercontinuum with the increasing pump power is presented and analyzed.
Article
Full-text available
A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.
Article
We investigate numerically and experimentally the propagation of visible sub-50 fs pulses in a tapered small core photonic crystal fiber. The fiber has anomalous dispersion between two closely spaced zero dispersion wavelengths at 509 and 640 nm, and the excitation wavelength was varied within this range. We find that the spectral evolution in the low power regime is dominated by higher-order soliton fission, soliton self-frequency shift, and dispersive wave generation. At higher powers, extremely wide spectral broadening of the input pulse occurs within the first few millimeters of fiber. The wavelength conversion into the blue and red spectral ranges is studied as a function of the input power and excitation wavelength. Conversions into the spectral range 300–470 nm at efficiencies as high as 40% are observed when pumping at 523 nm.
Article
Ge O 2 -doped-core photonic crystal fibers show greatly enhanced Kerr and Raman responses with respect to pure silica without any significant modification of the group-velocity dispersion curve. We show that such fibers allow a significant improvement of cw-pumped supercontinuum generation. We report for the first time to our knowledge the generation of a white-light cw-pumped supercontinuum spanning from 470 nm to more than 1750 nm .
Article
We report recent advances on the spectral control of continuous-wave-pumped supercontinuum sources. We show that the generated infrared SC spectrum can be tailored by using photonic crystal fibers with two zero-dispersion wavelengths. The dynamics of the spectral broadening is studied, and we show that slightly different nonlinear mechanisms occur as the zero-dispersion wavelengths are brought closer to each other. We also report the generation of a visible continuous-wave-pumped supercontinuum by using dispersion engineered photonic crystal fibers in which the zero-dispersion wavelength slightly decreases as a function of length over 200 m. The resulting supercontinuum source spans from 650 nm to 1380 nm with an average output power of 19.5 W. The nonlinear mechanisms producing this spectacular effect are carefully investigated with support of numerical simulations. We show that the generation of visible wavelengths is due to the trapping of dispersive waves by powerful red-shifting solitons.
Article
Microstructured optical fibres (MOFs) have attracted much interest in recent times, due to their unique waveguiding properties that are vastly different from those of conventional step-index fibres. Tapering of these MOFs promises to significantly extend and enhance their capabilities. In this paper, we review the fabrication and characterisation techniques of these fibre tapers, and explore their fundamental waveguiding properties and potential applications. We fabricate photonic crystal fibre tapers without collapsing the air-holes, and confirm this with a non-invasive probing technique that enables the characterisation of the internal microstructure along the taper. We then describe the fundamental property of such tapers associated with the leakage of the core mode that leads to long-wavelength loss, influencing the operational bandwidth of these tapers. We also revisit the waveguiding properties in another form of tapered MOF photonic wires, which transition through waveguiding regimes associated with how strongly the mode is isolated from the external environment. We explore these regimes as a potential basis for evanescent field sensing applications, in which we can take advantage of air-hole collapse as an extra dimension to these photonic wires.