High-Throughput SAXS for the Characterization of Biomolecules in Solution: A Practical Approach

Physcial Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2014; 1091:245-58. DOI: 10.1007/978-1-62703-691-7_18
Source: PubMed


The recent innovation of collecting X-ray scattering from solutions containing purified macromolecules in high-throughput has yet to be truly exploited by the biological community. Yet, this capability is becoming critical given that the growth of sequence and genomics data is significantly outpacing structural biology results. Given the huge mismatch in information growth rates between sequence and structural methods, their combined high-throughput and high success rate make high-throughput small angle X-ray scattering (HT-SAXS) analyses increasingly valuable. HT-SAXS connects sequence as well as NMR and crystallographic results to biological outcomes by defining the flexible and dynamic complexes controlling cell biology. Commonly falling under the umbrella of bio-SAXS, HT-SAXS data collection pipelines have or are being developed at most synchrotrons. How investigators practically get their biomolecules of interest into these pipelines, balance sample requirements and manage HT-SAXS data output format varies from facility to facility. While these features are unlikely to be standardized across synchrotron beamlines, a detailed description of HT-SAXS issues for one pipeline provides investigators with a practical guide to the general procedures they will encounter. One of the longest running and generally accessible HT-SAXS endstations is the SIBYLS beamline at the Advanced Light Source in Berkeley CA. Here we describe the current state of the SIBYLS HT-SAXS pipeline, what is necessary for investigators to integrate into it, the output format and a summary of results from 2 years of operation. Assessment of accumulated data informs issues of concentration, background, buffers, sample handling, sample shipping, homogeneity requirements, error sources, aggregation, radiation sensitivity, interpretation, and flags for concern. By quantitatively examining success and failures as a function of sample and data characteristics, we define practical concerns, considerations, and concepts for optimally applying HT-SAXS techniques to biological samples.

Download full-text


Available from: John Tainer
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of small-angle X-ray scattering (SAXS) in structural biology is now well established, and its usefulness in combination with macromolecular crystallography is clear. However, the highly averaged SAXS data present a significant risk of over-interpretation to the unwary practitioner, and it can be challenging to frame SAXS results in a manner that maximises the reliability of the conclusions drawn. In this review, a series of recent examples are used to illustrate both the challenges for interpretation and approaches through which these can be overcome.
    No preview · Article · Jan 2014 · Australian Journal of Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biological solution small-angle X-ray scattering (BioSAXS) field has undergone tremendous development over recent decades. This means that increasingly complex biological questions can be addressed by the method. An intricate synergy between advances in hardware and software development, data collection and evaluation strategies and implementations that readily allow integration with complementary techniques result in significant results and a rapidly growing user community with ever increasing ambitions. Here, a review of these developments, by including a selection of novel BioSAXS method-ologies and recent results, is given.
    Full-text · Article · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here, we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic-level agreement with the designed model, while electron microscopy, native mass spectrometry and small angle X-ray scattering revealed alternative assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will probably require limiting flexibility to select against alternative forms. These results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.
    Full-text · Article · Dec 2014 · Nature Chemistry
Show more