Disruption of Dopamine Neuron Activity Pattern Regulation through Selective Expression of a Human KCNN3 Mutation

Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
Neuron (Impact Factor: 15.05). 10/2013; 80(4). DOI: 10.1016/j.neuron.2013.07.044
Source: PubMed


The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior.

Download full-text


Available from: Ali D Guler, Oct 29, 2015
  • Source
    • "With the development of novel tracing techniques, however, interrogating the neural circuits involved in the control of islet function seems feasible now. Functional neural networks can be identified with techniques involving genetically encoded effectors for activating and inhibiting specific neuronal populations [28]. Emerging tools for defining cellspecific anatomical connections and functional networks include light-activated channels ('optogenetics'; [29]) or receptors activated by inert ligands ('pharmacogenetics' [30]). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The autonomic nervous system affects glucose metabolism partly through its connection to the pancreatic islet. Since its discovery by Paul Langerhans, the precise innervation patterns of the islet has remained elusive, mainly because of technical limitations. Using 3-dimensional reconstructions of axonal terminal fields, recent studies have determined the innervation patterns of mouse and human islets. In contrast to the mouse islet, endocrine cells within the human islet are sparsely contacted by autonomic axons. Instead, the invading sympathetic axons preferentially innervate smooth muscle cells of blood vessels. This innervation pattern suggests that, rather than acting directly on endocrine cells, sympathetic nerves may control hormone secretion by modulating blood flow in human islets. In addition to autonomic efferent axons, islets also receive sensory innervation. These axons transmit sensory information to the brain but also have the ability to locally release neuroactive substances that have been suggested to promote diabetes pathogenesis. We discuss recent findings on islet innervation, the connections of the islet with the brain, and the role islet innervation plays during the progression of diabetes.
    Full-text · Article · Oct 2014 · Best Practice & Research: Clinical Endocrinology & Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small-conductance, Ca(2+) -activated K(+) (SK) channels are expressed in the hippocampus where they regulate synaptic responses, plasticity, and learning and memory. To investigate the expression of SK3 (KCNN3) subunits, we determined the developmental profile and subcellular distribution of SK3 in the developing mouse hippocampus using western blots, immunohistochemistry and high-resolution immunoelectron microscopy. The results showed that SK3 expression increased during postnatal development, and that the localization of SK3 changed from being mainly associated with the endoplasmic reticulum and intracellular sites during the first postnatal week to being progressively concentrated in dendritic spines during later stages. In the adult, SK3 was localized mainly in postsynaptic compartments, both at extrasynaptic sites and along the postsynaptic density of excitatory synapses. Double labelling showed that SK3 co-localized with SK2 (KCNN2) and with N-methyl-D-aspartate receptors. Finally, quantitative analysis of SK3 density revealed two subcellular distribution patterns in different hippocampal layers, with SK3 being unevenly distributed in CA1 region of the hippocampus pyramidal cells and homogeneously distributed in dentate gyrus granule cells. Our results revealed a complex cell surface distribution of SK3-containing channels and a distinct developmental program that may influence different hippocampal functions.
    No preview · Article · Jan 2014 · European Journal of Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease has traditionally been viewed as a motor disorder caused by the loss of dopamine (DA) neurons. However, emotional and cognitive syndromes can precede the onset of the motor deficits and provide an opportunity for therapeutic intervention. Potassium channels have recently emerged as potential new targets in the treatment of Parkinson's disease. The selective blockade of small conductance calcium-activated K+ channels (SK channels) by apamin is known to increase burst firing in midbrain DA neurons and therefore DA release. We thus investigated the effects of systemic administration of apamin on the motor, cognitive deficits and anxiety present after bilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesions in rats. Apamin administration (0.1 or 0.3 mg/kg i.p.) counteracted the depression, anxiety-like behaviors evaluated on sucrose consumption and in the elevated plus maze, social recognition and spatial memory deficits produced by partial 6-OHDA lesions. Apamin also reduced asymmetric motor deficits on circling behavior and postural adjustments in the unilateral extensive 6-OHDA model. The partial 6-OHDA lesions (56% striatal DA depletion) produced 20% decrease of iodinated apamin binding sites in the substantia nigra pars compacta in correlation with the loss of tyrosine hydroxylase positive cells, without modifying apamin binding in brain regions receiving DAergic innervation. Striatal extracellular levels of DA, not detectable after 6-OHDA lesions, were enhanced by apamin treatment as measured by in vivo microdialysis. These results indicate that blocking SK channels may reinstate minimal DA activity in the striatum to alleviate the non-motor symptoms induced by partial striatal DA lesions.
    No preview · Article · Mar 2014 · The International Journal of Neuropsychopharmacology
Show more