Conference Paper

Soil Carbon and Nitrogen Linkages Along an Urban Elevational Gradient in Humid Tropical Forests

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Tropical forests in and around urban centers face a suite of anthropogenic disturbances that may be muted or absent in more remote forests. In particular, urban-proximate forests are likely to have elevated soil nitrogen (N) levels because of local N deposition. High background N availability common in humid tropical soils may result in soil carbon (C) cycling responses that differ from those observed in N-poor Northern soils. Furthermore, N availability and temperature have been shown to have interacting effects on soil C cycling, such that responses may vary over elevational gradients. We used fragments of secondary forest along an urban elevational gradient in Puerto Rico to address the following questions: (a) Is there evidence that increased N availability in urban-proximate tropical forests alters soil C cycling? (b) Do effects of N availability vary over elevational gradients? To address these questions, we measured soil C and N content, soil respiration, mineral N pools, total dissolved N (TDN), dissolved organic C (DOC), pH, microbial biomass, and decomposer enzyme activities. Data from the urban gradient were compared with results for rural and remote Puerto Rican forests. Forest soils along the urban gradient had elevated levels of soil nitrate (NO3-) relative to rural and remote forests, whereas extractable DOC and TDN were both lower in the urban forest soils. Soil pH was significantly higher and more variable in urban forests, ranging from 4.5 to 8.5 across nine forest stands, whereas remote forests had soil pH ranging from 4.4 to 5.2. Dissolved organic C and TDN declined with increases in pH across all sites (R2 = 0.64 and 0.48 respectively, n = 48, p < 0.05). Microbial biomass was not different among the study areas, but several microbial enzyme activities were lower in urban forest soils relative to the remote forests, including phosphorous-acquiring phosphatase, N-acquiring NAGase, and oxidative enzymes that degrade complex C compounds. Soil moisture was a strong predictor of soil enzyme activities in general, and average soil moisture was significantly lower in the urban soils than in the remote sites. Together, these data indicate a significant effect of proximity to urban development on forest soil C and N cycling. Also, the effects of N availability on soil C cycling may vary in relation to changes in soil moisture, both over elevational gradients and with proximity to urban areas.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.